非线性最优化

合集下载

数学中的非线性优化与全局最优化

数学中的非线性优化与全局最优化

数学中的非线性优化与全局最优化非线性优化和全局最优化是数学中重要的分支之一,它们在各个领域都有着广泛的应用。

本文将介绍非线性优化和全局最优化的基本概念、常见方法以及其在实际问题中的应用。

一、非线性优化的基本概念非线性优化是指在目标函数和约束条件均为非线性的情况下,寻找使目标函数达到最优值或最小值的一组变量取值。

与线性优化相比,非线性优化更加复杂,因为非线性函数具有更多的特征和性质。

例如,非线性函数可能存在多个局部最优解,而不一定存在全局最优解。

在非线性优化中,目标函数的最优解可以是最小值或最大值。

常见的非线性优化问题包括函数极值、最优化参数估计以及控制问题等。

为了求解这些问题,人们采用了各种非线性优化算法。

二、非线性优化的常见方法1. 梯度下降法梯度下降法是一种常用的非线性优化方法,它基于目标函数在某一点的梯度信息来确定下一步的搜索方向。

通过迭代更新变量的取值,梯度下降法逐渐接近最优解。

然而,梯度下降法容易陷入局部最优解,并且当目标函数存在平坦区域时,可能收敛速度较慢。

2. 牛顿法牛顿法是一种迭代的非线性优化方法,它通过利用目标函数的Hessian矩阵来近似最优解。

牛顿法具有更快的收敛速度,但要求目标函数具有二阶连续导数,且Hessian矩阵需满足正定条件。

3. 共轭梯度法共轭梯度法是一种基于梯度信息的迭代方法,它通过寻找一组共轭的搜索方向来加快收敛速度。

共轭梯度法通常应用于解线性方程组的求解,扩展到非线性优化时,需要结合其他方法进行求解。

4. 遗传算法遗传算法是一种模仿自然进化过程的优化算法,通过模拟种群的进化、交叉和变异等操作来寻找最优解。

遗传算法具有较好的全局搜索能力,但在问题比较大、复杂时,计算开销较大。

三、全局最优化的意义与挑战全局最优化是在非凸问题中寻找最优解的方法,与传统的局部最优解相比,全局最优解更具有全局视野和更好的性能指标。

在实际问题中,很多目标函数具有多个局部最优解,只有找到全局最优解,才能更好地满足实际应用的需求。

线性和非线性最优化理论、方法、软件及应用

线性和非线性最优化理论、方法、软件及应用

线性和非线性最优化理论、方法、软件及应用最优化在航空航天、生命科学、水利科学、地球科学、工程技术等自然科学领域和经济金融等社会科学领域有着广泛和重要的应用, 它的研究和发展一直得到广泛的关注. 最优化的研究包含理论、方法和应用.最优化理论主要研究问题解的最优性条件、灵敏度分析、解的存在性和一般复杂性等.而最优化方法研究包括构造新算法、证明解的收敛性、算法的比较和复杂性等.最优化的应用研究则包括算法的实现、算法的程序、软件包及商业化、在实际问题的应用. 这里简介一下线性和非线性最优化理论、方法及应用研究的发展状况.1. 线性最优化线性最优化, 又称线性规划, 是运筹学中应用最广泛的一个分支.这是因为自然科学和社会科学中许多问题都可以近似地化成线性规划问题. 线性规划理论和算法的研究及发展共经历了三个高潮, 每个高潮都引起了社会的极大关注. 线性规划研究的第一高潮是著名的单纯形法的研究. 这一方法是Dantzig在1947年提出的,它以成熟的算法理论和完善的算法及软件统治线性规划达三十多年. 随着60年代发展起来的计算复杂性理论的研究, 单纯形法在七十年代末受到了挑战. 1979年前苏联数学家Khachiyan提出了第一个理论上优于单纯形法的所谓多项式时间算法--椭球法, 曾成为轰动一时的新闻, 并掀起了研究线性规划的第二个高潮. 但遗憾的是广泛的数值试验表明, 椭球算法的计算比单纯形方法差.1984年Karmarkar提出了求解线性规划的另一个多项式时间算法. 这个算法从理论和数值上都优于椭球法,因而引起学术界的极大关注, 并由此掀起了研究线性规划的第三个高潮. 从那以后, 许多学者致力于改进和完善这一算法,得到了许多改进算法.这些算法运用不同的思想方法均获得通过可行区域内部的迭代点列,因此统称为解线性规划问题的内点算法. 目前内点算法正以不可抗拒的趋势将超越和替代单纯形法.线性规划的软件, 特别是由单纯形法所形成的软件比较成熟和完善.这些软件不仅可以解一般线性规划问题, 而且可以解整数线性规划问题、进行灵敏度分析, 同时可以解具有稀疏结构的大规模问题.CPLEX是Bi xby基于单纯形法研制的解线性和整数规划的软件, CPLEX的网址是/. 此外,这个软件也可以用来解凸二次规划问题, 且特别适合解大规模问题. PROC LP是SAS软件公司研制的SAS商业软件中OR模块的一个程序.这个程序是根据两阶段单纯形法研制的,可以用来解线性和整数规划问题并可进行灵敏度分析, 是一个比较完善的程序.用户可以根据需要选择不同的参数来满足不同的要求。

非线性最优化

非线性最优化

定理5 设S为n维欧氏空间 En 上的开凸集, f(X)在S上二次可微,若任意x∈S,Hesse矩阵正定,则f是S 上的严格凸函数.
例如 分析f(x1,x2)= 2x12 +x22 -2 x1x2+x1+1的凸性. 解: H=A为正定阵,所以f为严格凸函数.
f(x)1 2(x1,x2)4 222x x1 2x11
一维搜索在搜索方向上所得最优点处的 梯度和该搜索方向正交.
定理8 设目标函数f(X)∈C(1),X(k+1)按下 述规则产生
λk : Minf(X(k)+λP(k)) X(k+1)= X(k)+λkP(k)
则有 ▽f(X(k+1))TP(k)=0. 证 设φ(λ)=f(X(k)+λP(k)),则由
注2.gj(X)≤0→-gj(X) ≥ 0 ; 注3.hi(X)=0→hi(X) ≥ 0 , -hi(X) ≥ 0 .
1.2 极值问题
设f(X)为定义在n维欧氏空间 En 的某一区
域S上的n元实函数,其中X=(x1 ,x2 … xn)T . 局部极小点(值):对于 X* ∈S,如果存在
某ε>0,使所有与X* 的距离小于ε的X∈S,均满足不等式f(X)≥f(X* ),则称X* 为f(X)在S上的局部极小点, f(X* )为局部极小值。
用反证法证明定理6: 设X* ∈S是一个局部极小点,则存在ε>0,使得对 任意X∈S∩Nε(X* ),恒有 f(X)≥f(X* ). 假设X*非全局最小,则存在X’∈S,使得f(X*)>f(X’). 由S的凸性,对任意λ∈[0,1],λX’+(1- λ)X*∈S, 由X*≠X’,取λ∈(0,1).因为λ<<1时,可使

非线性最优化及其应用

非线性最优化及其应用

非线性最优化及其应用在数学中,最优化是一种求解最大值或最小值的方法。

而非线性最优化则是指在目标函数或约束条件中存在非线性部分的最优化问题,它在很多实际应用中发挥了重要作用。

作为一个基础的优化问题,线性规划一直是最优化领域的重点研究对象。

但是,对于许多情况而言,现实世界中的问题并不是线性的,例如在工程、经济和物理学等领域,很多问题都具有非线性特征。

因此,非线性最优化问题逐渐成为现代优化领域的主要研究领域。

非线性规划可以被看作是求解如下形式的问题:$$\min_{x\in\mathbb{R}^n} f(x), \quad\text {subject to}\quadh_i(x)=0,\quad i\in \mathcal{E},$$和$$g_i(x)\le 0,\quad i\in \mathcal{I},$$其中$f$,$h_i$和 $g_i$均是非线性函数,$\mathcal{E}$和$\mathcal{I}$分别表示等式和不等式约束条件的索引集。

非线性规划是一个相当复杂的问题,因为函数 $f$ 可以是任意复杂的非线性结构,而且约束条件可能非常复杂,可能存在多个局部极小值,需要进行全局最优化求解。

由于不能对所有非线性规划问题得到普遍可行、有效的算法,因此解决特定问题需要根据数据的特征和指定的模型选择合适的方法。

一般来说,非线性最优化问题的解决方法分为两大类:一类是基于局部方法的,另一类是基于全局方法的。

基于局部方法的算法主要基于牛顿/拟牛顿方法,信赖域算法,共轭梯度方法等等,这些方法对于小型问题是相当有效的。

在一些特定情况下,它们能够在现实时间内得到最优解。

但是,在复杂大型问题中,这些方法通常会被卡住在一个局部最小值处,而无法得到全局最优解。

基于全局方法的算法通常使用一些元启发式搜索技术,如遗传算法,模拟退火算法等等。

这些算法可以探索大部分搜索空间,从而获得全局最优解。

但是,相比于基于局部方法的高效性和准确性,全局算法要慢得多,而且结果可能不太精确。

非线性最优化

非线性最优化
将(1.5)和(1.6)中的不等号反向,即可得到凹函数 和严格凹函数的定义.
9
凸函数的性质
性质1 设f(X)为定义在凸集S上的凸函数, 则对任 意实数b≥ 0,函数bf(X)也是定义在S上的凸函数.
性质2 设f1(X)和 f2(X)为定义在凸集S上的两个 凸函数,则其和f(X)= f1(X)+f2(X)仍为定义在S 上的凸函数.
注2.gj(X)≤0→-gj(X) ≥ 0 ; 注3.hi(X)=0→hi(X) ≥ 0 , -hi(X) ≥ 0 .
4
1.2 极值问题
设f(X)为定义在n维欧氏空间 En 的某一区
域S上的n元实函数,其中X=(x1 ,x2 … xn)T . 局部极小点(值):对于 X* ∈S,如果存在
某ε>0,使所有与X* 的距离小于ε的X∈S,均 满足不等式f(X)≥f(X* ),则称X* 为f(X)在 S上的局部极小点, f(X* )为局部极小值。 严格局部极小点(值):对于所有X≠X* 且
24
一维搜索在搜索方向上所得最优点处的
梯度和该搜索方向正交. 定理8 设目标函数f(X)∈C(1),X(k+1)按下
述规则产生
λk : Minf(X(k)+λP(k)) X(k+1)= X(k)+λkP(k)
则有 ▽f(X(k+1))TP(k)=0. 证 设φ(λ)=f(X(k)+λP(k)),则由
由(1)、(2),得到 f(y)≥f(X* ). 所以X*为全局最小点. 记a:= minf=f(X*),则S上的极小点的集合
Sa={X|X∈R,f(X)≤a}.由性质3知, Sa是凸集.
14
用反证法证明定理6:
设X* ∈S是一个局部极小点,则存在ε>0,使得对

非线性最优化模型.pptx

非线性最优化模型.pptx

8.1 一个生产应用——对Par公司的再思考
第7页/共37页
8.1 一个生产应用——对Par公司的再思考
• 局部和整体最优 • 如果没有其他有目标函数值的可行解可以在临近域里找到,这个可行解就是最优
的。 • 非线性最优化问题可能有多个局部最优解,这意味着我们需要找到最好的局部最
优解。 • 在许多非线性应用中,一个唯一的局部最优解也是整体最优解。 • 两种情况:凸函数和凹函数(函数图形为谷形和山形)
m=最终使用新产品的估计人数
q=模仿系数 测量影响购买的口碑效应
p=创新系数 测量了在假定没有受到他人已购 买产品的影响时使用的可能性。
Ct-1 表示到时间t-1已经使用的人数
• 利用这些参数,可以建立预测模型,见下页公
式。
第27页/共37页
8.5 预测一个新产品的使用
第28页/共37页
8.5 预测一个新产品的使用
本章主要内容
• 8.1 一个生产应用——对Par公司的再思考 • 8.2 建立一个指数化证券投资基金 • 8.3 Markowitz投资组合模型 • 8.4 另一混合问题 • 8.5 预测一个新产品的使用
第2页/共37页
8.1 一个生产应用——对Par公司 的再思考
• 一个无约束问题 • S:标准包的需求 D:豪华包的需求 • S=2250-15PS • D=1500-5PD • 生产和销售S个标准包的利润:PSS-70S • 生产和销售D个豪华包的利润:PDD-150D • 可以求得总利润的函数,计算得到的是一个二次函数。可求得利润最大化时的S和D
• 但是,一些非线性函数有多个局部最优值。 第11页/共37页
8.1 一个生产应用——对Par公司的再思考

《非线性最优化模型》课件

《非线性最优化模型》课件

无约束优化模型
定义
无约束优化模型是指在没有任何约束条件限制下,寻找目标函数的最大值或最 小值。
求解方法
无约束优化模型的求解方法主要包括梯度法、牛顿法、拟牛顿法、共轭梯度法 等。这些方法通过迭代的方式逐步逼近最优解,利用目标函数的梯度信息或海 森矩阵进行搜索。
混合整数优化模型
特点
混合整数优化模型是指目标函数 和约束条件中同时包含连续变量 和整数变量,整数变量的取值只 能是整数。
《非线性最优化模型》ppt课 件
Байду номын сангаас
CONTENTS
• 非线性最优化模型概述 • 非线性最优化模型的分类 • 非线性最优化模型的求解方法 • 非线性最优化模型的实际应用
案例 • 非线性最优化模型的未来发展
与挑战
01
非线性最优化模型概述
定义与特点
总结词
非线性最优化模型是一种数学方法,用于解决具有非线性约束和目标的优化问题。
优点
收敛速度快,精度高。
缺点
对Hessian矩阵敏感,计算量大,可能面临数值稳定问题。
拟牛顿法
总结词
改进的牛顿法 01
详细描述
02 通过迭代更新Hessian矩阵近似值 ,构造拟牛顿矩阵,以实现牛顿 法的数值稳定性和收敛速度。
优点
数值稳定性好,收敛速度快。
03
缺点
04 需要存储和计算Hessian矩阵或其 近似值。
客户需求。
运输优化
非线性最优化模型可用于 优化运输路线和运输方式 ,降低运输成本并提高运
输效率。
采购优化
通过非线性最优化模型, 可以确定最佳供应商和采 购策略,以降低采购成本
并确保产品质量。

非线性最优化模型

非线性最优化模型

案例二:生产调度优化的应用
总结词
生产调度优化是利用非线性最优化模型来安排生产计划 ,以提高生产效率和降低生产成本。
详细描述
生产调度问题需要考虑生产线的配置、工人的排班、原 材料的采购等多个因素。非线性最优化模型能够综合考 虑这些因素,并找到最优的生产调度方案,提高生产效 率,降低生产成本,并确保生产计划的可行性。
04
非线性最优化模型的实例分析
投资组合优化模型
投资组合优化模型
通过非线性最优化方法,确定最佳投资组合配置,以实现预期收 益和风险之间的平衡。
目标函数
最大化预期收益或最小化风险,通常采用夏普比率、詹森指数等 作为评价指标。
约束条件
包括投资比例限制、流动性约束、风险控制等。
生产调度优化模型
01
生产调度优化模型
非线性最优化模型
• 非线性最优化模型概述 • 非线性最优化模型的分类 • 非线性最优化模型的求解方法 • 非线性最优化模型的实例分析 • 非线性最优化模型的挑战与展望 • 非线性最优化模型的应用案例
01
非线性最优化模型概述
定义与特点
定义
非线性最优化模型是指用来描述具有 非线性特性的系统或问题的数学模型 。
多目标非线性优化模型
多目标
多目标非线性优化模型中存在多个目标函数,这些目标函 数之间可能存在冲突。
01
求解方法
常用的求解方法包括权重法、帕累托最 优解法、多目标遗传算法等,这些方法 通过迭代过程逐步逼近最优解。
02
03
应用领域
多目标非线性优化模型广泛应用于各 种领域,如系统设计、城市规划、经 济分析等。
通过非线性最优化方法,合理安 排生产计划和调度,以提高生产 效率和降低成本。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非线性规划的数学模型
非线性规划的数学模 型常表示成以下形式
非线性规划的数学模型 可以写成以下形式
Minf(X) hi(X)=0 i=1,2, … ,m gj(X) ≥ 0 j=1,2, … ,l
Minf(X) gj(X) ≥ 0 j=1,2, … ,l
注1.min[-f(X)]=-maxf(x);
所以X*为全局最小点.
定理7 设f(X)是定义在凸集S上的可微凸 函数, 若存在点X*∈S, 使得所有的X∈S有
▽f(X*)T(X-X*)≥0 则X*是f(X)在S上的最小点(全局极小点).
证 由定理3,对任意X∈S有 f(X)≥f(X*)+▽f(X*)T(X-X*)≥f(X*),证毕. 注1:若▽f(X*) =0,则▽f(X*)T(X-X*)≥0. 注2:最小点未必唯一,但凸集上严格凸函 数的最小点唯一. 注3:对凹函数也有上述类似的结果.
将(1.5)和(1.6)中的不等号反向,即可得到凹函数 和严格凹函数的定义.
凸函数的性质
性质1 设f(X)为定义在凸集S上的凸函数, 则对任 意实数b≥ 0,函数bf(X)也是定义在S上的凸函数.
性质2 设f1(X)和 f2(X)为定义在凸集S上的两个 凸函数,则其和f(X)= f1(X)+f2(X)仍为定义在S 上的凸函数.
注2.gj(X)≤0→-gj(X) ≥ 0 ; 注3.hi(X)=0→hi(X) ≥ 0 , -hi(X) ≥ 0 .
1.2 极值问题
设f(X)为定义在n维欧氏空间 En 的某一区
域S上的n元实函数,其中X=(x1 ,x2 … xn)T . 局部极小点(值):对于 X* ∈S,如果存在
某ε>0,使所有与X* 的距离小于ε的X∈S,均 满足不等式f(X)≥f(X* ),则称X* 为f(X)在 S上的局部极小点, f(X* )为局部极小值。 严格局部极小点(值):对于所有X≠X* 且
注2:最小点未必唯一,但凸集上严格凸函 数的最小点唯一.
事实上,设有两个最小点X≠Y,令 Z=λX+(1- λ)Y, λ∈(0,1),则 f(Z)<λf(X)+(1-λ)f(Y)
≤ λf(X)+(1- λ)f(X)=f(X),矛盾. 例4 求函数f(x1,x2,x3)
= x1+2x3 + x2x3- x12 -x22 – x32 的极值.
由(1)、(2),得到 f(y)≥f(X* ).
所以X*为全局最小点. 记a:= minf=f(X*),则S上的极小点的集合 Sa={X|X∈R,f(X)≤a}.由性质3知, Sa是凸集.
用反证法证明定理6: 设X* ∈S是一个局部极小点,则存在ε>0,使得对 任意X∈S∩Nε(X* ),恒有 f(X)≥f(X* ). 假设X*非全局最小,则存在X’∈S,使得f(X*)>f(X’).
例5. 求解非线性规划
x2 g2(x) 0
g1(x) 0
A
min f (x) x12 x22 4x1 4 O s.t. g1(x) x1 x2 2 0
2
4
x1
g2 (x) x12 x2 1 0
x1 0, x2 0
最优点A(0.58,1.34), min f 3.8
与X*的距离小于ε的X∈S,f(X)>f(X* ),则称 X* 为f(X)在S上的严格局部极小点, f(X* )为
严格局部极小值。 全局极小点(值):对于所有的X ∈S,都
有f(X)≥f(X* ),则称X* 为f(X)在S上的全局 极小点,f(X* )为全局极小值。
严格全局极小点(值):对于所有X∈S且 X≠X* ,都有f(X)> f(X* ),则称X* 为f(X)在 R上的严格全局极小点,f(X* )为严格全局极 小值。
将上述不等式反向,即可以得到相应的 极大点和极大值的定义。
极值点存在的必要条件和充分条件
定理1 (必要条件)设S是n维欧氏空间En 上 的某一开集,f(X)在S上有一阶连续偏导数, 且在点X* ∈S取得局部极值,则必有

其中 为函数f(X)在点X* 处的梯度。
定理2 (充分条件)设S是n维欧氏空间En 上
一维搜索在搜索方向上所得最优点处的
梯度和该搜索方向正交. 定理8 设目标函数f(X)∈C(1),X(k+1)按下
述规则产生
λk : Minf(X(k)+λP(k)) X(k+1)= X(k)+λkP(k)
则有 ▽f(X(k+1))TP(k)=0. 证 设φ(λ)=f(X(k)+λP(k)),则由
φ’(λ)=▽f(X(k)+ λP(k))T P(k)=0 得 λ= λk ∴▽f(X(k)+ λ P(k))T P(k)=▽f(X(k+1))TP(k)=0
若这算法是有效的,那么它所产生的解的 序列将收敛于该问题的最优解.
若由某算法所产生的解的序列{X(k)}使 目标函数值f(X(k))逐步减小,就称这算法为 下降算法.
假定已迭代到点X(k),若从X(k)出发沿任
何方向移动都不能使目标函数下降,则X(k)是 局部极小点,迭代停止.若从X(k)出发至少存 在一个方向可使目标函数值有所下降,则可 选能使目标函数值下降的某方向P(k),沿这 方向迈进适当的一步,得到下一个迭代点 X(k+1),并使 f(X(k+1))<f(X(k)). 这相当于在射线X= X(k)+λP(k)上选定新点
证 设X* ∈S是一个局部极小点,则存在
ε>0,使得对任意X∈Nε(X* ),恒有f(X)≥f(X* ). 令y是S中任一点,则对充分小的λ∈(0,1),
有 λy+(1- λ)X*∈Nε(X* ), 从而
f(λy+(1- λ)X*)≥f(X* )
Байду номын сангаас
(1)
由于f为凸函数,有 λf(y)+(1-λ)f(X* )≥f(λy+(1- λ)X*) (2)
常用的收敛的准则有以下几种: (1). 根据相继两次迭代的绝对误差
非线性最优化
非线性最优化的基本概念 一维搜索 无约束极值问题的解法 最优性条件 有约束极值问题的解法 二次规划 可行方向法 制约函数法
第一节 基本概念
1.1 非线性问题的提出
例1 某公司经营两种设备,第一种设备售价30 元,第二种设备售价450元。根据统计,售出一件第 一种设备所需要的营业时间平均是0.5小时,第二种 设备是(2+0.25 x2 )小时,其中x2是第二种设备的售出 数量。已知该公司在这段时间内的总营业时间为800 小时,试决定使其营业额最大的营业计划.
f(X(2) )≥f(X(1) )+▽f(X(1) )T(X(2) -X(1)) 定理4(二阶条件)设S为n维欧氏空间 En
上的开凸集, f(X)在S上具有二阶连续偏导数, 则f(X)为S上的凸函数的充要条件是:f(X)的 Hesse矩阵H(X)在S上处处半正定.
定理5 设S为n维欧氏空间 En 上的开凸集, f(X)在S上二次可微,若任意x∈S,Hesse矩阵 正定,则f是S上的严格凸函数.
性质3 设f(X)为定义在凸集S上的凸函数,则对任 一实数b,集合 Sb ={X|X ∈S ,f(X) ≤b} 是凸集(Sb称为水平集).
函数凸性的判定
定理3(一阶条件)设S为n维欧氏空间 En 上的开凸集,f(X)在S上具有一阶连续偏导 数,则f(X)为S上的凸函数的充要条件是,对任 意两个不同点X(1) ∈S和X(2) ∈S,恒有
迭代计算法的收敛速度 设序列{x(k)}收敛于x*,若存在与k无关的数,
0<β<+∞和α≥1,使得 ‖X(k+1)-X*‖≤β‖X(k)-X*‖α, k≥k0
则称{x(k)}收敛的阶为α,或{x(k)} α阶收敛. 当α=2时,称为二阶收敛,也称{x(k)}具有
二阶敛速;当1<α<2时,称为超线性收敛; 当α=1, 0<β<1时,称为线性收敛或一阶收敛.
f(aX(1)+(1-a) X(2)) ≤ af(X(1))+(1-a)f(X(2)) (1.5) 则称f(X)为定义在S上的凸函数.
严格凸函数:若对每一个a(0<a<1)以及S中的 任意两点X(1)和X(2), X(1)≠ X(2) ,恒有
f(aX(1)+(1-a) X(2)) < af(X(1))+(1-a)f(X(2)) (1.6) 则称f(X)为定义在S上的严格凸函数.
1.5 下降迭代算法
迭代法基本思想:
为了求函数f(X)的最优解,首先给定一个
初始估计X(0),然后按某种算法找出比X(0)更好
的解X(1)(对极小化问题,f(X(1))<f(X(0));对极 大化问题,f(X(1))> f(X(0))),再按此种规则找 出比X(1)更好的解X(2),….如此即可得到一个解 的序列{X(k)}.若这个解序列有极限X*,即 limk→∞‖X(k)-X*‖=0,则称它收敛于X*.
分析:设该公司经营第一种设备x1件,第二种设备 x2 件,其营业额为f(X),依题意列出问题的数学模型:
maxf(X)=30 x1 +450 x2 s.t. 0.5 x1 + (2+0.25 x2 ) x2 ≤ 800
x1 ≥0, x2 ≥0 例1的目标函数为自变量的线性函数,但 其第一个约束条件却是自变量的二次函数, 因而它是非线性规划问题。 若规划问题的目标函数及约束函数中至少 有一个是非线性函数,则称这种规划为非线性 规划。
例如 分析f(x1,x2)= 2x12 +x22 -2 x1x2+x1+1的 凸性.
解:
f
相关文档
最新文档