2010年重庆市高考理科数学试卷及答案(Word版)
2010年 重庆市高考数学试卷(文科)

2010年重庆市高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2010•重庆)(x+1)4的展开式中x2的系数为()A.4 B.6 C.10 D.202.(5分)(2010•重庆)在等差数列{a n}中,a1+a9=10,则a5的值为().A.5 B.6 C.8 D.103.(5分)(2010•重庆)若向量=(3,m),=(2,﹣1),=0,则实数m的值为()A. B.C.2 D.64.(5分)(2010•重庆)函数的值域是()A.[0,+∞)B.[0,4]C.[0,4)D.(0,4)5.(5分)(2010•重庆)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为()A.7 B.15 C.25 D.356.(5分)(2010•重庆)下列函数中,周期为π,且在上为减函数的是()A.B.C.D.7.(5分)(2010•重庆)设变量x,y满足约束条件则z=3x﹣2y的最大值为()A.0 B.2 C.4 D.38.(5分)(2010•重庆)若直线y=x﹣b与曲线(θ∈[0,2π))有两个不同的公共点,则实数b的取值范围为()A.B.C. D.9.(5分)(2010•重庆)到两互相垂直的异面直线的距离相等的点()A.只有1个 B.恰有3个 C.恰有4个 D.有无穷多个10.(5分)(2010•重庆)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有()A.30种B.36种C.42种D.48种二、填空题(共5小题,每小题5分,满分25分)11.(5分)(2010•重庆)设A={x|x+1>0},B={x|x<0},则A∩B=.12.(5分)(2010•重庆)已知t>0,则函数的最小值为.13.(5分)(2010•重庆)已知过抛物线y2=4x的焦点F的直线交该抛物线于A、B两点,|AF|=2,则|BF|=.14.(5分)(2010•重庆)加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为、、,且各道工序互不影响,则加工出来的零件的次品率为.15.(5分)(2010•重庆)如图,图中的实线是由三段圆弧连接而成的一条封闭曲线C,各段弧所在的圆经过同一点P(点P不在C上)且半径相等.设第i段弧所对的圆心角为αi(i=1,2,3),则=.三、解答题(共6小题,满分75分)16.(13分)(2010•重庆)已知{a n}是首项为19,公差为﹣4的等差数列,S n为{a n}的前n 项和.(Ⅰ)求通项a n及S n;(Ⅱ)设{b n﹣a n}是首项为1,公比为2的等比数列,求数列{b n}的通项公式及其前n项和T n.17.(13分)(2010•重庆)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起.若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(Ⅰ)甲、乙两单位的演出序号均为偶数的概率;(Ⅱ)甲、乙两单位的演出序号不相邻的概率.18.(13分)(2010•重庆)设△ABC的内角A、B、C的对边长分别为a、b、c,且3b2+3c2﹣3a2=4bc.(Ⅰ)求sinA的值;(Ⅱ)求的值.19.(12分)(2010•重庆)已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f′(x)是奇函数.(1)求f(x)的表达式;(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值和最小值.20.(12分)(2010•重庆)如图,三棱锥P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB.(1)求证:AB⊥平面PCB;(2)求二面角C﹣PA﹣B的大小的余弦值.21.(12分)(2010•重庆)已知以原点O为中心,为右焦点的双曲线C的离心率.(1)求双曲线C的标准方程及其渐近线方程;(2)如图,已知过点M(x1,y1)的直线l1:x1x+4y1y=4与过点N(x2,y2)(其中x2≠x1)的直线l2:x2x+4y2y=4的交点E在双曲线C上,直线MN与两条渐近线分别交与G、H两点,求△OGH的面积.。
2010年重庆高考数学

2010年重庆高考数学介绍本文档将对2010年重庆高考数学试卷进行分析和解释。
该高考数学试卷是考生所面临的重要考试之一,对于考生来说至关重要。
通过对该试卷的讲解,我们将帮助考生提高其解题能力和应对能力,以取得更好的成绩。
试卷概述2010年重庆高考数学试卷共分为两个部分:选择题和非选择题。
选择题选择题部分有28个小题,每小题4分,共计112分。
它包括了各种数学知识和技巧。
在答题时要仔细审题,并根据题目要求进行答题。
非选择题非选择题部分有6个大题,每题各有若干个小题。
这些题目要求考生独立思考,寻找解题方法,并进行详细的书写。
在答题时要注重逻辑性和清晰性。
题目分析和解答选择题在选择题中,考生需要熟悉各种数学概念和定理,并且能够运用这些知识解决问题。
以下是几道选择题的分析和解答:第一道选择题题目:设集合$A=\\{x\\mid 0 \\leq x \\leq 1\\}$,$B=\\{x \\mid 1 \\leq x \\leq 2\\}$,则$A \\cap B$等于:解答:集合$A \\cap B$表示既属于集合A又属于集合B的元素。
由题可知,$A \\cap B$中的元素是从0到1和从1到2之间的数。
因此,$A \\cap B$等于集合{1}。
答案选项为A。
第二道选择题题目:已知直线l1的斜率为l1,直线l2的斜率为l2,若l1与l2互相垂直,则A. l1l2=1B. l1l2=−1C. l1=−l2D. l1l2>0解答:两条直线互相垂直,意味着它们的斜率的乘积为-1。
所以答案选项B是正确的。
非选择题非选择题需要考生独立思考,并将解题过程详细地书写出来。
以下是几个非选择题的分析和解答:第一道非选择题题目:已知函数l(l)=2l2−3l+4,求函数l(l)的极值,并判断极值的类型。
解答:要求函数的极值,首先需要求得函数的一阶导数和二阶导数。
导函数l′(l)=4l−3,二阶导函数l″(l)=4。
重庆市历年数学(2005~2010)高考试题真题及答案

2005年高考理科数学第一部分(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个备选项中,只有一项是符合题目要求的. 1.圆5)2(22=++y x 关于原点(0,0)对称的圆的方程为( ) A .5)2(22=+-y x B .5)2(22=-+y xC .5)2()2(22=+++y xD .5)2(22=++y x2.200511i i +⎛⎫= ⎪-⎝⎭( )A .iB .-iC .20052D .-200523.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f 的x 的取值范围是( )A .)2,(-∞B .),2(+∞C .),2()2,(+∞--∞YD .(-2,2)4.已知A (3,1),B (6,1),C (4,3),D 为线段BC 的中点,则向量AC 与DA 的夹角为( )A .54arccos 2-πB .54arccos C .)54arccos(-D .-)54arccos(-5.若x ,y 是正数,则22)21()21(x y y x +++的最小值是( ) A .3 B .27 C .4D .29 6.已知α、β均为锐角,若q p q p 是则,2:),sin(sin :πβαβαα<++<的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.对于不重合的两个平面α与β,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l 、m ,使得l //α,l //β,m //α,m //β, 其中,可以判定α与β平行的条件有( )A .1个B .2个C .3个D .4个8.若)12(x x -n 展开式中含21x 项的系数与含41x项的系数之比为-5,则n 等于 ( )A .4B .6C .8D .109.若动点(y x ,)在曲线)0(14222>=+b by x 上变化,则y x 22+的最大值为 ( )A .⎪⎩⎪⎨⎧≥<<+)4(2),40(442b b b bB .⎪⎩⎪⎨⎧≥<<+)2(2),20(442b b b bC .442+bD .2b10.如图,在体积为1的三棱锥A —BCD 侧棱AB 、AC 、AD上分别取点E 、F 、G , 使AE : EB=AF : FC=AG : GD=2 : 1,记O 为三平面BCG 、CDE 、DBF 的交点,则三棱锥O —BCD 的体积等于 ( )A .91B .81C . 71D .41第二部分(非选择题 共100分)二、填空题:本大题共6小题,每小题4分,共24分. 把答案填写在答题卡相应位置上. 11.集合∈=<--∈=x B x x R x A {},06|{2R| }2|2|<-x ,则B A I = .12.曲线)0)(,(33≠=a a a x y 在点处的切线与x 轴、直线a x =所围成的三角形的面积为a 则,61= 13.已知α、β均为锐角,且αβαβαtan ),sin()cos(则-=+=14.n n n n n 231233232lim +-+∞→= 15.某轻轨列车有4节车厢,现有6位乘客准备乘坐,设每一位乘客进入每节车厢是等可能的,则这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为OGFABC DE16.连接抛物线上任意四点组成的四边形可能是 (填写所有正确选项的序号) ①菱形 ②有3条边相等的四边形 ③梯形 ④平行四边形 ⑤有一组对角相等的四边形三、解答题:本大题共6小题,共76分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分)若函数)2cos(2sin )2sin(42cos 1)(x x a x x x f --++=ππ的最大值为2,试确定常数a 的值.18.(本小题满分13分) 在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从此10张券中任抽2张,求:(Ⅰ)该顾客中奖的概率;(Ⅱ)该顾客获得的奖品总价值ξ(元)的概率分布列和期望ξE19.(本小题满分13分)已知R a ∈,讨论函数)1()(2+++=a ax x e x f x 的极值点的个数20.(本小题满分13分) 如图,在三棱柱ABC —A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于C 、C 1的一点,EA ⊥EB 1,已知AB=2,BB 1=2,BC=1,∠BCC 1=3π,求: (Ⅰ)异面直线AB 与EB 1的距离;(Ⅱ)二面角A —EB 1—A 1的平面角的正切值.C 1B 1AB CA 1E21.(本小题满分12分)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (Ⅰ)求双曲线C 2的方程; (Ⅱ)若直线2:+=kx y l 与椭圆C 1及双曲线C 2都恒有两个不同的交点,且l 与C 2的两个交点A 和B 满足6<⋅OB OA (其中O 为原点),求k 的取值范围.22.(本小题满分12分)数列{a n }满足)1(21)11(1211≥+++==+n a n n a a nnn 且. (Ⅰ)用数学归纳法证明:)2(2≥≥n a n ;(Ⅱ)已知不等式)1(:,0)1ln(2≥<><+n e a x x x n 证明成立对,其中无理数e=2.71828….2006年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)一、选择题:本大题共10小题, 每小题5分, 共50分.在每小题给出的四个备选项中, 只有一项是符合题目要求的.(1)已知集合U ={1,2,3,4,5,6,7},A = {2,4,5,7},B = {3,4,5},则(C U A )∪(C U B )=(A ){1,6}(B ){4,5}(C ){2,3,4,5,7}(D ){1,2,3,6,7}(2)在等差数列{a n }中,若a 4+ a 6=12,S n 是数列{a n }的前n 项和,则S 9的值为(A )48(B )54(C )60(D )66(3)过坐标原点且与圆0252422=++-+y x y x 相切的直线的方程为 (A )y =-3x 或x y 31=(B )y = 3x 或x y 31-=(C )y =-3x 或x y 31-=(D )y = 3x 或x y 31=(4)对于任意的直线l 与平面α,在平面α内必有直线m ,使m 与l(A )平行 (B )相交(C )垂直(D )互为异面直线(5)若nx x ⎪⎪⎭⎫ ⎝⎛-13的展开式中各项系数之和为64,则展开式的常数项为 (A )-540 (B )-162(C )162(D )540(6)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg ),得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5, 64.5]的学生人数是(A )20 (B )30 (C )40(D )50(7)与向量⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=27,21,21,27b a 的夹角相等, 且模为1的向量是(A )⎪⎭⎫ ⎝⎛-53,54(B )⎪⎭⎫⎝⎛-53,54或 ⎪⎭⎫ ⎝⎛-53,54(C )⎪⎪⎭⎫⎝⎛-31,322 (D )⎪⎪⎭⎫⎝⎛-31,322或⎪⎪⎭⎫⎝⎛-31,322(8)将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配 方案有 (A )30种 (B )90种 (C )180种(D )270种(9)如图所示, 单位圆中弧AB的长为)(,x f x 表示弧AB 与弦AB 所围 成的弓形面积的2倍,则函数)(x f y =的图象是⌒ ⌒(10)若a , b , c > 0且324)(-=+++bc c b a a ,则c b a ++2的最小值为(A )13-(B )13+(C )232+(D )232-二、填空题:本大题共6小题,每小题4分,共24分.把答案填写在答题卡相应位置上. (11)复数 的值是_______.(12)=+--+++∞→12)12(312lim n n n n Λ_______. (13)已知=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛--=+⎪⎭⎫⎝⎛∈4cos ,13124sin ,53)sin(,,43,παπββαππβα则_______. (14)在数列{}n a 中, 若32,111+==+n n a a a (n ≥1), 则该数列的通项=n a _______. (15)设,1,0≠>a a 函数)32lg(2)(+-=x x ax f 有最大值, 则不等式0)75(log 2>+-x x a 的解集为_______.(16)已知变量y x ,满足约束条件41≤+≤y x ,22≤-≤-y x , 若目标函数yax z +=(其中0>a )仅在点(3,1)处取得最大值,则a 的取值范围为_______.三、解答题:本大题共6小题,共76分.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分13分) 设函数2cos 3)(=x f ωx + sin ωxcos ωx + a (其中ω> 0, a ∈R ), 且)(x f 的图象在y 轴右侧的第一个最高点的横坐标为6π. (Ⅰ)求ω的值; (Ⅱ)如果)(x f 在区间⎥⎦⎤⎢⎣⎡-65,3ππ上的最小值为3, 求a 的值.1 + 2i 3 + i 3某大厦的一部电梯从底层出发后只能在第18、19、20层可以停靠.若该电梯在底层载有5位乘客, 且每位乘客在这三层的每一层下电梯的概率均为31, 用ξ表示这5位乘客在第20层下电梯的人数, 求: (Ⅰ)随机变量ξ的分布列;(Ⅱ)随机变量ξ的期望.(19)(本小题满分13分)如图, 在四棱锥ABCD P -中, ⊥PA 底面ABCD ,DAB ∠为直角, ,2,//AB CD AD CD AB == E 、F 分别为PC 、CD 的中点.(Ⅰ)试证:⊥CD 平面BEF ;(Ⅱ)设AB k PA ⋅=, 且二面角C BD E --的平面角大于30°, 求k 的取值范围.(20)(本小题满分13分)已知函数xe c bx x xf )()(2++=, 其中R c b ∈,为常数.(Ⅰ)若)1(42->c b , 讨论函数)(x f 的单调性; (Ⅱ)若)1(42-≤c b , 且,4)(lim 0=-→xcx f x 试证:26≤≤-b .已知定义域为R 的函数)(x f 满足x x x f x x x f f +-=+-22)())((. (Ⅰ)若3)2(=f , 求)1(f ; 又若)(,)0(a f a f 求=;(Ⅱ)设有且仅有一个实数0x , 使得00)(x x f =,求函数)(x f 的解析表达式.(22)(本小题满分12分)已知一列椭圆,1:222=+nn b y x C10<<n b , n = 1, 2, …, 若椭圆C n 上有一点P n , 使P n 到右准线l n 的距离d n 是| P n F n |与 | P n G n |的等差中项, 其中F n 、G n 分别是C n 的左、右焦点.(Ⅰ)试证:23≤n b (n ≥1); (Ⅱ)取232++=n n b n ,并用S n 表示△P n F n G n 的面积,试证:121+><n n S S S S 且 (n ≥3).2007年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.1.若等比数列{}n a 的前3项和39S =且11a =,则2a 等于( )A.3 B.4C.5 D.62.命题“若21x <,则11x -<<”的逆否命题是( ) A.若21x ≥,则1x ≥或1x -≤ B.若11x -<<,则21x < C.若1x >或1x <-,则21x >D.若1x ≥或1x -≤,则21x ≥3.若三个平面两两相交,且三条交线互相平行,则这三个平面把空间分成( ) A.5部分 B.6部分 C.7部分 D.8部分4.若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为( )A.10B.20C.30D.1205.在ABC △中,3AB =,45A =o ,75C =o,则BC =( )A.33- B.2 C.2 D.33+6.从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为( ) A.14B.79120C.34D.23247.若a 是12b +与12b -的等比中项,则22aba b+的最大值为( )A.2515B.24C.55D.228.设正数a b ,满足22lim()4x x ax b →+-=,则111lim 2n n n nn a ab a b +--→∞+=+( ) A.0B.14C.12D.19.已知定义域为R 的函数()f x 在(8)+∞,上为减函数,且函数(8)y f x =+为偶函数,则( ) A.(6)(7)f f >B.(6)(9)f f >C.(7)(9)f f >D.(7)(10)f f >10.如题(10)图,在四边形ABCD 中,4AB BD DC ++=u u u r u u u r u u u r, 4AB BD BD DC +=u u u r u u u r u u u r u u u rg g ,0AB BD BD DC ==u u u r u u u r u u u r u u u r g g , 则()AB DC AC +u u u r u u u r u u u rg 的值为( )A.2B.22C.4D.42DCAB题(10)图二、填空题:本大题共6小题,每小题4分,共24分.把答案填写在答题卡相应位置上. 11.复数322ii +的虚部为______. 12.已知x y ,满足1241x y x y x -⎧⎪+⎨⎪⎩≤,≤,≥.则函数3z x y =+的最大值是______.13.若函数22()21x ax nf x --=-的定义域为R ,则α的取值范围为______.14.设{}n a 为公比1q >的等比数列,若2004a 和2005a 是方程24830x x -+=的两根,则20062007a a +=______.15.某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方程有______种.(以数字作答)16.过双曲线224x y -=的右焦点F 作倾斜角为105o的直线,交双曲线于P Q ,两点,则FP FQ g 的值为______.三、解答题:本大题共6小题,共76分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分13分,其中(Ⅰ)小问9分,(Ⅱ)小问4分.)设2()6cos 3sin 2f x x x =-.(Ⅰ)求()f x 的最大值及最小正周期;(Ⅱ)若锐角α满足()323f α=-,求4tan 5α的值.18.(本小题满分13分,其中(Ⅰ)小问4分,(Ⅱ)小问9分) 某单位有三辆汽车参加某种事故保险,单位年初向保险公司缴纳每辆900元的保险金,对在一年内发生此种事故的每辆汽车,单位可获9000元的赔偿(假设每辆车最多只赔偿一次),设这三辆车在一年内发生此种事故的概率分别为19,110,111,且各车是否发生事故相互独立,求一年内该单位在此保险中: (Ⅰ)获赔的概率;(Ⅱ)获赔金额ξ的分布列与期望.19.(本小题满分13分,其中(Ⅰ)小问8分,(Ⅱ)小问5分) 如题(19)图,在直三棱柱111ABC A B C -中,12AA =,1AB =,90ABC =o ∠;点D E ,分别在1BB ,1A D 上,且11B E A D ⊥, 四棱锥1C ABDA -与直三棱柱的体积之比为3:5. (Ⅰ)求异面直线DE 与11B C 的距离; (Ⅱ)若2BC =,求二面角111A DC B --的平面角的正切值.20.(本小题满分13分,其中(Ⅰ),(Ⅱ),(Ⅲ)小问分别为6,4,3分.)已知函数44()ln (0)f x ax x bx c x =+->在1x =处取得极值3c --,其中a b ,为常数. (Ⅰ)试确定a b ,的值; (Ⅱ)讨论函数()f x 的单调区间;(Ⅲ)若对任意0x >,不等式2()2f x c -≥恒成立,求c 的取值范围. 21.(本小题满分12分,其中(Ⅰ)小问5分,(Ⅱ)小问7分.)已知各项均为正数的数列{}n a 的前n 项和n S 满足11S >,且6(1)(2)n n n S a a =++,n ∈N .ABCDE 1B1C1A题(19)图(Ⅰ)求{}n a 的通项公式;(Ⅱ)设数列{}n b 满足(21)1n bn a -=,并记n T 为{}n b 的前n 项和,求证:231log (3)n n T a n ->+∈N ,.22.(本小题满分12分,其中(Ⅰ)小问4分,(Ⅱ)小问8分.)如题(22)图,中心在原点O 的椭圆的右焦点为(30)F ,,右准线l 的方程为:12x =. (1)求椭圆的方程;(Ⅱ)在椭圆上任取三个不同点1P ,2P ,3P ,使122331PFP P FP P FP ==∠∠∠,证明:123111FP FP FP ++为定值,并求此定值.2008年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的.O F2P1Pxl3Py题(22)图(1)复数1+32i = (A)1+2i(B)1-2i(C)-1(D)3(2)设m,n 是整数,则“m,n 均为偶数”是“m+n 是偶数”的(A)充分而不必要条件 (B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件(3)圆O 1:x 2+y 2-2x =0和圆O 2:x 2+y 2-4y =0的位置关系是(A)相离 (B)相交 (C)外切 (D)内切(4)已知函数y=13x x -++的最大值为M ,最小值为m ,则mM的值为 (A)14(B)12(C)22(D)32(5)已知随机变量ζ服从正态分布N (3,a 2),则P (3)ζ<= (A)15(B)14(C)13(D)12(6)若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,,则下列说法一定正确的是(A)f (x )为奇函数 (B )f (x )为偶函数 (C) f (x )+1为奇函数 (D )f (x )+1为偶函数(7)若过两点P 1(-1,2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP u u u u r 所成的比λ的值为 (A)-13(B) -15(C)15(D)13(8)已知双曲线22221x y a b-=(a >0,b >0)的一条渐近线为y =kx (k >0),离心率e =5k ,则双曲线方程为(A )22x a -224y a =1(B)222215x y a a-=(C)222214x y b b-=(D)222215x y b b-=(9)如解(9)图,体积为V 的大球内有4个小球,每个小球的球面过大球球心且与大球球面有且只有一个交点,4个小球的球心是以大球球心为中心的正方形的4个顶点.V 1为小球相交部分(图中阴影部分)的体积,V 2为大球内、小球外的图中黑色部分的体积,则下列关系中正确的是(A )V 1=2V (B) V 2=2V (C )V 1> V 2(D )V 1< V 2(10)函数f(x)=sin 132cos 2sin x x x---(02x π≤≤) 的值域是(A )[-2,02] (B)[-1,0] (C )[-2,0](D )[-3,0]二、填空题:本大题共6小题,每小题4分,共24分,把答案填写在答题卡相应位置上 (11)设集合U ={1,2,3,4,5},A ={2,4},B={3,4,5},C={3,4},则(A ⋃B)()C ⋂⋃ð= .(12)已知函数()()()23x f x a ⎧+≠⎪=⎨⎪⎩当x 0时当x=0时,在点在x =0处连续,则2221lim x an a n n→∞+=+ . (13)已知1249a =(a>0) ,则23log a = . (14)设n S 是等差数列{a n }的前n 项和,1298,9a S =-=-,则16S = .(15)直线l 与圆22240x y x y a ++-+=(a<3)相交于两点A ,B ,弦AB 的中点为(0,1),则直线l 的方程为 .(16)某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A 、B 、C 、A 1、B 1、C 1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答).三、解答题:本大题共6小题,共76分,解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分) 设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且A =60o,c =3b.求: (Ⅰ)ac的值; (Ⅱ)cot B +cot C 的值.(18)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为12,且各局胜负相互独立.求:(Ⅰ) 打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数ξ的分别列与期望E ξ.(19)(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分.)如题(19)图,在ABC V 中,B=90o,AC =152,D 、E 两点分别在AB 、AC 上.使 2AD AEDB EC==,DE=3.现将ABC V 沿DE 折成直二角角,求: (Ⅰ)异面直线AD 与BC 的距离;(Ⅱ)二面角A-EC-B 的大小(用反三角函数表示).(20)(本小题满分13分.(Ⅰ)小问5分.(Ⅱ)小问8分.)设函数2()(0),f x ax bx c a =++≠曲线y =f (x )通过点(0,23a +),且在点()()1,1f --处的切线垂直于y 轴.(Ⅰ)用a 分别表示b 和c ;(Ⅱ)当bc 取得最小值时,求函数()()x g x f x e -=-的单调区间. (21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(Ⅰ)求点P 的轨迹方程; (Ⅱ)若2·1cos PM PN MPN-∠=,求点P 的坐标.(22)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 设各项均为正数的数列{a n }满足321122,(N*)n a a a a aa n ++==∈.(Ⅰ)若214a =,求34,a a ,并猜想2008a 的值(不需证明); (Ⅱ)记12(N*),22n n n b a a a n b =∈≥g g g 若对n ≥2恒成立,求a 2的值及数列{b n }的通项公式.高考数学2009年普通高等学校招生全国统一考试(重庆卷)数学试题卷(理工农医类)本试卷满分150分,考试时间120分钟第Ⅰ卷一、选择题:本大题共10小题,每小题5分,共50分。
【历年高考经典】2010年全国高考理综试题及答案-重庆

绝密★启用前解密时间:2010年6月8日11:30 [考试时间:6月8日9:00---11:30]2010年普通高等学校招生全国统一考试(重庆卷)理科综合能力测试试题卷理科综合能力测试试题分选择题和非选择题两部分,第一部分(选择题)1至5页,第二部分(非选择题)6至12页,共12页,满分300分,考试时间150分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡上规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试卷和答题卡一并交回。
以下数据可供解题时参考:相对原子质量:H I C 12 O 16 Cu 40第一部分(选择题共126分)本部分包括21小题,每小题6分,共126分,每小题只有一个选项符合题意。
1.下列有关人体糖代谢及调节的叙述,正确的是A 血糖浓度升高能合姨岛A细胞分泌增强B饥饿时首先被利用的是肌糖元,其后是脂肪C糖类分解释放的能量的主要贮存开工是ATPD多食少动,糖类易转变成脂肪和必需氨基酸2.题2图为光能在叶绿体中转换的示意图,U、V、W、X、Y代表参与光能转换的物质下列选项,错误的是A、U在光合作用里的作用是吸收和传递光能H O分解,产生电子流B、V吸收光能后被激发,使2CO的还原剂,其能量是稳定化学能来源之一C、W为2D、U至Y的能量转换在叶绿体囊状结构薄膜上进行3.下列有关细胞结构和功能的叙述,正确的是A.在植物细胞有丝分裂末期高尔基体参与细胞壁形成B.在动物细胞有丝分裂间期能观察到纺锤体和中心体C.分泌蛋白合成后在内质网和细胞质基质中加工D.质粒和线粒体是既有核酸又有外膜的细胞结构4.将一玉米幼苗固定在支架上,支架固定在温、湿度适宜且底部有一透光孔的暗室内,从题4图所示状态开始,光源随暗室同步缓慢匀速旋转,几天后停止于起始位置,此时,幼苗的生成情况是A 根水平生成,茎向上弯曲B 根水平生成,茎向下弯曲C 根下弯曲,茎向上弯曲D 根向下弯曲,茎向下弯曲5.正常人即使闭眼,伸出手指也能触摸鼻尖,这个动作属于A 印随行为B 大脑皮层控制的条件反射活动C 本能行为D 大脑皮层中央前回控制的活动6.减缓温室气体排放是2009年哥本哈根气候变化会议的议题,下列反应不产生温室气体的是A 用纯碱制玻璃B 用煤炭作燃料C 用铁矿石炼铁D 用氨制碳酸铵7. 下列实验装置(固定装置略去)和操作正确的是A 分离4CCl 和水B 酸碱中和滴定C 吸收Hcl 尾气D 中和热的测定8. 下列叙述正确的是A 铝制容器可盛 装热的浓2H 4SOB AgI 胶体在电场中自由运动C K 与水反应比LI 与水反应剧烈D 红磷在过量2Cl 中燃烧生成3PCl9. 能鉴别2MgI 、3AgNo 、23Na Co 、22Na Alo 四种溶液的试剂是A 3HNoB KOHC 2BaCLD NaClO10.2CoCl (g )CO (g )+ 2()Cl g ;△H>0,当反应达到平衡时,下列措施:①升温②恒容通入惰性气体③增加CO 浓度④减压⑤加催化剂⑥恒压通往惰性气体,能提高 2CoCl 转化率的是A ①②④B ①④⑥C ②③⑤D ③⑤⑥11.贝诺酯是由阿斯匹林、扑热息痛经化学法拼合制备的解热镇痛抗炎药,其合成反应式(反应条件略去)如下:下列叙述错误的是:A ,3FeCl 溶液可区别阿斯匹林和扑热息通B .1mol 阿斯匹林最多可消耗2mol NaOHC . 常温下贝诺酯在水中的溶解度小于扑热息痛D . 89C H NO 是扑热息痛发生类似酯水解反应的产物12.已知2H (g )+2Br (l)=2HBr ;△H=-72KJ/mol ,蒸发1mol 2Br (l)需要吸收的能量为30KJ ,其它相关数据如下表:则表中a 为A 404B 260C 230 D20013、PH=2的两种一元酸x 和y ,体积均为100ml,稀释过程中PH 与溶液体积的关系如题13图所示,分别滴加NaOH 溶液(c=0.1mol /L )至PH=7,消耗NaOH 溶液的体积为Vx,Vy,则A 、 x 为弱酸Vx<VyB 、 x 为强酸Vx>VyC 、 y 为弱酸Vx<VyD 、 y 为强酸Vx>Vy14、一列简谐波在两时刻的波形如题14图中实线和虚线所示,由图可确定这列波的A 周期B 波速C 波长D 频率15、给旱区送水的消防车停于水平地面,在缓慢放水过程中,若车胎不漏气,胎内气体温度不变,不计分子间势能,则胎内气体A 从外界吸热B 对外界做负功C 分子平均动能减小D 内能增加16、月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成 的双星系统,它们都围绕月地连线上某点O 做匀速圆周运动。
2010年全国高考文科数学试题及标准答案-重庆

绝密★启用前2010年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)数学试题卷(文史类)共4页。
满分150分。
考试时间l20分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答非选择题时,必须使用0.5毫米的黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束,务必将试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中.只有一项是符合题目要求的.(1)4(1)x +的展开式中2x 的系数为(A)4 ﻩ(B)6ﻩ(C)10 ﻩ(D )20 (2)在等差数列{}n a 中,1910a a +=,则5a 的值为ﻩ(A )5 (B )6ﻩ(C)8 (D)10(3)若向量(3,)a m =,(2,1)b =-,0a b =,则实数m 的值为(A)32- (B )32 (C )2 (D )6(4)函数y =ﻩ(A)[0,)+∞ (B)[0,4]ﻩ(C )[0,4) ﻩ(D)(0,4)(5)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为ﻩ(A)7 (B)15 (C)25 (D )35(6)下列函数中,周期为π,且在[,]42ππ上为减函数的是 (A )sin(2)2y x π=+ ﻩ(B)cos(2)2y x π=+ ﻩ(C )sin()2y x π=+ (D)cos()2y x π=+ (7)设变量,x y 满足约束条件0,0,220,x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则32z x y =-的最大值为ﻩ(A )0 (B)2 (C )4 (D)6(8)若直线y x b =-与曲线2cos ,sin x y θθ=+⎧⎨=⎩([0,2)θπ∈)有两个不同的公共点,则实数b 的取值范围为ﻩ(A )(22,1)-ﻩ(B)[22,22]-+ (C )(,22)(22,)-∞-++∞ ﻩ(D)(22,22)-+(9)到两互相垂直的异面直线的距离相等的点ﻩ(A)只有1个ﻩ(B)恰有3个ﻩ(C)恰有4个 (D )有无穷多个(10)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天;若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有 ﻩ(A)30种 (B )36种ﻩ(C )42种 (D )48种二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. (11)设{}{}|10,|0A x x B x x =+>=<,则A B =____________ .(12)已知0t >,则函数241t t y t-+=的最小值为____________ . (13)已知过抛物线24y x =的焦点F 的直线交该抛物线于A 、B 两点,2AF =,则 BF =_ _ .(14)加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170、169、168,且各道工序互不影响,则加工出来的零件的次品率为____________ .(15)如题(15)图,图中的实线是由三段圆弧连接而成的一条封。
2010年普通高等学校招生全国统一考试(重庆卷)数学(文科)

2010年普通高等学校招生全国统一考试(重庆卷)数学(文科)学校:___________姓名:___________班级:___________考号:___________一、单选题 1.4(1)x +的展开式中2x 的系数为(A )4 (B )6 (C )10 (D )20 2.在等差数列{}n a 中,1910a a +=,则5a 的值为 (A )5 (B )6 (C )8 (D )10 3.若向量(3,)a m =,(2,1)b =-,0a b =,则实数m 的值为 (A )32-(B )32(C )2 (D )64.函数y =(A )[0,)+∞ (B )[0,4] (C )[0,4) (D )(0,4)5.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为(A )7 (B )15 (C )25 (D )35 6.下列函数中,周期为π,且在[,]42ππ上为减函数的是(A )sin(2)2y x π=+ (B )cos(2)2y x π=+ (C )sin()2y x π=+(D )cos()2y x π=+ 而函数cos(2)2y x π=+为增函数,所以选A7.设变量满足约束条件则的最大值为A .0B .2C .4D .68.若直线y x b =-与曲线2cos ,sin x y θθ=+⎧⎨=⎩([0,2)θπ∈)有两个不同的公共点,则实数b 的取值范围为(A )(2- (B )[22+(C )(,2(22,)-∞++∞ (D )(22+9.到两互相垂直的异面直线的距离相等的点 A .只有1个 B .恰有3个 C .恰有4个D .有无穷多个10.某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天 . 若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有(A )30种 (B )36种 (C )42种 (D )48种二、填空题11.设{}{}|10,|0A x x B x x =+>=<,则AB =____________ .12.已知0t >,则函数241t t y t-+=的最小值为____________ .13.已知过抛物线的焦点的直线交该抛物线于F 、A 两点,,则____________ .14.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170、169、168,且各道工序互不影响,则加工出来的零件的次品率为____________ . 15.如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等. 设第i 段弧所对的圆心角为(1,2,3)i i α=,则232311coscossinsin3333αααααα++-=____________ .三、解答题16.已知{}n a 是首项为19,公差为-2的等差数列,n S 为{}n a 的前n 项和. (Ⅰ)求通项n a 及n S ;(Ⅱ)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n 项和n T .17.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分. )在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……,6),求:(Ⅰ)甲、乙两单位的演出序号均为偶数的概率; (Ⅱ)甲、乙两单位的演出序号不相邻的概率.18.设ABC ∆的内角A 、B 、C 的对边长分别为a 、b 、c,且32b +32c -32a bc .(Ⅰ) 求sinA 的值;(Ⅱ)求2sin()sin()441cos 2A B C Aππ+++-的值.19.已知函数32()f x ax x bx =++(其中常数a,b ∈R),()()()g x f x f x '=+是奇函数.(Ⅰ)求()f x 的表达式;(Ⅱ)讨论()g x 的单调性,并求()g x 在区间[1,2]上的最大值和最小值. 20.如题(20)图,四棱锥P ABCD -中,底面ABCD 为矩形, PA ⊥底面ABCD ,PA AB ==,点E 是棱PB 的中点.(Ⅰ)证明: AE ⊥平面PBC ;(Ⅱ)若1AD =,求二面角B EC D --的平面角的余弦值.21.已知以原点O 为中心,)F为右焦点的双曲线C的离心率e =. (Ⅰ)求双曲线C 的标准方程及其渐近线方程;(Ⅱ)如题(21)图,已知过点()11,M x y 的直线1l : 1144x x y y +=与过点()22,N x y (其中21x x ≠)的直线2l :的交点E 在双曲线C 上,直线MN 与双曲线的两条渐近线分别交于G 、H 两点,求·OG OH 的值.参考答案1.B 【解析】解析:由通项公式得2234T C 6x x == 2.A【解析】解析:由角标性质得1952a a a +=,所以5a =5 3.【解析】解析:60a b m =-=,所以m =6 4.C【解析】解析:[)40,0164161640,4x x x >∴≤-<∴-5.B【解析】解析:青年职工、中年职工、老年职工三层之比为7:5:3,所以样本容量为715715=6.A【解析】解析:C 、D 中函数周期为2π,所以错误 当[,]42x ππ∈时,32,22x πππ⎡⎤+∈⎢⎥⎣⎦,函数sin(2)2y x π=+为减函数7.C 【解析】解析:不等式组表示的平面区域如图所示,当直线32z x y =-过点B 时,在y 轴上截距最小,z 最大 由B (2,2)知max z =4 8.【解析】解析:2cos ,sin x y θθ=+⎧⎨=⎩化为普通方程22(2)1x y -+=,表示圆,21,2b -<解得2222b <<+法2:利用数形结合进行分析得22,22AC b b =-=∴=同理分析,可知22b << 9.D 【解析】解析:放在正方体中研究,显然,线段1OO 、EF 、FG 、GH 、HE 的中点到两垂直异面直线AB 、CD 的距离都相等, 所以排除A 、B 、C ,选D亦可在四条侧棱上找到四个点到两垂直异面直线AB 、CD 的距离相等 10.C 【解析】解析:法一:所有排法减去甲值14日或乙值16日,再加上甲值14日且乙值16日的排法 即2212116454432C C C C C C -⨯+=42 法二:分两类甲、乙同组,则只能排在15日,有24C =6种排法甲、乙不同组,有112432(1)C C A +=36种排法,故共有42种方法 11.{}{}{}|1|0|10x x x x x x >-⋂<=-<< 【解析】 12.-2 【解析】解析:241142(0)t t y t t t t-+==+-≥->,当且仅当1t =时,min 2y =-13.2 【解析】解析:由抛物线的定义可知12AF AA KF=== AB x∴⊥轴故AF=BF=214.6968673 170696870 p=-⨯⨯=【解析】解析:加工出来的零件的次品的对立事件为零件是正品,由对立事件公式得加工出来的零件的次品率6968673 170696870 p=-⨯⨯=15.【详解】如图,由圆的内接四边形对角互补可知,,,,又∵,∴,.16.,【解析】17.1/5,2/3【解析】18.1/3,-7/2【解析】19.最大值为【解析】20.【解析】试题分析:(1)由PA ⊥底面ABCD ,得PA AB ⊥,又PA AB =,由三垂线定理得BC PB ⊥,从而BC ⊥平面PAB ,由此能证明AE ⊥平面PBC ;(2)由BC ⊥平面PAB , AD AE ⊥,取CE 的中点,连结DF , BF ,则BDF ∠为所求的二面角的平面角,由此能求出二面角B EC D --的余弦值.试题解析:(1)证明(方法一):由PA ⊥底面ABCD ,得PA AB ⊥.又PA AB =,故PAB 为等腰直角三角形,而点E 是棱PB 的中点,所以AE PB ⊥. 由题意知,又是PB 在底面内的射影,由三垂线定理得,从而平面 PAB ,故.因AE PB ⊥, AE BC ⊥.所以AE ⊥平面PBC .(1)证明(方法二):以A 为坐标原点,射线AB 、AD 、AP 分别为轴、轴、轴正半轴, 建立空间直角坐标系.设()00D a ,,,则()()20020BCa ,,,,,,(00022P E ⎛ ⎝⎭,,.则222AE ⎛⎫= ⎪ ⎪⎝⎭,()0,,0BC a =,(2,,PC a =故00AE BC AE PC ⋅=⋅=,,因而, AE BC ⊥,所以平面PBC .(2)解:设平面BEC 的法向量为1n ,由(Ⅰ)知, AE ⊥平面BEC ,故可取1022n EA ⎛==-- ⎝⎭,. 设平面DEC 的法向量()2222n x y z =,,,则2200n DC n DE ⋅=⋅=,.由1AD =,得())0100D C ,,,,,从而()22001DC DE ⎛==- ⎝⎭,,,,,故22220 0.22x x y z =-+=,所以22202x z y ==,,可取,则()2012n =,,.从而111212cos n n n n n n ⋅==⋅,.故二面角B EC D --的余弦值为 考点:直线与平面垂直的判定与证明;二面角的求解. 视频21.3 【解析】视频。
2010年全国高考理综试题及答案-重庆

绝密★启用前解密时间:2010年6月8日11:30 [考试时间:6月8日9:00---11:30]2010年普通高等学校招生全国统一考试(重庆卷)理科综合能力测试试题卷理科综合能力测试试题分选择题和非选择题两部分,第一部分(选择题)1至5页,第二部分(非选择题)6至12页,共12页,满分300分,考试时间150分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡上规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试卷和答题卡一并交回。
以下数据可供解题时参考:相对原子质量:H I C 12 O 16 Cu 40第一部分(选择题共126分)本部分包括21小题,每小题6分,共126分,每小题只有一个选项符合题意。
1.下列有关人体糖代谢及调节的叙述,正确的是A 血糖浓度升高能合姨岛A细胞分泌增强B饥饿时首先被利用的是肌糖元,其后是脂肪C糖类分解释放的能量的主要贮存开工是ATPD多食少动,糖类易转变成脂肪和必需氨基酸2.题2图为光能在叶绿体中转换的示意图,U、V、W、X、Y代表参与光能转换的物质下列选项,错误的是A、U在光合作用里的作用是吸收和传递光能H O分解,产生电子流B、V吸收光能后被激发,使2CO的还原剂,其能量是稳定化学能来源之一C、W为2D、U至Y的能量转换在叶绿体囊状结构薄膜上进行3.下列有关细胞结构和功能的叙述,正确的是A.在植物细胞有丝分裂末期高尔基体参与细胞壁形成B.在动物细胞有丝分裂间期能观察到纺锤体和中心体C.分泌蛋白合成后在内质网和细胞质基质中加工D.质粒和线粒体是既有核酸又有外膜的细胞结构4.将一玉米幼苗固定在支架上,支架固定在温、湿度适宜且底部有一透光孔的暗室内,从题4图所示状态开始,光源随暗室同步缓慢匀速旋转,几天后停止于起始位置,此时,幼苗的生成情况是A 根水平生成,茎向上弯曲B 根水平生成,茎向下弯曲C 根下弯曲,茎向上弯曲D 根向下弯曲,茎向下弯曲5.正常人即使闭眼,伸出手指也能触摸鼻尖,这个动作属于A 印随行为B 大脑皮层控制的条件反射活动C 本能行为D 大脑皮层中央前回控制的活动6.减缓温室气体排放是2009年哥本哈根气候变化会议的议题,下列反应不产生温室气体的是A 用纯碱制玻璃B 用煤炭作燃料C 用铁矿石炼铁D 用氨制碳酸铵7. 下列实验装置(固定装置略去)和操作正确的是A 分离4CCl 和水B 酸碱中和滴定C 吸收Hcl 尾气D 中和热的测定8. 下列叙述正确的是A 铝制容器可盛 装热的浓2H 4SOB AgI 胶体在电场中自由运动C K 与水反应比LI 与水反应剧烈D 红磷在过量2Cl 中燃烧生成3PCl9. 能鉴别2MgI 、3AgNo 、23Na Co 、22Na Alo 四种溶液的试剂是A 3HNoB KOHC 2BaCLD NaClO10.2CoCl (g )CO (g )+ 2()Cl g ;△H>0,当反应达到平衡时,下列措施:①升温②恒容通入惰性气体③增加CO 浓度④减压⑤加催化剂⑥恒压通往惰性气体,能提高 2CoCl 转化率的是A ①②④B ①④⑥C ②③⑤D ③⑤⑥11.贝诺酯是由阿斯匹林、扑热息痛经化学法拼合制备的解热镇痛抗炎药,其合成反应式(反应条件略去)如下:下列叙述错误的是:A ,3FeCl 溶液可区别阿斯匹林和扑热息通B .1mol 阿斯匹林最多可消耗2mol NaOHC . 常温下贝诺酯在水中的溶解度小于扑热息痛D . 89C H NO 是扑热息痛发生类似酯水解反应的产物12.已知2H (g )+2Br (l)=2HBr ;△H=-72KJ/mol ,蒸发1mol 2Br (l)需要吸收的能量为30KJ ,其它相关数据如下表:则表中a 为A 404B 260C 230 D20013. PH=2的两种一元酸x 和y ,体积均为100ml,稀释过程中PH 与溶液体积的关系如题13图所示,分别滴加NaOH 溶液(c=0.1mol /L )至PH=7,消耗NaOH 溶液的体积为Vx,Vy,则A 、 x 为弱酸Vx<VyB 、 x 为强酸Vx>VyC 、 y 为弱酸Vx<VyD 、 y 为强酸Vx>Vy14. 一列简谐波在两时刻的波形如题14图中实线和虚线所示,由图可确定这列波的A 周期B 波速C 波长D 频率15. 给旱区送水的消防车停于水平地面,在缓慢放水过程中,若车胎不漏气,胎内气体温度不变,不计分子间势能,则胎内气体A 从外界吸热B 对外界做负功C 分子平均动能减小D 内能增加16. 月球与地球质量之比约为1:80,有研究者认为月球和地球可视为一个由两质点构成 的双星系统,它们都围绕月地连线上某点O 做匀速圆周运动。
2010年高考重庆理科数学试题及答案(精校版)

绝密★启用前 解密时间:2010年6月7日17:00 【考试时间:6月7日15:00—17:00】2010年普通高等学校招生全国统一考试(重庆卷)数学(理工农医类)解析数学试题卷(理工农医类)共4页。
满分150分。
考试时间120分钟。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.(1)在等比数列}{n a 中,201020078a a =,则公比q 的值为( )A 、2B 、3C 、4D 、8(2)已知向量,满足2||,1||,0===⋅,则=-|2|( ) A 、0B 、22C 、4D 、8(3)=⎪⎭⎫⎝⎛---→2144lim 22x x x ( )A 、1-B 、41-C 、41 D 、1(4)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≥+-≥,03,01,0y x y x y 则y x z +=2的最大值为( )A 、2-B 、4C 、6D 、8(5)函数xx x f 214)(+=的图象( )A 、关于原点对称B 、关于直线x y =对称C 、关于x 轴对称D 、关于y 轴对称(6)已知函数sin()y x ωϕ=+(0,||2πωϕ><)的部分图象如题(6)图所示,则( )A 、6,1πϕω==B 、6,1πϕω-==C 、6,2πϕω==D 、6,2πϕω-==(7)已知0x >,0y >,228x y xy ++=,y x 2+的最小值是( )A 、3B 、4C 、29 D 、211 (8)直线233+=x y 与圆心为D的圆,1,x y θθ⎧=⎪⎨=⎪⎩([0,2)θπ∈)A 、B 两点,则直线AD 与BD 的倾斜角之和为( ) A 、π67B 、π45 C 、π34D 、π35(9)某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天. 若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A 、504种B 、960种C 、1008种D 、1108种(10)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( ) A 、直线B 、椭圆C 、抛物线D 、双曲线二、填空题:本大题共5小题,每小题5分,共25分. 把答案填写在答题卡相应位置上. (11)已知复数,1i z +=则=-z z2____________. (12)设}0|{},3,2,1,0{2=+∈==mx x U x A U ,若}2,1{=A C U ,则实数=m _________.(13)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为2516,则该队员每次罚球的命中率为_____________.(14)已知以F 为焦点的抛物线x y 42=上的两点B A 、满足3AF FB =,则弦AB 的中点到准线的距离为___________.(15)已知函数)(x f 满足:1(1)4f =,4()()()()f x f y f x y f x y =++-(,x y R ∈),则=)2010(f __________.三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. (16)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分.)设函数22()cos()2cos 32xf x x π=++,x R ∈.(Ⅰ)求)(x f 的值域;(Ⅱ)记ABC ∆的内角C B 、、A 的对边长分别为c b a 、、,若3,1,1)(===c b B f ,求a 的值.(17)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求: (Ⅰ)甲、乙两单位的演出序号至少有一个为奇数的概率; (Ⅱ)甲、乙两单位之间的演出单位个数ξ的分布列与期望.(18)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 已知函数)1ln(1)(+++-=x ax x x f ,其中实数1-≠a . (Ⅰ)若2=a ,求曲线)(x f y =在点))0(,0(f 处的切线方程; (Ⅱ)若)(x f 在1=x 处取得极值,试讨论)(x f 的单调性.(19)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)如题(19)图,四棱锥ABCD P -为矩形,⊥PA 底面ABCD ,6==AB PA ,点E 是棱PB 的中点.(Ⅰ)求直线AD 与平面PBC 的距离; (Ⅱ)若3=AD ,求二面角D EC A --的平面角的余弦值.(20)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)已知以原点O 为中心,)0,5(F 为右焦点的双曲线C 的离心率25=e . (Ⅰ)求双曲线C 的标准方程及其渐近线方程;(Ⅱ)如题(20)图,已知过点),(11y x M 的直线44:111=+y y x x l 与过点),(22y x N (其中12x x ≠)的直线44:222=+y y x x l 的交点E 在双曲线OGH ∆的面积.(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 在数列}{n a 中,11a =,11(21)n n n a ca c n ++=++(n N *∈),其中实数0≠c .(Ⅰ)求}{n a 的通项公式;(Ⅱ)若对一切*∈N k 有122->k k a a ,求c 的取值范围.2010年普通高等学校招生全国统一考试(重庆卷)数学(理工农医类)解析数学试题卷(理工农医类)共4页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前 解密时间:2010年6月7日17:00 【考试时间:6月7日15:00—17:00】2010年普通高等学校招生全国统一考试(重庆卷)数学(理工农医类)解析数学试题卷(理工农医类)共4页。
满分150分。
考试时间120分钟。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中,只有一项是符合题目要求的.(1)在等比数列}{n a 中,201020078a a =,则公比q 的值为( )A 、2B 、3C 、4D 、8【命题意图】本题考查等比数列的概念,基础题. 【解析】∵8320072010==q a a ,∴2q =,选A. (2)已知向量b a ,满足2||,1||,0===⋅b a b a ,则=-|2|b a ( ) A 、0B 、22C 、4D 、8【命题意图】本题考查向量的有关概念和基本运算.【解析】∵|2|(2a b a -=-===,∴选B. (3)=⎪⎭⎫⎝⎛---→2144lim 22x x x ( )A 、1-B 、41-C 、41D 、1 【命题意图】本题考查函数极限的概念、运算法则、0型极限的求法以及转化与化归思想.【解析】2222241211lim lim lim 42(4)(2)24x x x x x x x x x →→→--⎛⎫-===-⎪---++⎝⎭,选B. (4)设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-+≥+-≥,03,01,0y x y x y 则y x z +=2的最大值为( )A 、2-B 、4C 、6D 、8【命题意图】本题考查线性规划的求解问题.作为选择题,要准确快速求解,可利用端点处取得最值(函数的思想)来求解则更好,从而要求考生对性规划的问题有较深刻的认识.【解析】不等式组⎪⎩⎪⎨⎧≤-+≥+-≥,03,01,0y x y x y 表示的平面区域是如图所示的ABC ∆,当直线y x z +=2过点(3,0)A 的时,z 取得最大值6,故选C.(5)函数xx x f 214)(+=的图象( )A 、关于原点对称B 、关于直线x y =对称C 、关于x 轴对称D 、关于y 轴对称【命题意图】本题考查函数的概念和奇偶性、幂的运算性质和计算能力.【解析】∵)(241214)(x f x f xxx x =+=+=---,∴()f x 是偶函数,图像关于y 轴对称,选D (6)已知函数sin()y x ωϕ=+(0,||2πωϕ><)的部分图象如题(6)图所示,则( )A 、6,1πϕω==B 、6,1πϕω-==C 、6,2πϕω==D 、6,2πϕω-==【命题意图】本题考查sin()y A x ωϕ=+的图像和性质,数形结合思想等,这是高考的常考题型,但又是学生的软肋,注意复习,多加训练. 【解析】由图像可知,周期74()123T πππ=-=,∴2ω=,由五点作图法知232πϕπ=+⨯,解得6πϕ=-,所以2ω=,6πϕ=-,选D.(7)已知0x >,0y >,228x y xy ++=,y x 2+的最小值是( )A 、3B 、4C 、29D 、211 【命题意图】本题考查均值不等式的灵活应用、一元二次不等式的解法以及整体思想.【解析】由均值不等式,得2228)2(82⎪⎭⎫⎝⎛+-≥⋅-=+y x y x y x ,整理,得()()0322422≥-+++y x y x ,即()()08242≥++-+y x y x ,又02>+y x ,所以24x y +≥,选B.(8)直线233+=x y 与圆心为D 的圆33,13,x y θθ⎧=⎪⎨=+⎪⎩([0,2)θπ∈)A 、B 两点,则直线AD 与BD 的倾斜角之和为( )A 、π67B 、π45 C 、π34D 、π35【命题意图】本题考查直线的倾斜角、斜率、方程,圆的标准方程和参数方程,直线与圆的位置关系以及数形结合的思想方法.【解析】画出图形,301-=∠α,βπ-+=∠302由圆的性质可知21∠=∠βπα-+=-∴ 3030,故=+βα43π,选C.(9)某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天. 若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A 、504种B 、960种C 、1008种D 、1108种【命题意图】此题是一个排列组合问题.既考查了分析问题,解决问题的能力,更侧重于考查学生克服困难解决实际问题的能力和水平.【解析】分两类:①甲乙排1、2号或6、7号,共有4414222A A A ⨯种不同的安排方法;②甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法,故共有1008种不同的排法,选C.(10)到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是( )A 、直线B 、椭圆C 、抛物线D 、双曲线【命题意图】本题考查空间中线与线,线与面的垂直,动点的轨迹的求法,同时考查空间想象力. 【解析】(直接法)记这两直线为1l ,2l ,异面直线的距离为k ,平面α为过1l 且平行于2l 的平面,设α上某个点P 满足条件。
将2l 正投影到平面α上,其投影记为3l ,设P 到1l 及2l 的距离为t ,到3l 的距离为u ,则222u k t +=,即222t u k -=,这里k 为定值,t ,u 分别正是P 到α上两垂直直线1l ,2l 的距离,而1l 和3l 可看作α上的直角坐标系,由此可知,P 的轨迹就是双曲线.(排除法)轨迹是轴对称图形,排除A 、C ,轨迹与已知直线不能有交点,排除B ,故选D.二、填空题:本大题共5小题,每小题5分,共25分. 把答案填写在答题卡相应位置上. (11)已知复数,1i z +=则=-z z2____________. 【命题意图】本题考查复数概念和基本运算,其中分母实数化是求解的关键. 【解析】i i i i i211112-=---=--+,答案为:2i -. (12)设}0|{},3,2,1,0{2=+∈==mx x U x A U ,若}2,1{=A C U ,则实数=m _________.【命题意图】此题题型来自于课本习题,考查集合的概念和运算、方程的解法等基础知识. 【解析】∵}2,1{=A C U ,∴ A={0,3},故3m =-.答案为:3-.(13)某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为2516,则该队员每次罚球的命中率为_____________.【命题意图】本题考查对立事件的概率、独立事件的概率以及计算能力和推理能力.当有“至少”、“最多”等字眼时,常从反面入手,化难为易. 【解析】由251612=-p ,解得53=p ,答案为:35 (14)已知以F 为焦点的抛物线x y 42=上的两点B A 、满足3AF FB =,则弦AB 的中点到准线的距离为___________.【命题意图】本题考查抛物线的定义、标准方程、几何性质等,灵活应用平面几何知识是解决本题的关键,向量仅仅是一件外衣,本题是平面几何知识的应用.【解析】设BF m =,由抛物线的定义,知13AA m =,1BB m =,ABC ∆∴中,2AC m =,4AB m =, 由相似三角形性质,得224m m m m -=,解得43m =, 根据梯形中位线定理,得弦AB 的中点到准线的距离为38223m m m +==,答案为:83.(15)已知函数)(x f 满足:1(1)4f =,4()()()()f x f y f x y f x y =++-(,x y R ∈),则=)2010(f __________.【命题意图】本题考场抽象函数的周期性,函数与数列的关系,研究抽象函数最有效的办法是:特殊值法. 【解析】取x=1, y=0,得21)0(=f , 法一:通过计算)........4(),3(),2(f f f ,寻得周期为6法二:取x=n ,y=1,有f(n)=f(n+1)+f(n-1),同理f(n+1)=f(n+2)+f(n)联立得f(n+2)= —f(n-1) ,所以T=6 ,故()()1201002f f ==,答案为:21. 三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演算步骤. (16)(本小题满分13分,(Ⅰ)小问7分,(Ⅱ)小问6分.) 设函数22()cos()2cos 32xf x x π=++,x R ∈. (Ⅰ)求)(x f 的值域;(Ⅱ)记ABC ∆的内角C B 、、A 的对边长分别为c b a 、、,若3,1,1)(===c b B f ,求a 的值.【命题意图】此题主要考查同角三角函数的基本关系、二倍角公式、和(差)角公式、正弦定理、由余弦定理以及函数思想和方程思想,同时考查基本运算能力.【解析】(Ⅰ)1cos 32sin sin 32coscos )(++-=x x x x f ππ 1cos sin 23cos 21++--=x x x1sin 23cos 21+-=x x 1)65sin(++=πx ,因此)(x f 的值域为]2,0[. (Ⅱ)由1)(=B f 得11)65sin(=++πB ,即0)65sin(=+πB ,又因π<<B 0, 故6π=B .解法一:由余弦定理B ac c a b cos 2222-+=,得0232=+-a a ,解得1=a 或2.解法二:由正弦定理C cB b sin sin =,得3,23sin π==C C 或32π. 当3π=C 时,2π=A ,从而222=+=c b a ;当32π=C 时,6π=A ,又6π=B ,从而1==b a .故a 的值为1或2.(17)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求: (Ⅰ)甲、乙两单位的演出序号至少有一个为奇数的概率;(Ⅱ)甲、乙两单位之间的演出单位个数ξ的分布列与期望.【命题意图】本小题主要考查等可能事件、随机变量的分布列、数学期望等概念及相关计算,考查运用所学知识与方法解决实际问题的能力.其中第(2)问是课本上常见的类型题.【解析】(Ⅰ)设A 表示“甲、乙的演出序号至少一个为奇数”,则A 表示“甲、乙的序号为偶数”,由等可能性事件的概率计算公式得 545111)(1)(2623=-=-=-=C C A P A P .(Ⅱ)ξ的所有可能值为0,1,2,3,4,且513)2(,1544)1(,315)0(262662=========C P C P C P ξξξ,1511)4(,1522)3(2626======C P C P ξξ.从而知ξ有分布列所以,31541535215130=⨯+⨯+⨯+⨯+⨯=ξE . (18)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.) 已知函数)1ln(1)(+++-=x ax x x f ,其中实数1-≠a . (Ⅰ)若2=a ,求曲线)(x f y =在点))0(,0(f 处的切线方程;(Ⅱ)若)(x f 在1=x 处取得极值,试讨论)(x f 的单调性.【命题意图】本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力. 【解析】(Ⅰ)22(1)111()()1()1x a x a f x x a x x a x +--+'=+=+++++.当1=a 时,47101)20(12)0(2/=++++=f ,而21)0(-=f , 因此曲线)(x f y =在点))0(,0(f 处的切线方程为)0(47)21(-=--x y 即0247=--y x .(Ⅱ)1-≠a ,由(Ⅰ)知2111111)1(1)(2/++=++++=a a a x f ,即02111=++a , 解得3-=a .此时)1ln(31)(++--=x x x x f ,其定义域为),3()3,1(+∞- ,且)1()3()7)(1(11)3(2)(22/+---=++--=x x x x x x x f ,由0)(/=x f 得7,121==x x .当11<<-x 或7>x 时,0)(/>x f ;当71<<x 且3≠x 时,0)(/<x f .由以上讨论知,)(x f 在区间),7[],1,1(+∞-上是增函数,在区间]7,3(),3,1[上是减函数.(19)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.)如题(19)图,四棱锥ABCD P -为矩形,⊥PA 底面ABCD ,6==AB PA ,点E 是棱PB 的中点.(Ⅰ)求直线AD 与平面PBC 的距离;(Ⅱ)若3=AD ,求二面角D EC A --的平面角的余弦值.【命题意图】本题考查直线与平面垂直、二面角、三棱锥的性质及体积等基础知识.求解第(1)问的关键是将点到面的距离转化为三棱锥的高,等体积法是这类问题的杀手.第(2)问只需用“三垂线”即可找到二面角的平面角. 【解析】解法一: (Ⅰ)如答(19)图1 ,在矩形ABCD 中,//AD 平面PBC , 故直线AD 与平面PBC 的距离为点A 到平面PBC 的距离.因⊥PA 底面ABCD ,故,由AB PA =知PAB ∆为等腰三角 形,又点E 是棱PB 中点,故PB AE ⊥.又在矩形ABCD 中,AB BC ⊥,而AB 是PB 在底面ABCD 内的射影,由 三垂线定理得PB BC ⊥,从而⊥BC 平面PAB ,故AE BC ⊥.从而⊥AE 平面PBC ,故AE 之长即为直线AD与平面PBC 的距离.(Ⅱ)过点D 作CE DF ⊥,交CE 于F ,过点F 作CE FG ⊥,交AC 于G ,则DFG ∠为所求的二面角的平面角.由(Ⅰ)知⊥BC 平面PAB ,又BC AD //,得⊥AD 平面PAB ,故AE AD ⊥,从而622=+=AD AE DE .在CBE Rt ∆中,622=+=BC BE CE .由6=CD ,所以CDE ∆为等边三角形,故F 为CE 的中点,且2233sin=⋅=πCD DF . 因为⊥AE 平面PBC ,故CE AE ⊥,又CE FG ⊥,知AE FG 21//,从而23=FG ,且G 点为AC的中点.连接DG ,则在ADC Rt ∆中,23212122=+==CD AD AC DG . 所以362cos 222=⋅⋅-+=FG DF DG FG DF DFG .解法二:(Ⅰ)如答(19)图2,以A 为坐标原点,射线AB 、AD 立空间直角坐标系xyz A -.设)0,,0(a D ,则)0,,6(),0,0,6(a C B ,)26,0,26(),6,0,0(E P . 因此)6,0,6(),0,,0(),26,0,26(-===PC a BC AE 则0,0=⋅=⋅PC AE BC AE ,所以⊥AE 平面PBC. 又由BC AD //知//AD 平面PBC ,故直线AD 与平面 PBC 的距离为点A 到平面PBC 的距离,即为3||=AE .(Ⅱ)因为3||=AD ,则)0,3,6(),0,3,0(C D .设平面AEC 的法向量),,(1111z y x n =,则0,011=⋅=⋅AE n AC n .又)26,0,26(),0,3,6(==AE AC ,故⎪⎩⎪⎨⎧=+=+,02626,0361111z x y x 所以1111,2x z x y -=-=. 可取21-=z ,则)2,2,2(-=n . 设平面DEC 的法向量),,(2222z y x n =,则0,022=⋅=⋅DE n DC n . 又)26,3,26(),0,0,6(-==DE DC ,故 所以2222,0y z x ==. 可取12=y ,则)2,1,0(2=n .故36||||,cos 212121=⋅>=<n n n n n n .所以二面角D EC A --的平面角的余弦值为36. (20)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 已知以原点O 为中心,)0,5(F 为右焦点的双曲线C 的离心率25=e . (Ⅰ)求双曲线C 的标准方程及其渐近线方程;(Ⅱ)如题(20)图,已知过点),(11y x M 的直线44:111=+y y x x l 与过点),(22y x N (其中12x x ≠)的直线44:222=+y y x x l 的交点E 在双曲线OGH ∆的面积.解析几何的基本思想方法和综合解题能力.圆锥曲线问题的求解一般思考方法是合理设元(设点或直线等)、几何条件代数化、建立恰当的关系式、围绕目标合理处理关系式(包括代入转化与恒等变形等).【解析】(Ⅰ)设C 的标准方程为)0,0(12222>>=-b a by a x ,则由题意25,5===a c e c ,因此1,222=-==a c b a ,C 的标准方程为1422=-y x .C 的渐近线方程为x y 21±=,即02=-y x 和02=+y x .(Ⅱ)解法一:如答(20)图,由题意点),(E E y x E 在直线44:111=+y y x x l 和44:222=+y y x x l 上,因此有4411=+E E y y x x ,4422=+E E y y x x ,故点M 、N 均在直线44=+y y x x E E 上,因此直线MN 的方程为44=+y y x x E E . 设G 、H 分别是直线MN 与渐近线02=-y x 及02=+y x 的交点,由方程组⎩⎨⎧=-=+02,44y x y y x x E E 及⎩⎨⎧=+=+,02,44y x y y x x E E解得EE H E E G y x y y x y 22,22--=+=.设MN 与x 轴的交点为Q ,则在直线44=+y y x x E E 中,令0=y 得EQ x x 4=(易知)0≠E x . 注意到4422=-E E y x ,得2|4|||2||4|2121|||4||||2122=-⋅=-++⋅=-⋅⋅=∆E E E E E E E E E H G OGH y x x x y x y x x y y OQ S . 解法二:设),(E E y x E ,由方程组⎩⎨⎧=+=+,44,442211y y x x y y x x 解得122121122112,)(4y x y x x x y y x y x y y x EE --=--=, 因12x x ≠,则直线MN 的斜率EE y xx x y y k 41212-=--=.故直线MN 的方程为)(411x x y x y y EE--=-, 注意到4411=+E E y y x x ,因此直线MN 的方程为44=+y y x x E E . 下同解法一.(21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分.) 在数列}{n a 中,11a =,11(21)n n n a ca c n ++=++(n N *∈),其中实数0≠c .(Ⅰ)求}{n a 的通项公式;(Ⅱ)若对一切*∈N k 有122->k k a a ,求c 的取值范围.【命题意图】本题主要考查数列的定义、数列通项公式、数学归纳法、不等式的解法以及方程和函数思想.本题的实质是:已知递推公式1()n n a pa f n +=+(p ,q 为常数)求通项公式. 【解析】(Ⅰ)解法一:由c c c c c ca a a +-=+=⋅+==2222121)12(33,1,23233323)13(85c c c c c ca a +-=+=⋅+=,34234434)14(157c c c c c ca a +-=+=⋅+=,猜测*-∈+-=N n c c n a n n n ,)1(12.下用数学归纳法证明.当1=n 时,等式成立;假设当k n =时,等式成立,即12)1(-+-=k k k c c k a ,则当1+=k n 时,)12(])1[()12(1121`1+++-=++=+-++k c c c k c k c ca a k k k k k kk k k k c c k c c k k +-+=++=++1212]1)1[()2(, 综上, 12)1(-+-=n n n c c n a 对任何*∈N n 都成立.解法二:由原式得)12(11++=++n ca c a n n n n . 令nn n c a b =,则)12(,111++==+n b b c b n n ,因此对2≥n 有112211)()()(b b b b b b b b n n n n n +-++-+-=--- c n n 13)32()12(+++-+-= c n 112+-=, 因此12)1(-+-=n n n c c n a ,2≥n .又当1=n 时上式成立.因此*-∈+-=N n c c n a n n n ,)1(12.(Ⅱ)解法一:由122->k k a a ,得221221222]1)12[(]1)2[(---+-->+-k k k k c c k c c k ,因022>-k c ,所以01)144()14(222>-----c k k c k . 解此不等式得:对一切*∈N k ,有k c c >或/k c c <,其中 )14(2)14(4)144()144(22222--+--+--=k k k k k k c k ,)14(2)14(4)144()144(22222/--+-----=k k k k k k c k .易知1lim =∞→k k c , 又由144)14(4)14()14(4)144(2222222+=+-+-<-+--k k k k k k ,知 12848)14(214)144(22222<--=-++--<k k k k k k k c k ,因此由k c c >对一切*∈N k 成立得1≥c . 又0)14(4)144()144(22222/<-+--+---=k k k k k c k ,易知/k c 单调递增,故/1/c c k ≥对一切*∈N k 成立,因此由/k c c <对一切*∈N k 成立得6131/1+-=<c c . 从而c 的取值范围为),1[)6131,(+∞+--∞ .解法二:由122->k k a a ,得221221222]1)12[(]1)2[(---+-->+-k k k k c c k c c k ,因022>-k c ,所以014)(4222>-+-+-c c ck k c c 对*∈N k 恒成立.记14)(4)(222-+-+-=c c cx x c c x f ,下分三种情况讨论.(ⅰ)当02=-c c 即0=c 或1=c 时,代入验证可知只有1=c 满足要求.(ⅱ)当02<-c c 时,抛物线)(x f y =开口向下,因此当正整数k 充分大时,0)(<x f不符合题意,此时无解. (ⅲ)当02>-c c 即0<c 或1>c 时,抛物线)(x f y =开口向上,其对称轴 )1(21c x -=必在直线1=x 的左边. 因此,)(x f 在),1[+∞上是增函数. 所以要使0)(>k f 对*∈N k 恒成立,只需0)1(>f 即可.由013)1(2>-+=c c f 解得6131--<c 或6131+->c .结合0<c 或1>c 得6131+-<c 或1>c . 综合以上三种情况,c 的取值范围为),1[)6131,(+∞+--∞ .。