植物组织与细胞培养
植物细胞培养的基本概念

植物细胞培养的定义----植物组织和细胞培养 是指在无菌条件、人工控制的营养和培养基、 人工控制的环境条件如光照、温度下,研究植 物的细胞、组织、器官,以及控制其生长发育 的技术。
植物细胞培养概况
1、可供培养的植物种类 (1)到目前为止,有研究显示,近300种植物的
细胞培养物能够产生400多种有效的药用成份。 (2)许多药用植物如人参、长春花、紫草、甘草、
(7)培养过程具有结构、功能上的全能性。
(11)突变体---细胞本身由于变异、或者是通过 应用诱变技术进行处理,所获得的遗传变异性新 细胞,称为突变体。
(12)原代培养和继代培养---由外植体上切下 来的组织细胞的第一代培养称为“原代培养”、 从此以后的多代培养则称为“继代培养”
(13)连续培养---是指在培养罐中不断地加入 新的培养基、并且连续收集培养物,以保持反 应平衡而进行的长期不转移的培养方式。
素细胞壁。 (2)培养过程生长速度缓慢,易受微生物污染、
需要用抗生素。 (3)在细胞生长的中期和对数期,容易凝聚成
直径达350-400um的团块,悬浮培养比较困难。
(4)培养时需要供氧,培养液粘度较大,不能 耐受强力通风搅拌。
(5)细胞具有群体效应、无锚地依赖性和接触 抑制性。
(6)细胞培养产物多数滞留于细胞内,产量较 低。
紫杉、银杏、黄连等,其细胞培养十分成功。 (3)据初步统计,有约30种化合物在培养细胞中
的含量已经超过1%,如紫草素的含量可达12%、 小檗碱的含量可达1%,人参皂苷可达7%。
2、目前现存的问题 (1)技术工艺还不够成熟。 (2)提高单位培养基中有效物质的产量 (3)降低目的产物的生产成本 (4)改进培养条件 (5)筛选高产细胞株 (6)研制适合于植物细胞培养的新型反应器
细胞和组织培养技术在植物育种中的应用

细胞和组织培养技术在植物育种中的应用1 植物育种中的重要性植物育种是通过人工的手段提高植物的遗传品质,以获得更高产、更适应环境的新品种。
在植物育种研究中,细胞和组织培养技术已经成为一种重要的技术手段。
2 细胞和组织培养技术细胞和组织培养技术是通过对植物的组织和细胞进行培养,实现植物育种目标的一种技术方式。
该技术有很多优点,如可以加快植物繁殖的速度,提高植物的遗传品质,并且可以通过对细胞和组织的特定处理来培育出特定的性状和特性的植株。
3 细胞和组织培养技术的应用细胞和组织培养技术在植物育种领域中应用广泛。
例如,可以通过细胞和组织培养技术来实现以下植物育种目标。
3.1 新品种的选育通过细胞和组织培养技术,可以通过选择不同的细胞和组织的特性,实现新品种的选育。
3.2 繁殖控制采用细胞和组织培养技术,可以用于植物的繁殖控制。
例如,可以通过组织培养来实现体细胞的多倍体化,从而增加植物的染色体数目,提高早期杂交的成功率。
3.3 再生和转化再生和转化是细胞和组织培养技术的主要应用之一。
该技术被用于生产快速生长和具有特定性状的植株,从而实现对植物遗传性状和生物合成途径的调控和改善。
4 细胞和组织培养技术的潜在应用除了上述应用之外,细胞和组织培养技术还具有一些潜在的应用前景。
如工程植物通过CRISPR/Cas针对性地修饰植物遗传物质,从而修改植物的基因组。
此外,与传统育种方法相比,细胞和组织培养技术还具有更快的反应速度和更灵活的模拟性,可推动植物育种领域的发展。
5 小结细胞和组织培养技术可以作为一种有力的技术手段,应用于植物育种研究中,包括新品种的选育、繁殖控制和再生与转化等方面。
这些技术在实践中已经得到广泛的应用,并且在未来仍然具有很大的潜力和发展空间。
植物细胞与组织的实验原理

植物细胞与组织的实验原理植物细胞和组织的实验原理涵盖了多个方面,包括细胞结构的观察、组织培养和细胞分离等。
以下是对植物细胞与组织实验原理的详细解释:一、植物细胞结构观察实验原理:1. 细胞质染色观察:通过荧光染料如卡伦登染料或结构染料如甲苯胺蓝B染色剂对细胞膜、细胞质和核等结构进行染色,然后通过荧光显微镜或透射电子显微镜观察和记录。
2. 细胞器观察:通过不同的实验方法,如细胞器标记、免疫荧光染色或电镜观察等,来观察植物细胞中的细胞器,如叶绿体、线粒体、高尔基体、内质网和液泡等。
3. 细胞膜透明化和显微观察:通过染色和脱水技术,将植物细胞膜透明化,然后使用显微镜观察细胞膜的形态结构和细胞器的位置,以了解细胞内部结构的分布情况。
4. 细胞骨架的观察:通过染色和显微镜观察,可以研究植物细胞骨架的组成和结构,如微丝、中间丝和微管等,同时也可以观察细胞骨架在细胞分裂和细胞形态变化中的作用。
二、植物组织培养实验原理:1. 组织培养基的配制:根据植物组织的生长需求,配制含有不同植物激素和养分的培养基,确保组织的生长和分化。
2. 组织的获取和处理:从植物的茎、叶、根等部位获取组织,并通过消毒处理获得无菌组织。
3. 组织培养和细胞分裂:将组织接种在含有培养基的培养皿中,在合适的温度、光照和湿度条件下培养,通过细胞分裂和组织分化来获得较大量的细胞和组织。
4. 细胞分化和组织再生:通过调节培养基中激素的类型和浓度,可以促进细胞分化和组织再生,形成新的植株。
三、植物细胞分离实验原理:1. 细胞溶解:将植物茎、叶、根等组织切碎,使用酶解液或溶解液对细胞进行溶解,以释放细胞内的物质。
2. 细胞筛选:通过离心和过滤等方法,将细胞的碎片和其他细胞组分分离出来,然后使用显微镜或流式细胞仪等设备对特定细胞进行观察和分析。
3. 细胞培养:将分离的细胞接种在含有培养基的培养皿中,促使细胞再次生长和分裂。
4. 细胞检测和分析:通过染色、免疫荧光染色、酶活性测定等方法,对分离的细胞进行检测和分析,以研究细胞的类型、结构和功能。
植物组织培养与细胞培养知识重点

第一个发明的培养基为White 培养基培养基中的铁盐采用Fe-EDTA 形态IAA/CTK比例高时,促进生根培养,比例低时,促进芽的分化植物组织培养:(广义)人工控制条件下培养形成再生植株(狭义)对植物组织器官产生愈伤组织进行培养直至生成完整植株。
外植体:从植物体上分离下来的用于离体培养的材料愈伤组织:在离体培养的条件下切口处形成的一团具有分生能力的不规则的细胞团分化:细胞在分裂过程中发生结构和功能上的改变形成各类组织和器官的过程脱分化:已分化好的细胞在人工诱导条件下恢复分生能力恢复到分生组织状态的过程再分化:由脱分化的细胞重新形成各类组织和器官的过程初代培养:诱导愈伤组织、侧芽或不定芽、胚状体(形似胚,具有配的功能)过程继代培养:更换新鲜培养基繁殖同一类型材料生根培养:将芽苗转移到生根培养基上培养形成完整植株驯化培养:将组培苗经人工炼苗驯化使其能够在苗床上生长器官培养:是指对植物体各种器官的离体培养离体胚培养:指从植物种子中分离出胚组织进行离体培养的技术细胞悬浮培养:将植物的细胞或细胞小聚体悬浮在液体培养基上进行培养,使之在体外繁殖、生长、发育,并在培养过程中能保持很好的分散性的技术原生质体培养:指从细胞中分离出来的原生质体经过离体培养使其分裂、增殖进而分化成完整植株的技术。
器官发生:又名器官形成,是指植物根茎叶花果实等器官的分化与形成灭菌:用物理或化学方法,杀死物体表面或空隙间的微生物消毒:杀死,消除或抑制部分微生物,使之不发生作用褐化:接种后外植体表面产生酚、醌类棕褐色物质,细胞停止代谢生长玻璃化:离体植物嫩茎或叶呈半透明水状,生理失调不能进行光合作用指示植物:能够对病毒汁液产生迅速和特有的反应的某类转株寄主植物细胞的全能性:每个植物细胞都具有母体的全部遗传特性;每一个细胞都可以在特定条件下发育成与母体一样的植株灭菌方法:物理法:灼烧、常压蒸煮,紫外线,超声波,微波,过滤清洗。
化学法:升汞,过氧化氢,甲醛,酒精,高锰酸钾,漂白粉,次氯酸钠,抗菌素四大母液:大量元素母液,微量元素母液、铁盐母液、有机物质母液、激素母液实验室安排:贮藏室、药品室、洗涤间、消毒室、接种室,准备室、暗室、分析室、培养室离体培养基本设备:天平、酸度计、移液管、容量瓶、三角瓶添加活性炭的目的:活性炭具有吸附作用,可吸附非极性物质和色素大分子物质,茎尖初代培养使可防止褐化,促进生根,防止玻璃化苗几种维生素:VB1:有利于植株生根,促进愈伤组织产生VB6:促进根的生长VC:防止褐化VB5:影响植物代谢和胚的发育VE、VB12各培养基的特点:White:无机盐浓度低,适宜于生根培养;MS:无机盐浓度高,为比较稳定的离子平衡溶液,其养分的数量和比例比较合适,可满足植物的营养和生理需要,硝酸盐含量相对较高,广泛应用于植物器官,花药,细胞和原生质体培养,效果良好;B5:含较低的铵对不少培养物的生长有抑制作用。
3.植物细胞培养(植物组织培养)

3.植物细胞培养(植物组织培养)第三章植物细胞培养植物细胞培养:指对从植物器官或由愈伤组织上分离的单细胞(或⼩细胞团)进⾏培养,形成单细胞⽆性系或再⽣植株的技术。
Haberlandt(1902)⾸次尝试分离和培养植物叶⽚单细胞。
细胞培养的意义有利于进⾏细胞⽣理代谢以及各种不同物质对细胞代谢影响的研究。
进⾏细胞培养,通过单细胞的克隆化,即称为“细胞株”(cell line),可以把微⽣物遗传技术⽤于⾼等植物以进⾏农作物的改良。
细胞培养的增殖速度快,适合⼤规模悬浮培养,⽣产⼀些特有的产物,如许多种植物的次⽣代谢产物,包括各种药材的有效成分等,⽤于医药业、酶⼯业及天然⾊素⼯业,这是植物产品⼯业化⽣产的新途径。
由于植物组织培养中细胞之间在遗传和⽣理⽣化上会出现种种变异,这些细胞形成的植株也都表现出⼀定的差异。
这种差异反映在它们的植株的形态、产量、品质、抗病⾍和抗逆性等⽅⾯。
所以由单细胞培养获得的单细胞⽆性繁殖系,并对不同的细胞进⾏研究,在理论上和实践上都有很重要的意义。
细胞培养就是从⾼等植物的某个特定的器官或组织中取得单个细胞进⾏培养,并诱导其分裂增殖,由细胞分裂形成细胞团,再通过细胞分化形成芽根等器官或胚状体,长成完整植株。
第⼀节植物细胞培养⼀. 单细胞培养(⼀)单细胞分离1.机械法2.酶解法3.从愈伤组织中分离(⼆)单细胞的培养⽅法1、平板培养(细胞的⽣长周期)2、看护培养3、微室培养 4. 条件化培养⼆. 细胞悬浮培养(⼀)悬浮培养的⽅法1、分批培养(细胞的⽣长周期)2、半连续培养3、连续培养——封闭型、开放型(化学、浊度恒定式)4、固定化培养(⼆)培养细胞的同步化1. 化学⽅法(饥饿法、抑制法、有丝分裂抑制法)2. 物理⽅法(分选、低温)(三)培养基振荡⼀、单细胞培养(⼀)单细胞的分离1.机械法: Ball(1965)⾸次由花⽣成熟叶⽚利⽤机械的⽅法使叶⾁细胞得到分离的技术。
⑴⼑⽚刮: 取下叶⽚→叶⽚消毒(75%酒精或7%次氯酸钠)→撕去下表⽪(露出叶⾁细胞) →⽤解剖⼑刮下细胞→单细胞悬浮培养⑵研磨离⼼法: 取下叶⽚→叶⽚消毒(75%酒精或7%次氯酸钠) →研磨匀浆(10g叶⽚+40ml研磨介质)→匀浆过滤(细纱布) →离⼼(先低速去碎屑) →游离细胞沉降到底部(净化细胞) →植株培养或悬浮培养研磨介质: 20µmol蔗糖+ 10µmol MgCl2 + 20µmol Tris-HCl (pH7.8)机械法的特点:⑴细胞不受酶的伤害;⑵不发⽣质壁分离。
植物组织培养与细胞培养技术研究

植物组织培养与细胞培养技术研究植物组织培养与细胞培养技术是现代生物技术领域中非常重要的一部分,它的应用广泛,包括农业、林业、医药和生物工程等多个领域。
它能够对植物进行育种、繁殖、遗传转化和基因修饰等研究,对于保护生物多样性和实现农业可持续发展具有重要作用。
植物组织培养技术是指通过细胞分离培养基和生长因子的作用,使植物体内的一系列细胞体外生长繁殖,最终形成新的植物个体的过程。
它包括原生质体培养、愈伤组织培养和植物再生技术等。
原生质体培养技术是指通过将植物细胞进行分离和培养,培养出单个细胞,然后通过电融合或化学刺激等方式将不同种类的原生质体进行融合,形成新的杂交种,产生具有新特性的植物个体。
目前这种技术在植物育种中已经得到了广泛的应用,例如水稻、玉米、小麦等作物的培育,不但可以提高作物的产量和抗病能力,同时可以丰富作物种类,实现农业可持续发展。
愈伤组织培养技术是指通过将植物切割或切除部分组织,然后将其进行培养,形成愈伤组织,进而通过细胞分裂和分化,形成新的植物个体。
这种技术的优点是可以进行无性繁殖,大大加快了培养和繁殖的速度,并且可以对植物组织进行遗传转化,培育出具有新特性的植物。
植物再生技术是指通过植物体的组织或细胞进行分化和再生,形成新的植物个体。
这种技术的优点是可以进行整体遗传改良,包括基因改造、基因转移等技术,例如将抗病基因、抗虫基因、早期成熟基因等导入到目标植物中,提高植物的产量和抗病抗虫能力。
细胞培养技术是指将植物体内的细胞在无菌的培养基上进行细胞培养,形成细胞群落。
这种技术通常是在实验室环境中进行的,目的是对植物的生理和代谢进行研究。
应用广泛的包括植物激素的研究、药物代谢机制等。
植物组织培养技术的应用非常广泛,不仅可以对植物进行改良,还可以用来繁殖罕见和濒危物种,恢复和保护生态环境,解决农业生产和森林经营中的问题。
但同时也应该注意到,植物组织培养技术的应用还存在一些问题,例如容易产生变异、突变和杂交,导致植物品种的稳定性和一致性下降,需要加强对其安全性和环境风险的评估和管理。
细胞工程植物组织与细胞培养

B、植物细胞培养过程
3.3.5 植物细胞培养的应用
3.3.6 原生质体 培养
(技术线 路,以经 济海藻— —红篱为
例)
【习题】
1、名词解释,并简要说明它们间关系: 去分化与再分化
外植体与胚状体 无毒苗与快繁苗 2、简要分析愈伤组织和胚状体在植物细胞全
能性的实现途径中技术关键是什么?
Chapter3、植物组织与细胞培养
3.1 植物细胞工程概述 3.2 植物组织培养 3.3 植物细胞培养
3.1 植物细胞工程概述
3.1.1 植物细胞工程是细胞工程的一个重要分支学科。
3.1.2 植物细胞工程(plant cell engineering)
植物细胞工程(plant cell engineering):是 在植物细胞全能性的基础上,以植物细胞为 基本单位,在体外条件下进行培养、繁殖或 人为的精细操作,使细胞的某些生物学特性 按照人们的意愿发生改变,从而改良品种或 创制新种,或加速繁殖植物个体,或获得有 用产物的过程。
体细胞胚的培养:(自旋过滤式反应器)气升式剪 切力小。
3.2.9 存在问题:
一、理论问题:细胞全能性与激素作用机制; 二、技术问题:效率偏低、外植体诱导时间
长、培养基配方、继代培养植株变异、 新型反应器工艺设备改进; 三、应用范围:工厂化、成本高、资金多。
3.3 植物细胞培养 3.3.1 定义: 植物细胞培养:是指在离体条件下,将愈 伤组织或其他易分散的组织置于液体培养 基中进行振荡培养,得到悬浮细胞,再通 过继代培养使细胞增殖,从而获得大量细 胞群体的技术。它是在组培基础上发展起 来的。
七、植物组织器官的生物反应器培养
——是指那些用来生产植物次生代谢产物的组织 器官(生长快,生理、生化特征稳定)培养物的大规 模工厂化批量生产过程。
植物细胞培养

4.3 植物组织与器官培养
4.3.1 植物组织培养的定义: 在无菌条件下,将离体的 植物器官,组织,细胞,胚 胎,原生质体等在人工培养 的条件下,诱发产生愈伤组 织,潜在芽或者长成新的完 整植物的一门实验技术,又 称为“试管植物”。
4.3.2 几个重要概念
• 全能性细胞:是能够表达生物体基因组的任何一种
•
4.4.2 植物细胞培养的方法
根据培养对象: 主要有:单细胞培养,单倍体培养(花药雄 性生殖细胞),原生质 根据培养系统: 主要有:固体培养和液体培养。
4.4.3 植物细胞培养的培养基
• 基础培养基有:
MS,B5,N6 。 主要有无机盐, 碳源, 有机氮源,有机酸等构成。 常用的培养基的组成:MS+植物生长激素+椰 子汁
• 4.1 植物组织培养与细胞培养的区别 • 4.2 发展历史 • 4.3 植物组织与器官培养 • 4.4 植物细胞培养 • 4.5 植物原生质培养
4.4 植物细胞的培养:
• 4.4.1 植物细胞培养定义 • 定义:指在离体条件下,将愈伤组织或其它容易
分散的组织置于培养基中进行培养,得到分散成 游离的悬浮细胞,通过继代培养使细胞增殖,从 而获得大量细胞群体的一门技术。目的是获得初 级和次级代谢产物。 可通过改变培养基成分及其浓度,生长调节剂的 选择等手段来实现代谢产物的诱导。
4.5.2 原生质体研究意义
研究组织和器官发育机制;
可以进行有关遗传操作;
研究植物细胞的生理功能;
诱导融合形成杂种细胞。
4.5.3 原生质体的制备 原材料准备 预处理与酶解 原生质体收集与纯化 原生质体活力检测
4.5.3.1 用于分离原生质体的材料来源
两个来源:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.毛状根培养的生物反应器
毛状根外型像毛发,容易交织缠绕。毛状根的 特点决定了用于毛状根培养的生物反应器需要 特殊设计。 例如:反应器的内部需要特殊设计满足毛状根 的空间分布的均匀性问题。同时,也要提供合 适的培养液循环与气体供给方式才能满足毛状 根对营养和气体的需求,还要考虑接种、取样 、收获、生物量检测等特殊问题。
一些植物的次级代谢产物在根里大量合成 ,但是正常根的培养非常困难,生长缓慢 ,收获困难。
毛状根(hairy roots)是发根农杆菌( Agrobacterium rhizogenes)感染双子叶 植物后,形成的类似头发一样的根组织。 许多植物的毛状根在离体培养条件下表现 出次生代谢产物的合成能力,产物产量较 正常植物及悬浮培养细胞的要高。
皂苷类(saponins):对人参的研究表明:以无菌 苗带叶幼茎为外植体诱导的毛状根中人参总皂苷 含量为2.486%(干重)。高于原药材总皂苷含量 1.403%(干重)。 苯丙素类(类(phenyIpropanoids):雪莲毛状根中丁 香苷和高车前素的含量分别约是野生植株的40倍 和3倍。 萜类(terpenoids):对短叶红豆杉的研究表明: 以无菌苗的芽为外植体可诱导出毛状根。毛状根 中紫杉醇的含量为愈伤组织的1 3--88.00倍。
1.毛状根诱导
发根农杆菌 (Agrobacterium rhizogenes)是一种革兰氏阴性菌,能 侵染大多数的双子叶植物、少数单子叶 植物及个别的裸子植物,诱发被感染植 物的受伤部位长出毛状根。 发根农杆菌具有致根性,是因为它具有 能诱导毛状根产生的Ri(Root inducing)质粒(约250kb的大质粒) ), 是位于发根农杆菌染色体之外的独立的 双链环状DNA。具有2个主要的功能区: T-DNA区(Transferred DNA region, 转移区)和Vir区(Virulanee region, 致病区)。
生物碱类(alkaloids):孙敏等以长春花 (Catharanthus roseus)无菌苗叶片为外植体诱导 毛状根,其中长春碱含量是原植物根和叶中含量 的27.4倍和23.5倍。长春新碱的含量是原植物根 是23.55倍。 蒽醌类(anthraquinones):对何首乌(Polygonium multiflorum Thunb)的研究表明:以再生植株的 叶柄、茎段和叶片为外植体可诱导毛状根,毛状 根中大黄酸的含量为2.49μg/L(干重)。是无菌幼 苗的2.85倍。
在通常状态下,Ri质粒上Vir区的基因处于抑制 状态,当发根农杆菌感染寄主植物时,受损伤 的植物细胞合成的低分子苯酚化合物乙酰丁香 酮使Vir区处于抑制状态的基因被激活,产生一 系列限制性核酸内切酶,在酶的切割作用下产 生T-DNA链,T-DNA进入植物细胞核内,整合进 植物细胞的基因组。其整合和表达的结果导致 了大量毛状根的产生。 T-DNA上有生长素合成基因tms 1和tms 2,指导 IAA(吲哚乙酸)的合成,因此转化产生的毛状根 ,在培养时不需要添加外源生长激素,为激素 自养型。
(3)原生质体—农杆菌共培养法 将原生质体培养3-5天后,加入带Ri质粒的发根农 杆菌进行共培养,然后借助于转化后的细胞激素 自养型特性或T-DNA上的抗菌素标记筛选出转化成 功的细胞。 分裂形成愈伤组织,在无激素培养基上可产生毛 状根。
3.毛状根培养优点
由Ri质粒转化的毛状根生长快、激素自养型、生 长周期短,在培养时不需要添加外源激素,易于 培养。
毛状根分化程度高,产生次级代谢产物能力强, 合成较为稳定,能大量合成某些悬浮培养的细胞 不能或者很少合成的次级代谢产物。 通过T-DNA改造,易于采用基因工程途径提高次级 代谢产物产量。
4.毛状根在药用次生代谢产物中的应用
毛状根应用于药用植物次生代谢产物的生产已有 近30年的历史。 黄酮类(flavonoids):付春祥等的研究表明。来 源于新疆雪莲根段外植体的毛状根系。其20d的 生长速率可达到鲜重接种量的24倍。其中黄酮含 量是野生雪莲根的8.6倍,是野生雪莲叶片的2.9 倍。
传统反应器改造
在搅拌式反应器中用丝网把毛状根与叶轮隔开, 避免了叶轮剪切力的影响。 在鼓泡塔反应器中增加大量的喷头,提高了充 氧效率。
新型反应器设计:超声雾化反应器
1 生物反应器 2 中心筒 3 不锈钢筛网 4 空气出口 5 时间继电器 6 雾化头 7 培养液 8 空气入口 9 空气过滤器 10 流量计 11 电磁阀 12 空气储罐 13 雾化装置 14 40W 日光灯
第三章 植物组织与器官培养
本章内容
第一节 植物组织培养 第二节 植物胚胎培养 第三节 毛状根培本节课主要内容 1.毛状根培养制备次级代谢产物 2.人工种子的制备 本节课关键问题 1.毛状根的诱导机制与方法、应用, 2.人工种子的制备
第三节 毛状根培养
一、毛状根培养生产次级代谢产物
2.毛状根诱导方法 (1)外植体接种法
取植物的叶片、茎段、叶柄等无菌外植体, 与发根农杆菌共同培养2~3天,将植物的外 植体移到含有抗生素的选择培养基上进行培 养,经过多次继代培养,转化的植物细胞产 生愈伤组织,并可产生毛状根。
(2)茎杆接种法 无菌植株生长到一定时候,将植株的茎尖、叶片 切去,剩下茎杆和根部,在茎杆上划出伤口,将 带Ri质粒的发根农杆菌接种在伤口处和茎的顶部 切口处,经过一段时间培养,在接种部位产生毛 状根。
第四节 人工种子
一、 人工种子概念与发展状况 二、 人工种子制作 三、 人工种子储存 四、 人工种子优点及存在问题
一、人工种子概念与发展状况
• 人工种子( Artificial seed):又称合成种子
(Synthetic seed)或体细胞种子(Somatic seed),是指 将植物离体培养中产生的胚状体或芽包裹在含有养 分和保护功能的人工胚乳(Artificial endosperm)和人 工种皮(Artificial seed coat)中形成的类似种子的颗