高中数学专题复习数列训练题
高二数学数列专题练习题(含答案)

高二数学数列专题练习题(含答案)高中数学《数列》专题练1.数列基本概念已知数列的前n项和S_n和第n项a_n之间的关系为:a_n=S_n-S_{n-1} (n>1),当n=1时,a_1=S_1.通过这个关系式可以求出任意一项的值。
2.等差数列和等比数列等差数列和等比数列是两种常见的数列类型。
对于等差数列,有通项公式a_n=a_1+(n-1)d,其中d为公差。
对于等比数列,有通项公式a_n=a_1*q^{n-1},其中q为公比。
如果a、G、b成等比数列,那么G叫做a与b的等比中项。
如果a、A、b、B成等差数列,那么A、B叫做a、b的等差中项。
3.求和公式对于等差数列,前n项和S_n=n(a_1+a_n)/2.对于等比数列,前n项和S_n=a_1(1-q^n)/(1-q),其中q不等于1.另外,对于等差数列,S_n、S_{2n}-S_n、S_{3n}-S_{2n}构成等差数列;对于等比数列,S_n、S_{2n}/S_n、S_{3n}/S_{2n}构成等比数列。
4.数列的函数看法数列可以看作是一个函数,通常有以下几种形式:a_n=dn+(a_1-d),a_n=An^2+Bn+C,a_n=a_1q^n,a_n=k*n+b。
5.判定方法对于数列的常数项,可以使用定义法证明;对于等差中项,可以证明2a_n=a_{n-1}+a_{n+1};对于等比中项,可以证明2a_n=a_{n-1}*a_{n+1}。
最后,对于数列的通项公式,可以使用数学归纳法证明。
1.数列基本概念和通项公式数列是按照一定规律排列的一列数,通常用{ }表示。
其中,第n项表示为an,公差为d,公比为q。
常用的数列有等差数列和等比数列。
等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差。
等比数列的通项公式为an = a1q^(n-1),其中a1为首项,q为公比。
2.数列求和公式数列求和是指将数列中的所有项加起来的操作。
高中数学《数列》练习题(含答案解析)

高中数学《数列》练习题(含答案解析)一、单选题1.已知等差数列{an }的前n 项和为Sn ,且48S S =13,则816S S =( )A .310 B .37C .13D .122.已知等比数列{an }的前n 项和为Sn ,则“Sn +1>Sn ”是“{an }单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.现有下列说法:①元素有三个以上的数集就是一个数列; ①数列1,1,1,1,…是无穷数列; ①每个数列都有通项公式;①根据一个数列的前若干项,只能写出唯一的通项公式; ①数列可以看着是一个定义在正整数集上的函数. 其中正确的有( ). A .0个B .1个C .2个D .3个4.数列{}n a 的前n 项和为n S ,且1(1)(21)n n a n +=-⋅+,则2021S =( )A .2020B .2021C .2022D .20235.已知等差数列{}n a 中,6819,27a a ==,则数列{}n a 的公差为( ) A .2B .3C .4D .56.标准对数视力表(如图)采用的“五分记录法”是我国独创的视力记录方式.标准对数视力表各行为正方形“E ”字视标,且从视力5.1的视标所在行开始往上,每一行“E ”的边长都是下方一行“E ”的边长的视力4.0的视标边长为a ,则视力4.9的视标边长为( )A .4510aB .91010aC .4510a -D .91010a -7.已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a8.已知{}n a 是等差数列,公差0d >,其前n 项和为n S ,若2a 、52a+、172a +成等比数列,()12n n n a S +=,则不正确的是( ) A .1d= B .1020a = C .2n S n n =+ D .当2n ≥时,32n n S a ≥9.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .1010101110.等差数列{}n a 前n 项和为n S , 281112a a a ++=,则13S =( ) A .32B .42C .52D .62二、填空题11.已知a 是1,2的等差中项,b 是1-,16-的等比中项,则ab 等于___________. 12.已知等差数列{}n a 的前n 项和为n S ,若65210,6Sa a =+=,则d =_________.13.设n S 是等差数列{}n a 的前n 项和,若891715a a =,则1517S S =______.14.已知等差数列{}n a 的前n 项和为nS,且1516a a +=-,936S =-,则n S 的最小值是______.三、解答题15.已知数列{}n a 为等差数列,{}n b 是公比为2的等比数列,且满足11221,5a b b a ==+=(1)求数列{}n a 和{}n b 的通项公式; (2)令n n n c a b =+求数列{}n c 的前n 项和n S ;16.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (1)求{}n a 的通项公式;(2)2n nb a =-+求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 17.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利? 18.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}nb 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.参考答案与解析:1.A【分析】运用等差数列前n 项和公式进行求解即可. 【详解】设等差数列{an }的公差为d , ①41181461582832a d a d a d S S +==⇒=+,显然0d ≠, ①8161182820283161204012010a d d d a d S d S d ++===++, 故选:A 2.D【分析】由110++>⇒>n n n S S a ,举反例102=>n na 和12nn a =-即可得出结果 【详解】110++>⇒>n n n S S a ,例如102=>n na ,但是数列{}n a 不单调递增,故不充分; 数列{}n a 单调递增,例如12n na =-,但是1n n S S +<,故不必要; 故选:D 3.B【分析】根据给定条件,利用数列的定义逐一分析各个命题,判断作答.【详解】对于①,数列是按一定次序排成的一列数,而数集的元素无顺序性,①不正确; 对于①,由无穷数列的意义知,数列1,1,1,1,…是无穷数列,①正确; 对于①0.1,0.01,0.001,0.0001,得到的不足近似值,依次排成一列得到的数列没有通项公式,①不正确;对于①,前4项为1,1,1,1的数列通项公式可以为1,N n a n =∈,cos 2π,N n b n n *=∈等,即根据一个数列的前若干项,写出的通项公式可以不唯一,①不正确;对于①,有些数列是有穷数列,不可以看着是一个定义在正整数集上的函数,①不正确, 所以说法正确的个数是1. 故选:B 4.D【分析】根据数列{}n a 的通项公式,可求得12342,2a aa a +=-+=-,依此类推,即可求解.【详解】①1(1)(21)n n a n +=-⋅+,故12343,5,7,9a a a a ==-==-故202112320202021S a a a a a =+++⋅⋅⋅++357940414043=-+-+⋅⋅⋅-+2101040432023=-⨯+=.故选:D. 5.C【分析】利用862d a a =-,直接计算公差即可. 【详解】等差数列{}n a 中,6819,27aa ==,设公差为d ,则86227198d a a =-=-=,即4d =.故选:C. 6.D【分析】由等比数列的通项公式计算.【详解】设第n 行视标边长为n a ,第n 1-行视标边长为()12n a n -≥,由题意可得()12n n a n -=≥,则()1101102nn a n a --=≥,则数列{}n a 为首项为a ,公比为11010-的等比数列, 所以101191010101010a a a ---⎛⎫== ⎪⎝⎭,则视力4.9的视标边长为91010a -,故选:D. 7.B【分析】令10t n =-≥,则1n t =+,22641411ttyt t t t ,然后利用函数的知识可得答案. 【详解】令10t n =-≥,则1n t =+,22,641411tty tt t t当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B . 8.A【分析】利用等差数列的求和公式可得出1n a na =,可得出10d a =>,根据已知条件求出1a 的值,可求得n a 、n S 的表达式,然后逐项判断可得出合适的选项.【详解】因为{}n a 是等差数列,则()()1122nn n n a n a a S ++==,所以,1n a na =, 所以,110n n d a a a +=-=>,因为()()2521722a a a +=+,可得()()2111522172a a a +=+,整理可得21191640a a --=,因为10a >,故12d a ==,A 错;12n a na n ==,则1020a =,B 对;()()112nn n a S n n +==+,C 对;当2n ≥时,()233202n n S a n n n n n -=+-=-≥,即32n n S a ≥,D 对.故选:A. 9.C【解析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=.故选:C【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和; (4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 10.C【分析】将2811a a a ++化成1a 和d 的形式,得到二者关系,求得7a ,利用13713S a =求得结果. 【详解】()()28111111()71031812a a a a d a d a d a d ++=+++++=+=164a d ∴+=,即74a = ()1131371313134522a a S a +∴===⨯= 故选:C.【点睛】思路点睛:该题考查的是有关数列的问题,解题思路如下:(1)根据题中所给的条件,结合等差数列通项公式,将其转化为关于首项与公差的式子; (2)化简求得数列的某一项;(3)结合等差数列求和公式,得到和与项的关系,求得结果. 11.6±【分析】根据等差和等比中项的定义求出,a b 得值,即可求解. 【详解】因为a 是1,2的等差中项,所以12322a +==, 因为b 是1-,16-的等比中项,所以2(1)(16)16b =-⨯-=,4b =±,所以6ab =±.故答案为:6±. 12.1【分析】由等差中项性质可求4a ,又510S =依据等差数列的前n 项和公式及通项公式列方程即可求得公差 【详解】由266a a +=有43a =,而510S = ①结合等差数列的前n 项和公式及通项公式113322a d a d +=⎧⎨+=⎩即可得1d = 故答案为:1【点睛】本题考查了等差数列,利用等差中项求项,结合已知条件、前n 项和公式、通项公式求公差13.1【分析】利用等差数列性质及前n 项和公式计算作答.【详解】在等差数列{}n a 中,891715a a =,所以1151511588117171179915(15(152152117(17)(1717)2))2a a S a a a a a a S a a a a ++⨯====⋅=++⨯. 故答案为:1 14.42-【分析】根据给定条件求出等差数列{}n a 的首项、公差,探求数列{}n a 的单调性即可计算作答.【详解】设等差数列{}n a 的公差为d ,由1591636a a S +=-⎧⎨=-⎩得112416989362a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得1122a d =-⎧⎨=⎩, 因此,()1212214n a n n =-+-⨯=-,令0n a =,解得7n =,于是得数列{}n a 是递增等差数列,其前6项为负,第7项为0,从第8项开始为正, 所以6S 或7S 最小,最小值为()656122422⨯⨯-+⨯=-. 故答案为:42-15.(1)21n a n =-,12n n b -=(2)221nn S n =+-【分析】(1)根据等差数列和等比数列的通项公式得到2d =,根据通项公式的求法得到结果;(2)1221n n n n c a b n -+=+=-分组求和即可.【详解】(1)设{}n a 的公差为d , 由已知,有215d ++=解得2d =,所以{}n a 的通项公式为21,n a n n *=-∈N , {}n b 的通项公式为12,n n b n -*=∈N .(2)1221n n n n c a b n -+=+=-,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:212(121)21122n n n n n S n -+-=+=+--.16.(1)2n a n =-;(2)1n nT n =+.【解析】(1)由30S =,55S =-,可得113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩求出1,a d ,从而可得{}n a 的通项公式;(2)由(1)可得n b n =,从而可得11111(1)1n n b b n n n n +==-++,然后利用裂项相消求和法可求得n T 【详解】解:(1)设等差数列{}n a 的公差为d , 因为30S =,55S =-.所以113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩,化简得11021a d a d +=⎧⎨+=-⎩,解得111a d =⎧⎨=-⎩,所以1(1)1(1)(1)2n a a n d n n =+-=+--=-, (2)由(1)可知2(2)2n n b a n n =-+=--+=, 所以11111(1)1n n b b n n n n +==-++, 所以111111(1)()()1223111n nT n n n n =-+-+⋅⋅⋅+-=-=+++ 【点睛】此题考查等差数列前n 项和的基本量计算,考查裂项相消求和法的应用,考查计算能力,属于基础题17.(1)2n a n =;(2)第2年该公司开始获利.【分析】(1)根据题意得出数列的首项和公差,进而求得通项公式 (2)根据题意算出总利润,进而令总利润大于0,解出不等式即可. 【详解】(1)由题意知,数列{}n a 是12a =,公差2d =的等差数列, 所以()()112122n a a n d n n =+-=+-⨯=.(2)设引进这种设备后,净利润与年数n 的关系为()F n ,则()()2121222520252n n F n n n n n -⎡⎤=-+⨯-=--⎢⎥⎣⎦. 令()0F n >得220250n n -+<,解得1010n -<+ 又因为n *∈N ,所以2n =,3,4,…,18, 即第2年该公司开始获利.18.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ① 则1231111012112222Γ33333-----=++++n nn . ①由①-①得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n n T --=++++,① 231112133333n n n n n T +-=++++,① ①-①得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n n n T =--⋅, 所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2n n S T <. [方法三]:构造裂项法由(①)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243n n c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭. 则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二. [方法四]:导函数法设()231()1-=++++=-n n x x f x x x x x x ,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nx x . 又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n n n n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n nS T,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nnc n,使1+=-n n nb c c,求得nT的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.。
高中数学数列知识及练习题附答案

数列的概念和性质(一)练习题及时反馈1.(1)2+n n ;(2)1)1(2+-n n 一.巩固提高 1.C.;2.A ; 3D. 二.能力提升 5.(1)n a =)12)(12(+-n n n :(2)n a =)1()1(1+--n n n(3)n a =n 3174-(为了寻求规律,将分子统一为4,则有144,114,84,54,……;所以n a =n3174-)(4)n a =110-n (5)n a =9934(1102-n ). 由(4)的求法可得1a =9934(102-1), 2a =9934(104-1),3a =9934(106-1),……故n a =9934(1102-n )6.(1))12(3--n ; (2)1)1()1(+++n n n n ;(3)⎪⎩⎪⎨⎧-=为正偶数)为正奇数)(n n n n a n (221;或41)1(2--+=n n n a .(评注:⎩⎨⎧=为正偶数)为正奇数)(n n g n n f a n ()()(,则:)(4)1(1)(2)1(1n g n f a nn n -++--=)数列的概念和性质(二)答案:即时反馈1. ⎩⎨⎧∈≥--==),2(22)1(1*N n n n n a n 即时反馈2.分析:)32)(12(2232)11(1211+++=+++=++n n n n a n b bn nn 138448422>++++=n n n n ,所以数列}{n b 是单调递增数列.即时反馈3.数列}{n a 中最小的项是7a =8a =16 分析:法1:直接由二次函数性质求出法2:由n a >1-n a 且n a <1+n a 求出: 及时反馈4.(1)21(2) 1+n a 43=n a (),1*N n n ∈≥1+n S 43=21+n S (),1*N n n ∈≥ 巩固提高.1.D 2.D 3.B 4.B能力提升.5.D. 分析:n a =2212121)1(-=⋯⋯⋯⋯-n n a a a a a a n n ,所以5a =16256. B. 分析:经计算可知每6个数数列将会重复出现,2008a =4a =-17.⎩⎨⎧==12b c 或⎩⎨⎧=-=63b c ;. 8. 320-=a分析:计算出32-=a ,33=a ,4a =0,所以20a =32-=a 9.n a =n110. 3a =2 分析:当n =3时,3a 4a =(3+2)(0+2)=10,由于n a 为非负整数,所以3a 的可能取值为1,2,5,10.当3a =1时,4a =10,4a 5a =(1+2)(3+2)=15,得5a =23,不合题意; 当3a =2时,4a =5,4a 5a =(2+2)(3+2)=20,得5a =4;此时5a 6a =(5+2) (2+2)=28,6a =7,……当3a =5时,4a =2,4a 5a =(5+2)(3+2)=35,得5a =235不合题意; 当3a =10时,4a =1,4a 5a =(10+2)(3+2)=60,得5a =60;此时5a 6a =(1+2)(10+2)=36,6a =53,不合题意 综合可知:3a =211.(1)1,21, 31,41,51. (2) n a =n 1. 12.⎪⎩⎪⎨⎧∈≥+==),2(12)1(0+n N n n n n a等差数列概念和性质等差数列性质应用答案即时反馈1. B; 即时反馈2. ;即时反馈3. ;即时反馈4. 5个 巩固提高 1:B. 由于奇偶-S S =5d =15,所以d =32:B. 由15321=++a a a 可知52=a ,所以5(5-d )(5+d )=80,故d =3而=++131211a a a 312a =3(d a 102+)=105 3:B. 由于25a =1264=+a a ,所以5a =6,所以9S =95a =544: B. 由于41a a +=1332=+a a 且21=a 得4a =11,所以d =3,而=++654a a a 35a =3(4a +d )=425:=m 0;公差d =2. 由公式Bn An S n +=2(2dA =)直接可得 能力提升 6. C7. 130. 由于230a =15a +45a ,所以30a =50,而60a +15a =30a +45a ,所以60a =130 8.11-+n n . 由于有21+n 个奇数项,21-n 个偶数项,所以项数之比为11-+n n 9. 5 . 由3227=偶奇S S 得奇偶奇偶+-S S S S =27322732+-,即5953546=d ,所以d =5 10. 10. 由于奇偶-S S =50d =25,且奇偶S S +=45,所以奇S =1011. d =-1 .10S -5S =++76a a ……+10a =-15,(10S -5S )-5S =5×5d =-25,所以d =-112. 16. 奇偶-S S =nd =6,=--112a a n 2(d n )1-=10.5,相除得n =8因此项数为16 13.72-. 1991955512()99,2192a a S a a a a a a +⨯==-+=⇒=-∴+=-,11651216()16()1691672222a a a a S +⨯+⨯-⨯====-等差数列性质应用(二)等差数列性质应用(二)练习答案:即时反馈1.(1)当1,231==d a 时,n n n n n S n +=-+=2212)1(23,由2)(2k k S S =得,2224)21(21k k k k +=+,即0)141(3=-k k ,又0≠k ,所以4=k . (2)设数列{}n a 的公差为d ,则在2)(2k k S S =中分别取2,1=k 得⎩⎨⎧==224211)()(S S S S 即⎪⎩⎪⎨⎧⨯+=⨯+=211211)2122(2344 d a d a a a ,由(1)得01=a 或11=a .当01=a 时,代入(2)得:0=d 或6=d ;当0,01==d a 时,0,0==n n S a ,从而2)(2k k S S =成立;当6,01==d a 时,则)1(6-=n a n ,由183=S ,216,324)(923==S S 知,239)(S S ≠,故所得数列不符合题意;当11=a 时,0=d 或2=d ,当11=a ,0=d 时,n S a n n ==,1,从而2)(2k k S S =成立;当11=a ,2=d 时,则2,12n S n a n n =-=,从而2)(2k k S S =成立,综上 共有3个满足条件的无穷等差数列;0=n a 或1=n a 或12-=n a n .另解:由2)(2k k S S =得22221111[(1)][(1)]22k a k d k a k d +-=+-,整理得12222211111111()()()042242d d k da d k a a d d da -+-+-++-=对于一切正整数k 都 成立,则有12212211110421*******d d da d a a d d da ⎧-=⎪⎪⎪-=⎨⎪⎪-++-=⎪⎩解之得:100d a =⎧⎨=⎩或101d a =⎧⎨=⎩或121d a =⎧⎨=⎩所以所有满足条件的数列为:0=n a 或1=n a 或12-=n a n .即时反馈2不是.提示:令1=n 得,321=+a a ,所以a a -=32当3≥n 时,12-=n a n ,若数列}{n a 是等差数列,则1a =a 1=,a a -=323=此时0=a 故这样的a 不存在.所以数列}{n a 不是等差数列即时反馈3.n a =)-()(-1211n n +(*N n ∈) 分析:(1)当n =1时,1a =1S =1(2)当2≥n 时,n a =n S -1-n S =)-()(-1211n n +,当n =1时,也适合, 所以n a =)-()(-1211n n +(2≥n ),(*N n ∈) 即时反馈4. A巩固提高:1. B 2.C 3.D 4.B 5.C能力提升:6.证明略7. 解+++963a a a ……99a +=66分析:设1T =+++741a a a ……97a +,2T =+++852a a a ……98a +,3T =+++963a a a ……99a +,则3T -2T =33d ,2T -1T =33d ,即2T =3T -33d ,1T =3T -66d所以1T +2T +3T =33T -99d =99,所以3T =668. 变式1.即n =7或n =8,n S 取最大值.分析:若用解法1,当n =215时,取最大值,但是215*N ∉,因此需取距215较近的正整数, 即n =7或n =8,n S 取最大值. 另两种解法略(同学们一定自己认真完成)变式2.(1)若n m +为偶数,则2n m k +=*N ∈,所以2n m S +最大 (2)若n m +为奇数,则2n m k +=*N ∉,所以21++n m S =21-+n m S 最大 分析:用解法3非常简单,另两种解法略(同学们一定自己认真完成) 解:由)(n m S S n m ≠=可知,对称轴为2n m k +=(1)若n m +为偶数,则2n m k +=*N ∈,所以2n m S +最大 (2)若n m +为奇数,则2n m k +=*N ∉,所以21++n m S =21-+n m S 最大9.①228n a n =+②21n a n =+③21n a n =④121(2)33n n a -=+⋅- 10. 4(1)n a n n =+。
高中数学数列多选题专项训练100附答案

一、数列多选题1.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0答案:ABD 【分析】对于A ,由题意得bn=an2,然后化简4(b2020-b2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{an}满足a1=a2=1,an =an -1+an -2 (n≥3解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 2.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin2n n a π= D .cos(1)1n a n π=-+答案:BD 【分析】根据选项求出数列的前项,逐一判断即可. 【详解】解:因为数列的前4项为2,0,2,0, 选项A :不符合题设; 选项B : ,符合题设; 选项C :, 不符合题设; 选项D : ,符合题设解析:BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设;选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题. 3.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足140(2)n n n a S S n -+=≥,114a =,则下列说法错误的是( )A .数列{}n a 的前n 项和为4n S n =B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1n S ⎧⎫⎨⎬⎩⎭为递增数列 答案:ABC 【分析】数列的前项和为,且满足,,可得:,化为:,利用等差数列的通项公式可得,,时,,进而求出. 【详解】数列的前项和为,且满足,, ∴,化为:,∴数列是等差数列,公差为4, ∴,可得解析:ABC 【分析】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =,可得:1140n n n n S S S S ---+=,化为:1114n n S S --=,利用等差数列的通项公式可得1nS ,n S ,2n ≥时,()()111144141n n n a S S n n n n -=-=-=---,进而求出n a . 【详解】数列{}n a 的前n 项和为0n n S S ≠(),且满足1402n n n a S S n -+=≥(),114a =, ∴1140n n n n S S S S ---+=,化为:1114n n S S --=, ∴数列1n S ⎧⎫⎨⎬⎩⎭是等差数列,公差为4,∴()14414n n n S =+-=,可得14n S n=, ∴2n ≥时,()()111144141n n n a S S n n n n -=-=-=---, ∴()1(1)41(2)41n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,对选项逐一进行分析可得,A ,B ,C 三个选项错误,D 选项正确. 故选:ABC. 【点睛】本题考查数列递推式,解题关键是将已知递推式变形为1114n n S S --=,进而求得其它性质,考查逻辑思维能力和运算能力,属于常考题4.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.答案:BC 【分析】根据等差数列的前项和性质判断. 【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有. 故选:BC . 【点睛】关键点点睛:本题考查等差数列解析:BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC .【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 5.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减D .数列{}n S 有最大值答案:ABD 【分析】由可判断AB ,再由a1>0,d <0,可知等差数列数列先正后负,可判断CD. 【详解】根据等差数列定义可得,所以数列单调递减,A 正确; 由数列单调递减,可知数列有最大值a1,故B 正解析:ABD 【分析】由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD. 【详解】根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD.6.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅<B .224154a a +≥C .15111a a +> D .1524a a a a ⋅>⋅答案:ABC 【分析】由已知求得公差的范围:,把各选项中的项全部用表示,并根据判断各选项. 【详解】 由题知,只需, ,A 正确; ,B 正确;,C 正确; ,所以,D 错误. 【点睛】本题考查等差数列的性解析:ABC 【分析】由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项. 【详解】 由题知,只需1220010a d d d =->⎧⇒<<⎨>⎩,()()2242244a a d d d ⋅=-⋅+=-<,A 正确;()()2222415223644a a d d d d +=-++=-+>≥,B 正确; 21511111122221a a d d d+=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,D 错误. 【点睛】本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断.7.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列答案:BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若是等差数列,如,则不是常数,故不是等方差数列,故A 错误; 对于B ,数列中,是常数, 是等方差数解析:BCD 【分析】根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】对于A ,若{}n a 是等差数列,如n a n =,则12222(1)21n n a a n n n --=--=-不是常数,故{}n a 不是等方差数列,故A 错误;对于B ,数列(){}1n-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,,()()()()2222222212132221k k k k k k k k aa a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()2222222212132221k kk k k k k k aa a a a a a a kp +++++--+-+-++-=,222k k a a kp ∴-=,()221kn k n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确; 对于D ,{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+{}n a 是等方差数列,()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,2210n n a a --=是常数,故D 正确.故选:BCD. 【点睛】本题考查了数列的新定义问题和等差数列的定义,属于中档题. 8.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列答案:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}n a 必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD 【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.9.无穷数列{}n a 的前n 项和2n S an bn c =++,其中a ,b ,c 为实数,则( )A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列答案:ABC 【分析】由可求得的表达式,利用定义判定得出答案. 【详解】 当时,. 当时,. 当时,上式=. 所以若是等差数列,则所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列.解析:ABC 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+.当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴= 所以当0c时,{}n a 是等差数列, 00a c b ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:A B C 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题.10.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =答案:AD 【分析】由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误. 【详解】解:,,故正确A.由,当时,,有最小值,故B 错误. ,所以,故C 错误. ,,故D 正确.解析:AD 【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】解:1385a a S +=,111110875108,90,02da a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392dS a d d d ⨯==-+=-, 131131213+11778392dS a d d d ⨯==-+=-,故D 正确.故选:AD【点睛】考查等差数列的有关量的计算以及性质,基础题.。
数列练习题高中

数列练习题高中一、等差数列1. 已知等差数列的前三项分别为3,5,7,求第10项的值。
2. 在等差数列{an}中,若a1=1,公差d=2,求前10项的和。
3. 已知等差数列的通项公式为an=3n2,求前n项和的表达式。
4. 在等差数列{an}中,若a5+a8=34,a3+a6=26,求首项a1和公差d。
二、等比数列1. 已知等比数列的前三项分别为2,6,18,求第6项的值。
2. 在等比数列{bn}中,若b1=3,公比q=3,求前5项的和。
3. 已知等比数列的通项公式为bn=2^n,求前n项和的表达式。
4. 在等比数列{bn}中,若b3•b6=144,b4•b5=108,求首项b1和公比q。
三、数列的综合应用1. 已知数列{cn}的通项公式为cn=n^2+n,求前n项和。
2. 在数列{dn}中,若d1=1,d2=3,dn=dn1+dn2(n≥3),求第10项的值。
3. 已知数列{en}的前n项和为Sn=2^n1,求通项公式。
4. 设数列{fn}的通项公式为fn=3n+2,求证:数列{fn+1 fn}是等差数列。
四、数列的极限1. 求极限:lim(n→∞) (1+1/n)^n。
2. 求极限:lim(n→∞) (n^2 n) / (2n^2 + 3n + 1)。
3. 求极限:lim(n→∞) (sqrt(n^2+1) sqrt(n^21))。
五、数列的应用题1. 一等差数列的前5项和为35,前10项和为110,求前15项和。
2. 一等比数列的第3项为12,第6项为48,求首项和公比。
3. 一数列的前n项和为2^n 1,求第10项的值。
4. 一数列的通项公式为an=n^2+n,求证:该数列的前n项和为(n+1)(n+2)/2。
六、数列的性质与判定3. 已知数列{gn}的通项公式为gn=2n1,判断数列{gn+1 gn}是否为等差数列。
4. 已知数列{hn}的通项公式为hn=n^3,判断数列{hn+1 / hn}是否为等比数列。
高中数学数列多选题专项训练100含解析

一、数列多选题1.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 答案:ABD 【分析】构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,所以当时,,即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,解析:ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x,即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫ ⎪⎝⎭为单调递增函数,即()()102f f x f ⎛⎫<<⎪⎝⎭,即()131ln 2ln ln 1222f x <<<+<+=, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题. 2.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .2答案:AB 【分析】由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,上述式子累加可得:,, 对于任意的恒成立解析:AB 【分析】 由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n=-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解.【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++,则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<,()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误, 故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.3.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值D .613S S =答案:ABD 【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列的前项和为,, ∴,解得, 故,故A 正确;∵,,故有,故B 正确; 该数【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确;∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果. 4.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <.答案:ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且,所以公差, 所以,即,根据等差数列的性质可得,又, 所以,,故A 正解析:ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案.对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题. 5.已知正项数列{}n a 的前n 项和为n S ,若对于任意的m ,*n N ∈,都有m n m n a a a +=+,则下列结论正确的是( )A .11285a a a a +=+B .56110a a a a <C .若该数列的前三项依次为x ,1x -,3x ,则10103a = D .数列n S n ⎧⎫⎨⎬⎩⎭为递减的等差数列 答案:AC 【分析】令,则,根据,可判定A 正确;由,可判定B 错误;根据等差数列的性质,可判定C 正确;,根据,可判定D 错误.令,则,因为,所以为等差数列且公差,故A 正确; 由,所以,故B 错误;解析:AC 【分析】令1m =,则11n n a a a +-=,根据10a >,可判定A 正确;由256110200a a a a d -=>,可判定B 错误;根据等差数列的性质,可判定C 正确;122n d d n a n S ⎛⎫=+- ⎪⎝⎭,根据02>d ,可判定D 错误. 【详解】令1m =,则11n n a a a +-=,因为10a >,所以{}n a 为等差数列且公差0d >,故A 正确;由()()22225611011119209200a a a a a a d daa d d -=++-+=>,所以56110a a a a >,故B错误;根据等差数列的性质,可得()213x x x -=+,所以13x =,213x -=, 故1011109333a =+⨯=,故C 正确; 由()111222nn n na dS d d n a nn -+⎛⎫==+- ⎪⎝⎭,因为02>d ,所以n S n ⎧⎫⎨⎬⎩⎭是递增的等差数列,故D 错误. 故选:AC . 【点睛】解决数列的单调性问题的三种方法;1、作差比较法:根据1n n a a +-的符号,判断数列{}n a 是递增数列、递减数列或是常数列;2、作商比较法:根据1(0n n na a a +>或0)n a <与1的大小关系,进行判定; 3、数形结合法:结合相应的函数的图象直观判断.6.等差数列{}n a 的前n 项和为n S ,若10a >,公差0d ≠,则( ) A .若59S >S ,则150S > B .若59S =S ,则7S 是n S 中最大的项 C .若67S S >, 则78S S >D .若67S S >则56S S >.答案:BC 【分析】根据等差数列的前项和性质判断. 【详解】A 错:;B 对:对称轴为7;C 对:,又,;D 错:,但不能得出是否为负,因此不一定有. 故选:BC . 【点睛】关键点点睛:本题考查等差数列解析:BC 【分析】根据等差数列的前n 项和性质判断. 【详解】A 错:67895911415000S a a a a a S a S ⇒+++<>⇒+<⇒<;B 对:n S 对称轴为n =7;C 对:6770S S a >⇒<,又10a >,887700a S a d S ⇒⇒<<⇒<>;D 错:6770S S a >⇒<,但不能得出6a 是否为负,因此不一定有56S S >. 故选:BC . 【点睛】关键点点睛:本题考查等差数列的前n 项和性质,(1)n S 是关于n 的二次函数,可以利用二次函数性质得最值;(2)1n n n S S a -=+,可由n a 的正负确定n S 与1n S -的大小;(3)1()2n n n a a S +=,因此可由1n a a +的正负确定n S 的正负. 7.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <答案:AD 【分析】利用等差数列的通项公式可以求,,即可求公差,然后根据等差数列的性质判断四个选项是否正确. 【详解】 因为,所以 , 因为,所以, 所以等差数列公差, 所以是递减数列,故最大,选项A解析:AD 【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题. 8.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+答案:AC 【分析】由求出,再由可得公差为,从而可求得其通项公式和前项和公式 【详解】由题可知,,即,所以等差数列的公差, 所以,. 故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.解析:AC 【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式 【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-.故选:AC. 【点睛】本题考查等差数列,考查运算求解能力.9.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项答案:ABCD 【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d =12,可得<d <﹣3.a1>0.利用S13=13a7<0.可得Sn <0解析:ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大. ∴n =7时,nnS a 取得最小值.综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.10.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =答案:AD 【分析】由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误. 【详解】解:,,故正确A.由,当时,,有最小值,故B 错误. ,所以,故C 错误. ,,故D 正确.解析:AD 【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】解:1385a a S +=,111110875108,90,02da a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392dS a d d d ⨯==-+=-,131131213+11778392d S a d d d ⨯==-+=-,故D 正确. 故选:AD【点睛】 考查等差数列的有关量的计算以及性质,基础题.。
高考数学《数列》大题训练50题含答案解析整理版

高考数学《数列》大题训练50题1 .数列{}的前n 项和为,且满足,.n a n S 11a =2(1)n n S n a =+(1)求{}的通项公式; (2)求和T n =.n a 1211123(1)na a n a ++++L 2 .已知数列,a 1=1,点在直线上.}{n a *))(2,(1N n a a P n n ∈+0121=+-y x (1)求数列的通项公式;}{n a (2)函数,求函数最小值.)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 )(n f 3 .已知函数(a ,b 为常数)的图象经过点P (1,)和Q (4,8)x ab x f =)(81(1) 求函数的解析式;)(x f (2) 记a n =log 2,n 是正整数,是数列{a n }的前n 项和,求的最小值。
)(n f n S n S 4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求=f (1)+f (2)+…+f (n )的表达式.n S 5 .设数列的前项和为,且,其中是不等于和0的实常数.{}n a n n S 1n n S c ca =+-c 1-(1)求证: 为等比数列;{}n a (2)设数列的公比,数列满足,试写出 的{}n a ()q f c ={}n b ()()111,,23n n b b f b n N n -==∈≥1n b ⎧⎫⎨⎬⎩⎭通项公式,并求的结果.12231n n b b b b b b -+++L 6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量与向量共线,且1+n n A A n n C B 点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列的前三项与数列的前三项对应相同,且…对任意的{}n a {}n b 212322a a a +++12n n a -+8n =∈n N*都成立,数列是等差数列.1{}n n b b +-(1)求数列与的通项公式;{}n a {}n b (2)问是否存在N *,使得?请说明理由.k ∈(0,1)k k b a -∈8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数为等差数列,试求λ的值.}3{,nn a λλ+使得9 .已知数列的前项和为,若,{}n a n n S ()1,211++=⋅=+n n S a n a n n(1)求数列的通项公式;{}n a (2)令,①当为何正整数值时,:②若对一切正整数,总有,求的n nn S T 2=n 1+>n n T T n m T n ≤m 取值范围。
高考数学数列多选题复习训练题(含答案解析)

高考数学数列多选题复习训练题(含答案解析)1.(2022·江苏江苏·一模)记n S 为等差数列{}n a 的前n 项和,则( ) A .6422S S S =−B .()6423S S S =−C .2n S ,42n n S S −,64n n S S −成等差数列D .22S ,44S ,66S 成等差数列【答案】BCD 【解析】 【分析】利用等差数列求和公式分别判断. 【详解】 由已知得()112n n n dS a n −=+, A 选项,61615S a d =+,4146S a d =+,212S a d =+,所以42162611S S a d S −=+≠,A 选项错误;B 选项,()42163615S S a d S −=+=,B 选项正确;C 选项,()()221122122n S a n n n d a n n n d =+−=+−,()414241n S a n n n d =+−,()616361n S a n n n d =+−,()242126n n S S a n n n d −=+−,()2641210n n S S a n n n d −=+−,则()()()22264114241222262n n n n S S S a n n n d a n n n d S S ⎡⎤+−=+−=+−=−⎣⎦,C 选项正确;D 选项,2112222S a d d a +==+,411463442S a d a d +==+,6116155662S a d a d +==+,则6241232264S S Sa d +=+=⨯,D 选项正确; 故选:BCD.2.(2022·江苏南通·模拟预测)若数列{}n a 是等比数列,则( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等比数列B .数列{}n ka 是等比数列C .数列{}1n n a a ++是等比数列D .数列{}2n a 是等比数列【答案】AD 【解析】 【分析】设等比数列{}n a 的公比为()0q q ≠,利用等比数列的定义结合特例法可判断各选项的正误. 【详解】设等比数列{}n a 的公比为()0q q ≠,11111n n n na a a q a ++==,则1n a ⎧⎫⎨⎬⎩⎭是以1q 为公比的等比数列,A 对; 0k =时,0n ka =,则{}n ka 不是等比数列,B 错;()11n n n n n a a a a q a q ++=+=+,1q =−时,10n n a a ++=,此时{}1n n a a ++不是等比数列,C 错;2212n na q a +=,所以,{}2n a 是公比为2q 的等比数列,D 对. 故选:AD .3.(2022·福建宁德·模拟预测)数列{n a }中,设12n n T a a a =⋅…….若n T 存在最大值,则n a 可以是( ) A .62n n a −= B .()1nn a =− C .29n a n =− D .121n n a n +=− 【答案】BD 【解析】 【分析】根据数列的单调性即可判断. 【详解】对于A ,()()115436212322n n n n n T a a aa −−−−+−=== ,当n 趋于无穷大时,n T 也趋于无穷大, 故n T 不存在最大值; 对于B ,()()()()()()1123211111n n nn T +=−−−−=− ,当()12n n + 为偶数时,1n T = ,当()12n n +为奇数时,1n T =− , 故n T 的最大值为1;对于C ,()()1121128n n n n n T T a a a a T n ++−=−=− ,当5n ≥ 时,10,n n n T T T +>> ,∴5n ≥ 时n T 是递增的数列,不存在最大值; 对于D ,1232342,1,,135a a a ===== 即当3n ≥ 时,0121n n <+<− ,1n a < , 即3n ≥ 时,()1110n n n n T T T a ++−=−< ,所以n T 是递减的数列, 最大值为122T T == ; 故选:BD.4.(2022·福建·模拟预测)已知等差数列{}n a 的前n 项和为2212n a n n S +=,公差为d ,则( )A .11a =B .1d =C .()213521n n S a n −=+++⋅⋅⋅+−D .2222n nn S a a =+ 【答案】ABC 【解析】 【分析】运用代入法,结合等差数列的通项公式和前n 项和公式逐一判断即可. 【详解】取1n =,则21112a a +=,解得11a =,即A 正确;由A 可知,22n n nS +=,则212321d S a =−=−=,即B 正确;于是有1(1)1n a n n =+−⋅=,因为22n n S a n −=,且()()212113212n n n n +−+++−==,即C 正确; 因为()222222222nn n n nS n n a a +==+=+,即D 错误.故选:ABC5.(2021·山东·模拟预测)设等比数列{an }的公比为q ,其前n 项和为Sn ,前n 项积为Tn ,并满足条件a 1>1,a 2019a 2020>1,2019202011a a −−<0,下列结论正确的是( )A .S 2019<S 2020B .a 2019a 2021﹣1<0C .T 2020是数列{Tn }中的最大值D .数列{Tn }无最大值 【答案】AB 【解析】 【分析】根据题意,由等比数列的通项公式可得(a 1q 2018)(a 1q 2019)=(a 1)2(q 4037)>1,分析可得q >0,可得数列{an }各项均为正值,又由2019202011a a −−<0可得2019202011a a <⎧⎨>⎩或2019202011a a >⎧⎨<⎩,由等比数列的性质分析可得q 的范围,据此分析4个选项,综合即可得答案. 【详解】根据题意,等比数列{an }的公比为q ,若a 2019a 2020>1,则(a 1q 2018)(a 1q 2019)=(a 1)2(q 4037)>1,又由a 1>1,必有q >0,则数列{an }各项均为正值, 又由2019202011a a −−<0,即(a 2019﹣1)(a 2020﹣1)<0,则有2019202011a a <⎧⎨>⎩或2019202011a a >⎧⎨<⎩,又由a 1>1,必有0<q <1,则有2019202011a a >⎧⎨<⎩,对于A ,有S 2020﹣S 2019=a 2020>0,即S 2019<S 2020,则A 正确; 对于B ,有a 2020<1,则a 2019a 2021=(a 2020)2<1,则B 正确;对于C ,2019202011a a >⎧⎨<⎩,则T 2019是数列{Tn }中的最大值,C 错误,同理D 错误;故选:AB6.(2022·海南·模拟预测)在数列{}n a 中,11a =,数列11n a ⎧⎫+⎨⎬⎩⎭是公比为2的等比数列,设n S 为{}n a 的前n 项和,则( )A .121n na =− B .1122n n a =+ C .数列{}n a 为递减数列 D .378S >【答案】ACD 【解析】 【分析】由已知结合等比数列通项公式可求11na +,进而可求n a ,然后结合单调性定义及数列的求和分别检验各选项即可判断和选择. 【详解】因为11a =,数列11n a ⎧⎫+⎨⎬⎩⎭是公比为2的等比数列,所以111222n nna −+=⋅=所以121n n a =−,故A 正确,B 错误; 因为()21,1xy x =−≥是单调增函数,故()1,121x y x =≥−是单调减函数, 故数列{}n a 是减数列,故C 正确; 31231171378S a a a =++=++>,故D 正确.故选:ACD .7.(2022·江苏连云港·模拟预测)“外观数列”是一类有趣的数列,该数列由正整数构成,后一项是前一项的“外观描述”.例如:取第一项为1,将其外观描述为“1个1”,则第二项为11;将11描述为“2个1”,则第三项为21;将21描述为“1个2,1个1”,则第四项为1211;将1211描述为“1个1,1个2,2个1”,则第五项为111221,…,这样每次从左到右将连续的相同数字合并起来描述,给定首项即可依次推出数列后面的项.对于外观数列{}n a ,下列说法正确的是( ) A .若13a =,则5131213a =B .若122a =,则10022a =C .若16a =,则100a 的最后一个数字为6D .若1123a =,则100a 中没有数字4【答案】BCD 【解析】 【分析】根据题干中的递推规律,依次分析各项的正误. 【详解】对于A 项,13a =,即“1个3”,213a =,即“1个1,1个3”,31113a =,即“3个1,1个3”,故43113a =,故A 项错;对于B 项,122a =,即“2个2”, 222a =,即“2个2”,以此类推,该数列的各项均为22,则10022a =,故B 项正确;对于C 项,16a =,即“1个6”, 216a =,即“1个1,1个6”, 31116a =,即“3个1,1个6”,故43116a =,即“1个3,2个1,1个6”,以此类推可知,()*n a n ∈N 的最后一个数字均为6,故C 项正确;对于D 项,1123a =,则2111213a =,331121113a =,41321123113a =,L ,若数列{}n a 中,()5,N k a k k *≥∈中为第一次出现数字4,则1k a −中必出现了4个连续的相同数字,如11111k a −=,则在2k a −的描述中必包含“1个1,1个1”, 即211k a −=,显然2k a −的描述是不合乎要求的, 若12222k a −=或13333k a −=,同理可知均不合乎题意,故()N n a n *∈不包含数字4,故D 项正确. 故选:BCD.8.(2022·广东茂名·模拟预测)一组数据1x ,2x ,…,10x 是公差为1−的等差数列,若去掉首末两项1x ,10x 后,则( ) A .平均数不变 B .中位数没变C .极差没变D .方差变小【答案】ABD 【解析】 【分析】根据平均数的概念结合等差数列的性质判断A ,由中位数的概念可判断B ,由方差及等差数列的通项公式计算即可判断C ,根据极差及等差数列的通项公式可判断D . 【详解】由题意可知,对于选项A , 原数据的平均数为1210511()5(1010x x x x x =+++=⨯+ 6561)()2x x x =+,去掉1x ,10x 后的平均数为2395656111()4()()882x x x x x x x x x '=+++=⨯+=+=,即平均数不变,故选项A 正确;对于选项B ,原数据的中位数为561()2x x +,去掉1x ,10x 后的中位数仍为561()2x x +,即中位数没变,故选项B 正确;对于选项C ,原数据的极差为11099x x d −=−=, 去掉1x ,10x 后的极差为2977x x d −=−=, 即极差变小,故选项C 错误;对于选项D ,设公差为d ,则原数据的方差为222215625610561111()()()10222s x x x x x x x x x ⎧⎫⎪⎪⎡⎤⎡⎤⎡⎤=−++−+++−+⎨⎬⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎪⎪⎩⎭2221975()()()10222[d d d =−+−+−222311()()()222d d d +−+−++2222357933()()()()2224]2d d d d +++=, 去掉1x ,10x 后的方差为22222563569561111()()()8222s x x x x x x x x x ⎧⎫⎪⎪⎡⎤⎡⎤⎡⎤'=−++−+++−+⎨⎬⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎪⎪⎩⎭2222222217531135721()()()()()()()()8222222224[]d d d d d d d d =−+−+−+−++++=, 即方差变小,故选项D 正确. 故选:ABD.9.(2022·山东济宁·二模)已知一组数据1x ,2x ,…,11x 是公差不为0的等差数列,若去掉数据6x ,则( ) A .中位数不变 B .平均数变小 C .方差变大 D .方差变小【答案】AC 【解析】 【分析】由中位数的概念可判断A ,根据平均数的概念结合等差数列的性质判断B ,由方差计算公式即可判断CD. 【详解】对于选项A ,原数据的中位数为6x ,去掉6x 后的中位数为5761()2x x x +=,即中位数没变,故选项A 正确;对于选项B ,原数据的平均数为()111121161111()11112x x x x x x x +=+++=⨯=,去掉6x 后的平均数为1111257811610()11()10102x x x x x x x x x x x +'=+++++++=⨯==即平均数不变,故选项B 错误:对于选项C ,则原数据的方差为()()22221626116]1[()11s x x x x x x =−+−++−,去掉6x 后的方差为()()()()()22222216265676116110s x x x x x x x x x x ⎡⎤'=−+−++−+−++−⎣⎦,故2s 2s '<,即方差变大,故选项C 正确,选项D 错误.10.(2022·山东临沂·模拟预测)设数列{}n a 的前n 项和为n S ,已知233=+nn S .数列{}n b 满足3log n n n a b a =,则( )A .13,1,3, 1.n n n a n −=⎧=⎨>⎩B .113n n n b −−=C .数列{}n b 的前n 项和113211243n n n T −+=−⋅ D .数列{}n b 的前n 项和113211243n n n T −−=+⋅ 【答案】AC 【解析】 【分析】根据n S 与n a 的关系,即可求出n a ,利用错位相减法即可求出数列{}n b 的前n 项和n T ,据此,逐个选项判断即可得出答案. 【详解】对于A ,因为233=+nn S ,所以,当1n =时,11226S a ==,得13a =,当2n ≥时,1113332n n n n n n a S S −−−−=−==,经检验,当1n =时,不符合13−=n n a ,所以,13,1,3, 1.n n n a n −=⎧=⎨>⎩故A 正确;对于B ,因为3log n n n a b a =,得311,1log 31,23n n nn n a b n a n −⎧=⎪⎪==⎨−⎪≥⎪⎩,故B 错误; 对于C ,数列{}n b 的前n 项和1232311123133333n n n n T b b b b −−=++++=+++++①, 234111231393333n nn T −=+++++②,所以,−①②得, 23122111111()3933333n n n n T −−=++⨯+++−11515311193293929333n n n n n n −−−⎛⎫=+−=+⨯−− ⎪⎝⎭1823n=−⋅,得 113211243n n n T −+=−⋅,故C 正确,D 错误; 故选:AC11.(2023·福建漳州·三模)已知数列{n a }的前n 项和为211n S n n =−,则下列说法正确的是( ). A .{}n a 是递增数列 B .{}n a 是递减数列C .122n a n =-D .数列{}n S 的最大项为5S 和6S【答案】BCD 【解析】 【分析】根据211n S n n =−,利用二次函数的性质判断D ,利用数列通项和前n 项和关系求得通项公式判断ABC. 【详解】解:因为22111211124n S n n n ⎛⎫=−=−−+ ⎪⎝⎭,所以数列{}n S 的最大项为5S 和6S ,故D 正确;当1n =时,110a =,当2n ≥时,由211n S n n =−,得()()211111n S n n −=−−−,两式相减得:212n a n =−+, 又110a =,适合上式, 所以212n a n =−+,故C 正确;因为120n n a a −−=−<,所以{}n a 是递减数列,故A 错误,B 正确; 故选:BCD12.(2022·湖南怀化·一模)设{}()*n a n N ∈是各项为正数的等比数列,q 是其公比,nK是其前n 项的积,且56678,K K K K K <=>,则下列选项中成立的是( ) A .01q << B .71a =C .95K K >D .6K 与7K 均为n K 的最大值【答案】ABD【分析】结合等比数列的定义利用数列的单调性判断各选项. 【详解】由已知数列各项均为正,因此乘积n K 也为正,公比0q >, 又56678,K K K K K <=>, 6651K a K =>,7761Ka K ==,B 正确; 8871K a K =<,761aq a =<,即01q <<,A 正确; 由71a =得681a a =,591a a =,所以49K K =,而51a >,54K K >,因此95K K <,C 错; 由上知126781a a a a a <<<<=<<,{}n K 先增后减,6K 与7K 均为n K 的最大值,D 正确.故选:ABD .13.(2022·福建龙岩·模拟预测)已知等比数列{}n a 的前n 项和为n S ,公比为q ,则下列命题正确的是( )A .若11a =,2q =,则663S =B .若1q >,则数列{}n a 是单调递增数列C .若10a >,0q >,lg n n b a =,则数列{} n b 是公差为lg q 的等差数列D .若10a >,0q >,且()21105612a a a a +=+,则110a a +的最小值为4 【答案】AC 【解析】 【分析】A :利用等比数列前n 项和公式即可计算;B :根据函数单调性即可判断;C :根据等差数列定义即可判断;D :利用基本不等式即可判断. 【详解】对于A ,66612216312S −==−=−,故A 正确;对于B ,∵11n n a a q −=⋅,故{}n a 的单调性由q 和1a 共同决定,q >1无法判断数列为递增数列,如10a <,此时数列为递减数列,故B 错误;对于C ,∵111lg lg lg lg n n n n n na b b a a q a +++−=−==为常数,∴数列{}n b 是公差为lg q 的等差数列,故C 正确;对于D ,若10a >,0q >,则0n a >,56110a a a a =, ∵()21105612a a a a +=+, ∴()2211011011012122a a a a a a +⎛⎫+=++ ⎪⎝⎭…,即()()22110110124a a a a +++…,即()211016a a +≤,即11004a a <+…,即当110a a =时,110a a +的最大值为4,故D 错误. 故选:AC .14.(2022·江苏泰州·模拟预测)数列{}n a 满足1111,,2n n n a a a n N *+==∈,n S 为数列{}n a 的前n 项和,则( ) A .418a =B .1n n a a +≤C .3n S <D .132n n S S −<【答案】BC 【解析】 【分析】根据题意求得212112n n n n n n a a a a a a ++++==,得到{}n a 的奇数项和偶数项分别构成公比为12的等比数列,且首项分别为1211,2a a ==,由414a =,可判定A 错误;求得n 为奇数和n 为偶数时,数列的通项公式,可判定B 正确;根据n 为奇数和偶数,求得n S ,可判定C 正确;结合2n =时,可判定D 错误. 【详解】由题意,数列{}n a 满足11,2n n na a n N *+=∈,可得212112n n n n n na a a a a a ++++==, 因为11a =,可得2112a a =,所以212a =, 所以{}n a 的奇数项和偶数项分别构成公比为12的等比数列,且首项分别为1211,2a a ==,对于A 中,可得421124a a =⨯=,所以A 错误; 对于B 中,若n 为奇数时,可数列的通项公式为1122111()()22n n n a −−=⨯=; 若n 为偶数时,可数列的通项公式为122111()()222n n n a +=⨯=,当n 为奇数时,121()2n n a −=,2211()2n n a ++=,此时1n n a a +<,当n 为偶数时,121()2n n a +=,1211()2n n a ++=,此时1n n a a +=,综上可得:1n n a a +≤,所以B 正确; 对于C 中,数列{}n a 为1111111,,,,,,,224488,可得{}1n n a a ++构成首项为32,公比为12的等比数列,当n 为偶数时,可得2231[1()]1223[1()]31212nn n S −==⋅−<−, 当n 为奇数时,可得121211[1()]12112[1()]31212n n n S −−⋅−=+=+⋅−<−,所以C 正确;对于D 中,当2n =时,可得213122S =+=,13322S =,此时132n n S S −=,所以D 错误.故选:BC.15.(2022·重庆·二模)设数列{}n a 的前n 项和为n S ,已知12a =,且()1210n n n a na ++−=()n N *∈,则下列结论正确的是( ) A .{}n na 是等比数列 B .n a n ⎧⎫⎨⎬⎩⎭是等比数列C .2n n a n =⋅D .()122nn S n =−⋅+【答案】BC 【解析】 【分析】由条件变形,先求n a n ⎧⎫⎨⎬⎩⎭的通项公式,再判断选项【详解】 由题意得121n n a a n n +=⋅+,故n a n ⎧⎫⎨⎬⎩⎭是首项为2,公比为2的等比数列, 1222n n na n−=⋅=,则2n n a n =⋅.故B ,C 正确,A 错误 122222n n S n =+⋅++⋅, 23122222n n S n +=+⋅++⋅,两式相减得:()1212(222)122n n n n S n n ++=⋅−+++=−⋅+,故D 错误.故选:BC16.(2022·广东茂名·模拟预测)已知数列{}n a 的前n 项和为S ,11a =,121n n n S S a +=++,数列12n n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,*n ∈N ,则下列选项正确的为( ) A .数列{}1n a +是等比数列 B .数列{}1n a +是等差数列C .数列{}n a 的通项公式为21n n a =−D .1n T > 【答案】AC 【解析】 【分析】由1121n n n n a S S a ++=−=+可得,1121n n a a ++=+,可判断A,B 的正误,再求出n a ,可判断C 的正误,利用裂项相消法求n T ,可判断D 的正误. 【详解】因为121n n n S S a +=++,所以1121n n n n a S S a ++=−=+,1+122n n a a +=+, 即1121n n a a ++=+,且112a +=, 所以数列{}1n a +是首项为2,公比为2的等比数列,故A 正确,B 错误;所以12nn a +=,即21n n a =−,故C 正确;因为()()111212122211121n n n n n n n n a a +++−−−−==−⋅,所以12231121212121111111111212121n n n n T ++−+−+=−−−−+−−−=−−<…, 故D 错误; 故选:AC.17.(2022·重庆·二模)设等差数列{}n a 前n 项和为n S ,公差0d >,若920S S =,则下列结论中正确的有( ) A .150a = B .当15n =时,n S 取得最小值 C .10220a a +> D .当0n S >时,n 的最小值为29【答案】ABC 【解析】 【分析】根据等差数列的前n 项和公式,结合该数列的单调性逐一判断即可. 【详解】 解:根据题意,由9201111511998202019140022S S a d a d a d a =⇒+⨯⨯=+⨯⨯⇒+=⇒=.故A 正确;因为0d >,故当15n <时,0n a <,150a =,当15n >时,0n a >,当15n =或14n =时,n S 取得最小值,故B 正确;由于()102216150a a a a d d +=2=2+=2>,故C 正确;因为0d >,n *∈N ,所以由1111(1)(14)(1)(29)0222n S na n n d n d n n d dn n =+−=−+−=−>,可得:29,n >n *∈N ,因此n 的最小值为30,故D 错误.故选:ABC18.(2022·河北保定·一模)已知数列{}n a 的前n 项和为n S ,且满足11a =,22a =,1143n n n a a a +−=−,则下面说法正确的是( ) A .数列{}1n n a a +−为等比数列 B .数列{}13n n a a +−为等差数列C .131n n a -=+D .3142n n nS −=+【答案】ABD【分析】由已知递推式可得()113n n n n a a a a +−−=−或1133n n n n a a a a +−−=−,从而可得数列{}1n n a a +−为公比为3的等比数列,数列{}13n n a a +−为常数列,从而可求出,n n a S ,进而可分析判断 【详解】根据题意得()()111113434344n n n n n n n n n a a a a ka k a a k a a k +−+−−⎛⎫=−⇒+=+−=+−⎪+⎝⎭,令2343014k k k k k =−⇒++=⇒=−+或3k =−,所以可得:()113n n n n a a a a +−−=−或1133n n n n a a a a +−−=−,所以数列{}1n n a a +−为公比为3的等比数列,故选项A 正确;数列{}13n n a a +−为常数列,即为公差为0的等差数列,故选项B 正确;所以1113n n n a a −+−=⨯,且131n n a a +−=−,解得1312n n a −+=,所以C 错误,所以12n n S a a a =++⋅⋅⋅+ 011313131222n −+++=++⋅⋅⋅+()011133322n n −=++⋅⋅⋅++ 1132132n n −=⨯+− 3142n n −=+,所以D 正确,故选:ABD .19.(2022·全国·模拟预测)已知数列{}n a 满足()1213n n n a a a m ++=+,12n a ≠−,则下列说法正确的有( )A .若12=−m ,11a =,则35a =B .若0m =,112a =,则11331n n n a −−=+C .若12m =,12a ≠−,3,则32n n a a ⎧⎫−⎨⎬+⎩⎭是等比数列 D .若12m =−,11a =,则766n n a =−【答案】BC 【解析】A 选项由递推关系计算可判断;B 选项,递推关系变形为1111113n n a a +⎛⎫−=− ⎪⎝⎭,构造一个等比数列11n a ⎧⎫−⎨⎬⎩⎭,可求出通项公式,从而判断;C 选项由递推关系变形出1132n n a a ++−+3372n n a a −=−⨯+,从而得到判断;D 选项,递推关系变形得出112n a ⎧⎫⎪⎪⎨⎬⎪⎪−⎩⎭是等比数列,从而求得通项公式进行判断. 【详解】A 选项:若12=−m ,则()121312n n n a a a ++=−,即131221n n n a a a +−=+.又11a =,则231233a −==−,391221615a −−==−+,故A 错误. B 选项:若0m =,则()1213n n n a a a ++=,即1321nn n a a a +=+, 即112133n n a a +=+,则1111113n n a a +⎛⎫−=− ⎪⎝⎭.又112a =,则111211a −=−=, 所以11n a ⎧⎫−⎨⎬⎩⎭是首项为1,公比为13的等比数列,则11113n n a −⎛⎫−= ⎪⎝⎭,即1111113133n n n n a −−−+⎛⎫=+= ⎪⎝⎭,即11331n n n a −−=+,故B 正确.C 选项:若12m =,则()121312n n n a a a ++=+,即131221n n n a a a ++=+,则()()1131233123213213122312221221n n n n n n n n n n a a a a a a a a a a +++−+−+−+===+++++++393371472n n n n a a a a ⎛⎫−+−=−⨯ ⎪++⎝⎭,所以32n n a a ⎧⎫−⎨⎬+⎩⎭是公比为37−的等比数列,故C 正确.D 选项:若12m =−,则113221n n n a a a +−=+,则11132112222121n n n n n n a a a a a a +−−−−−==++,则1212121111112121222n n n n n n a a a a a a +−+⎛⎫==+=+≠ ⎪−−⎝⎭−−,即11111122n n a a +−=−−.又11a =,则11212a =−,所以112n a ⎧⎫⎪⎪⎨⎬⎪⎪−⎩⎭是首项为2,公差为1的等差数列,所以1112n n a =+−, 即1121n a n −=+,即1112n a n =++,故D 错误, 故选:BC.20.(2022·广东·一模)已知数列{}n a 满足11a =,*12()N n n n a a n ++=∈,则下列结论中正确的是( ) A .45a =B .{}n a 为等比数列C .202212202123a a a +++=−D .2023122022223a a a −+++=【答案】AD 【解析】 【分析】利用递推式可求得234,,a a a 的值,可判断A,B;将122021a a a +++变为1235202042021()()()a a a a a a a ++++++++,利用等比数列的求和公式,求得结果,判断C; 将122022a a a +++变为412320212022))()((a a a a a a +++++++,利用等比数列的求和公式,求得结果,判断D; 【详解】11a =,则1222,1a a a +== ,又2334,3a a a +== ,同理33442,5a a a +== ,故A 正确;而32121,3a a a a == ,故{}n a 不是等比数列,B 错误; 1220211235204202021()()()a a a a a a a a a a =+++++++++++1010101120222420204-4-12-112+2++2=1+==1-433=+(14) ,故C 错误; 122022123202120242()a a a a a a a a a ++++=++++++()()101110112023132021-24-22-22+2++2===1-433⨯=2(14),故D 正确, 故选:AD21.(2022·福建·模拟预测)已知{}n a 是正项等差数列,其公差为d ,若存在常数c ,使得对任意正整数n 均有12n n n ac a a c+=+,则以下判断不正确的是( ) A .0d > B .0d = C .1c > D .01c <<【答案】ACD 【解析】 【分析】利用基本不等式可得101n a +<≤,结合通项公式可得0d =,从而可得()212c c a −=,故可得02c <<,故可得正确的选项.【详解】由题设可得{}n a 是无穷正项等差数列,故0d ≥且0c >, 由基本不等式有122nn n a c a a c+=+≥, 所以101n a +<≤对任意的正整数n 恒成立, 即101a nd <+≤对任意的正整数n 恒成立,即111a nd a −<≤−对任意的正整数n 恒成立,故0d =且101a <≤. 而1112a c a a c=+,故()212c c a −=, 所以()021c c <−≤,所以02c <<, 故选:ACD22.(2022·重庆市育才中学模拟预测)已知数列{an }满足11a =,21n n n a a a +=+,则( )A .{an }是递增数列B .n a n ≥C .202120222a ≤D .121111111n a a a ++⋅⋅⋅+<+++ 【答案】ABD 【解析】 【分析】由递推公式和20n a >可判断A ,由数列递增和11a =可判断B ,由递推公式知21n n a a +>可判断C ,对递推公式取倒裂项,然后累加、放缩可判断D. 【详解】因为a 1=1,21n n n a a a +=+,所以1n n a a +>,故A 正确;易知,所以n a 为正整数,又{an }是递增数列,所以n a n ≥,故B 正确;由递推公式得:232,64a a ==>,又221n n n n a a a a +=+>,所以244a >,22225(4)4a >=,()23222644a >=,易知201922021202242a >>,故C 不正确;取倒得1111(1)11n n n n n a a a a a +=−++=,则由累加法得2341123123111111111111()1111n n n a a a a a a a a a a a a ++++⋅⋅⋅+=+++⋅⋅⋅+−+++⋅⋅⋅+++++整理得123111111111111111n n n a a a a a a a +++++⋅⋅⋅+=−=−++++, 又110n a +>所以121111111n a a a ++⋅⋅⋅+<+++故选:ABD23.(2022·河北张家口·三模)已知公差为d 的等差数列{}n a 的前n 项和为n S ,则( ) A .n S n ⎧⎫⎨⎬⎩⎭是等差数列B .n S 是关于n 的二次函数C .{}n na 不可能是等差数列D .“0d >”是“112n n n S S S −++>”的充要条件【答案】AD 【解析】 【分析】根据等差数列前n 项公式及函数特征结合等差数列的定义即可判断ABC ,再结合充分条件和必要条件的定义即可判断D. 【详解】解:由11(1)2n S na n n d =+−知,11(1)2n S a n d n =+−,则1112+−=+n n S S d n n ,所以n S n ⎧⎫⎨⎬⎩⎭是等差数列,故A 正确; 当0d =时,1n S na =不是n 的二次函数,故B 不正确; 当0d =时,11,n n a a na na ==,则()111n n n a na a ++−=,所以{}n na 是等差数列,故C 不正确; 当0d >时,1102n n n S S d S −+=−>+,故112n n n S S S −++>,11111120n n n n n n n n n n n S S S S S S S a a a a d −++−+++>⇔−>−⇔>⇔−=>,所以“0d >”是“112n n n S S S −++>”的充要条件,故D 正确. 故选:AD.24.(2022·江苏江苏·三模)已知各项都是正数的数列{}n a 的前n 项和为n S ,且122n n na S a =+,则( ) A .{}2n S 是等差数列B .212n n n S S S +++<C .1n n a a +>D .1ln n nS n S −≥ 【答案】ABD 【解析】 【分析】对于A,求出1a ,再将n a 转化为n S ,即可证明,对于B,利用A 的结论求出n S ,再利用基本不等式,即可证明. 对于C ,求出21a a <,即可判断正误,对于D ,构造函数()12ln f x x x x=−−,即可判断正误【详解】 1111122a a S a ==+,10a >,解得:111S a == 2n ≥时,()11122n n n n n S S S S S −−−=+−, 整理得:2211n n S S −−=故{}2n S 是等差数列,选项A 正确;2211n S S n n =+−=,则=n S212n n n S S S +++<==,选项B 正确;22111a S S a =−=<,选项C 错误;令()12ln f x x x x =−−,1≥x ,()()2210x f x x −'=≥ ()f x 在[)1,+∞递增,()()10f x f ≥=,则ln 0fn≥ 即1ln n nS n S −≥,选项D 正确; 故选:ABD.25.(2022·河北保定·一模)已知n S 是数列{}n a 的前n 项和,且21n n S S n +=−+,则下列选项中正确的是( ).A .121n n a a n ++=−(2n ≥)B .22n n a a +−=C .若10a =,则1004950S =D .若数列{}n a 单调递增,则1a 的取值范围是11,43⎛⎫− ⎪⎝⎭【答案】AC 【解析】 【分析】对于A , 由 21n n S S n +=−+,多写一项,两式相减即可得出答案.对于B ,由 121n n a a n ++=−(2n ≥),多递推一项,两式相减即可得出答案少了条件2n ≥. 对于C ,由分析知22n n a a +−=,所以{}n a 奇数项是以10a =为首项,2为公差的等差数列,偶数项是以21a =为首项,2为公差的等差数列,由等差数列得前n 项和公式即可得出答案. 对于D ,因为数列{}n a 单调递增,根据1234n a a a a a <<<<<,即可求出1a 的取值范围.【详解】对于A ,因为21n n S S n +=−+,当()2121n n n S S n −≥=−+−,,两式相减得:121n n a a n ++=−(2n ≥),所以A 正确.对于B ,因为121n n a a n ++=−(2n ≥),所以()+122+11=21n n a a n n ++=−+, 两式相减得:22n n a a +−=(2n ≥),所以B 不正确.对于C ,21n n S S n +=−+,令1n =,则211S S =−+,1211a a a +=−+,因为10a =,所以21a =.令2n =,则324S S =−+,112324a a a a a ++=−−+ ,所以32a =.因为22n n a a +−=(2n ≥),而312a a −=,所以22n n a a +−=.所以{}n a 奇数项是以10a =为首项,2为公差的等差数列. 偶数项是以21a =为首项,2为公差的等差数列. 则:()()10012399100139924100=+++S a a a a a a a a a a a =+++++++++5049504950025012=495022⨯⨯⎛⎫⎛⎫=⨯+⨯+⨯+⨯ ⎪ ⎪⎝⎭⎝⎭,所以C 正确.对于D ,21n n S S n +=−+,令1n =,则211S S =−+,1211a a a +=−+,则2121a a =−+又因为+12=21n n a a n +++,令1n =则23=3a a +,所以()3211=332122a a a a −=−−+=+, 同理:()4311=552223a a a a −=−+=−+,()5411=772324a a a a −=−−+=+,因为数列{}n a 单调递增,所以1234n a a a a a <<<<<,解12a a <得:113a <,解23a a <得:114a >−,解34a a <得:114a <, 解45a a <得:114a >−,解56a a <得:114a <, 所以1a 的取值范围是11,44⎛⎫− ⎪⎝⎭,所以D 不正确.故选:AC. 【点睛】本题考查的是等差数列的知识,解题的关键是利用121n n a a n ++=−,得出{}n a 的奇数项、偶数项分别成等差数列,考查学生的逻辑推理能力和运算求解能力,属于难题.26.(2022·山东日照·二模)已知数列{}n a 满足11a =,()12ln 11n n n a a a +=++,则下列说法正确的有( ) A .31225a a a <+ B .2211n nn a a a +−≤+ C .若2n ≥,则131141n i i a =≤<+∑ D .()()1ln 121ln 2nni i a =+≤−∑【答案】BCD 【解析】 【分析】直接计算出23,a a 即可判断A 选项;构造函数函数()ln 1f x x x =−−,由ln 1x x +…,得到ln 1n n a a +…,进而判断B 选项;由ln 11n a +…得到121n n a a ++…,再结合累乘法得到12n n a +…,按照等比数列求和公式即可判断C 选项;构造函数()12ln g x x x x=−+,由11ln 2x x x ⎛⎫− ⎪⎝⎭…得到212n n n a a a ++…,结合累乘法求得()1ln 12ln2n n a −+…,按照等比数列求和公式即可判断D 选项.【详解】()()2113222ln 113,2ln 116ln37a a a a a a =++==++=+,则()3122512ln360a a a −+=−>,又120a a +>,所以31225a a a >+,A 不正确. 令函数()ln 1f x x x =−−,则()11f x x'=−,则()f x 在()0,1上单调递减,在()1,∞+上单调递增,()()10f x f =…,即ln 1x x +…,又易得{}n a 是递增数列,11n a a =…,故ln 1n n a a +…,所以2121n n a a ++…,B 正确.易知{}n a 是递增数列,所以11n a a =…,则()1ln 11,2ln 1121n n n n n a a a a a ++=+++厖,则()1121n n a a +++…,即1121n n a a +++…,所以11212111211n n n n n a a a a a a −−−−++⋅⋅++…,即()111212n n n a a −++=…,所以1112n n a +…,所以2111111111221111222212n n n ni i a =⎛⎫− ⎪⎝⎭+++==−<+−∑…,而当2n …时,则有11211131114ni i a a a =+=+++∑…,C 正确. 令函数()12ln g x x x x =−+,则()222212110x x g x x x x−+−=−−='…,所以()g x 在()0,∞+上单调递减,所以当1x …时,()()10g x g =…,则11ln 2x x x ⎛⎫− ⎪⎝⎭…, 所以211121122n n n n n n a a a a a a +⎡⎤⎛⎫−++=+⎢⎥ ⎪⎢⎥⎝⎭⎣⎦…,()()()()()()()()()211121211ln 1ln 1ln 1ln 111,2,2ln 1ln 1ln 1ln 1n n n n n n n n n a a a a a a a a a a +−−+−−++++++⋅⋅⋅++++剟?,()()111ln 12ln 12ln2n n n a a −−++=…,所以())()11ln 1(122ln221ln2nn n i i a −=++++=−∑…,D 正确.故选:BCD. 【点睛】本题关键点在于B 选项通过构造函数()ln 1f x x x =−−进行放缩得到ln 1n n a a +…,结合()12ln 11n n n a a a +=++即可判断;C 选项由ln 11n a +…放缩得到121n n a a ++…,D 选项构造函数()12ln g x x x x=−+得到212n nn a a a ++…,再结合累乘法和求和公式进行判断. 27.(2022·福建南平·三模)如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n =⋅⋅⋅⋅⋅⋅且,i i x y ∈Z .记n n n a x y =+,如()11,0A 记为11a =,()21,1A −记为20a =,()30,1A −记为31,a =−⋅⋅⋅,以此类推;设数列{}n a 的前n 项和为n S .则( )A .202242a =B .202287S =−C .82n a n =D .()245312n n n n S ++=【答案】ABD 【解析】 【分析】由图观察可知第n 圈的8n 个点对应的这8n 项的和为0,则2440n n S +=,同时第n 圈的最后一个点对应坐标为(),n n ,设2022a 在第k 圈,则k 圈共有()41k k +个数,可判断前22圈共有2024个数,2024a 所在点的坐标为()22,22,向前推导,则可判断A ,B 选项;当2n =时,16a 所在点的坐标为()2,2−−,即可判断C 选项;借助2440n n S +=与图可知22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=−=+++,即n 项之和,对应点的坐标为()1,+n n ,()1,1n n +−,…,()1,1n +,即可求解判断D 选项.【详解】由题,第一圈从点()1,0到点()1,1共8个点,由对称性可知81280S a a a =+++=;第二圈从点()2,1到点()2,2共16个点,由对称性可知248910240S S a a a −=+++=,即 240S =,以此类推,可得第n 圈的8n 个点对应的这8n 项的和为0,即()214482n nn n SS ++⨯==,设2022a 在第k 圈,则()()888168412k k k kk ++++==+,由此可知前22圈共有2024个数,故20240S =,则()2022202420242023S S a a =−+,2024a 所在点的坐标为()22,22,则2024222244a =+=,2023a 所在点的坐标为()21,22,则2023212243a =+=,2022a 所在点的坐标为()20,22,则2022202242a =+=,故A 正确;()()20222024202420230444387S S a a =−+=−+=−,故B 正确;8a 所在点的坐标为()1,1,则8112a =+=,16a 所在点的坐标为()2,2−−,则16224a =−−=−,故C 错误;22222244144245454544n n n n n nn n n n n n S S S aaa++++++++=−=+++,对应点的坐标为()1,+n n ,()1,1n n +−,…,()1,1n +,所以()()()()()245111112122n n S n n n n n n n n +=+++++−++++=+++++()()2123122n n n n n ++++==,故D 正确.故选:ABD 【点睛】关键点点睛:观察图形,利用对称性求解问题,对D 选项,考虑已知的前n 项和与所求的关系,结合图形,可适当先列举找到规律,再求解.28.(2022·辽宁·东北育才学校二模)如图所示,正五边形ABCDE 的边长为1a ,正五边形11111A B C D E 的边长为2a ,正五边形22222A B C D E 的边长为3a ,……,依次下去,正五边形11111n n n n n A B C D E −−−−−的边长为n a ,记ACE α∠=,则下列结论中正确的是( )A.cos α=B .数列{}n aC .数列{}n a的等比数列D .对任意θ∈R ,cos cos(2)cos(4)cos(6)cos(8)1θθαθαθαθα++++++++= 【答案】AB 【解析】 【分析】根据正五边形的几何性质可知1111111,,,B EAC AE AC CE AB AE CB AB AE B E B C λ======,根据长度关系列方程解得λ=,再利用正弦定理可求得cos α,通过图形类比归纳的12211n n a a a a λ+==,对于D ,注意5πα=,利用诱导公式和两角和差公式化简计算. 【详解】在△ACE ,2CAE AEC α∠=∠=,设1AC CE AE a λλ=== 易知△ACE ∽△1B AE ,则111B E a λ=,11AB AE a ==1ACE CAB ∠=∠,则111AB CB a ==∵11CB B E CE +=,即1111a a a λλ+=,解得λ=又∵AC AE λ=,由正弦定理得sin 2sin αλα=,即2sin cos sin ααλα=∴cos 2λα=,A 正确; 同理:△11B EC ∽△1B AE ,则111211B C B E AE λλ==即2121a a λ=,则2211a a λ==以此类推,1n n a a +={}n aB 正确,C 不正确;∵cos α=2cos 22cos 1αα=−=又∵5πα=,则可得: cos cos(2)cos(4)cos(6)cos(8)θθαθαθαθα++++++++[][][]cos cos(2)cos ()πcos ()πcos (2)2πθθαθαθαθα=+++−+++++−+cos cos(2)cos()cos()cos(2)θθαθαθαθα=++−−−++−()cos 2cos cos 22cos cos cos 12cos 22cos 0θθαθαθαα=+−=+−=D 不正确; 故选:AB .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学专题复习数列训练题
1.已知递增的等差数列满足11
=a ,4223-=a a ,则=n a (A )12-=n a n 或n a n 23-= (B) 12-=n a n (C) 12+=n a n (D) n a n 23-=
2。
设等比数列{}n a 的公比为q ,前n 项和为n S ,若1+n S 、n S 、2+n S 成等差数列,则q 的值为
(A )1或2- (B)
2- (C)2 (D)1或2 3。
首项为正数的数列{}n a 满足)3(4
121+=+n n a a ,*∈N n ,若对一切*∈N n 都有 n n a a >+1,则1a 的取值范围是
(A )),3()1,0(+∞Y (B) ),3()1,(+∞-∞Y (C) )1,0( (D) )3,0(
4。
在项数为12+n 的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于
(A )9 (B)10 (C)11 (D)12
5。
已知两个等差数列{}n a ,{}n b ,它们的前n 项和为n S 和n T ,若325++=n n T S n n ,则=5
5b a (A )1245 (B) 947 (C) 1247 (D) 21
47 6。
已知数列{}n a 的通项公式为)34()1(--=n a n n ,n S 是其前n 项和,则33178S S S -+的值为
(A )48 (B)49 (C)50 (D)47 7。
已知数列
{}n a 的前n 项和为n S ,且1-=n n n S S a )2(≥n ,921=a ,则=10a (A )74 (B) 94 (C) 634 (D) 63
5 8。
设等差数列
{}n a 的前n 项和为n S ,且65S S <,876S S S >=,则下列结论错误的是 (A )0<d (B) 07=a (C) 59S S > (D) 6S 与7S 均为n S 的最大值
9。
设数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项和为n T ,满足22n S T n n -=,*∈N n ,则=n a
(A )22
3-⋅n (B) 2231-⋅-n (C) 2231-⋅+n (D) 1231+⋅-n 10。
数列{}n a 满足12)1(1-=-++n a a n n n ,则{}n a 的前60项的和为
(A )1820 (B)1830 (C)1846 (D)1849
二.填空题:
11。
数列{}n a 的通项公式12
cos +=πn n a n ,前n 项和为n S ,则=2013S ____________ 12。
已知数列{}n a 的前n 项和为n S ,且n n S n +=22,*∈N n ,数列{}n b 满足
3log 42+=n n b a ,*∈N n ,则=n b __________________
数列{}n n b a ⋅的前n 项和为n T =_____________________
13。
对于等差数列
{}n a ,若满足m a n =,)(n m n a m ≠=,则=+n m a _____________________ 14。
如图,将一系列排列形状像计算机鼠标的数阵称为“鼠标数阵”,其中将最长一排数据的个数称为“鼠标数阵”的阶数,下图中的①②③分布称为2,3,4阶“鼠标数阵”,记组成n 阶“鼠标数阵”的所有数据之和为n S ,则=4S __________________
=n S __________________。
1 1 1
2 3 2 3 2 3
6 5 4 6 5 4
2 3 7 8 9 10
6 5 4
2 3
① ② ③
15。
数列
{}n a 的前n 项和为872--=n n S n ,则{}n a 的前n 项和=n T ____________。
16。
数列{}n a 是等差数列,083125>=a a ,21++⋅⋅=n n n n a a a b )(*∈N n ,则数列{}n b 的前n 项和n S 取得最大值时=n ____________。
17。
定义在),0()0,(+∞-∞Y 上的函数
)(x f ,如果对于任意给定的等比数列{}n a ,{})(n a f 仍是等比数列,则称
)(x f 为“保等比数列函数”,现有定义在),0()0,(+∞-∞Y 上的如下函数:①2)(x x f =;②x x f 2)(=;③x x f =)(;④x x f ln )(=。
其中是“保等比数列函数”的)(x f 的序号为____________。
三.解答题:
18。
设函数x x x f sin 2
)(+=的所有正的极小值点从小到大排成的数列为{}n x 。