江苏省淮阴中学高三数学一轮复习 第82课时 利用空间向量证明平行与垂直问题学案(无答案)
2利用空间向量证明平行垂直关系(学生版)

利用空间向量证明平行垂直关系(讲案)【教学目标】一、方向向量与法向量概念【知识点】1.直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量。
注:(1)在直线上取有向线段表示的向量,或在与它平行的直线上取有向线段表示的向量,均为直线的方向向量。
(2)在解具体立体几何题时,直线的方向向量一般不再叙述而直接应用,在直线上任取两点,所形成的向量即为该直线的方向向量,可参与向量运算或向量的坐标运算。
(3)直线的方向向量是非零向量且不唯一。
⊥,取直线l的方向向量a,则向量a叫做平面α的法向量。
2.平面的法向量:直线l a(注意:平面的法向量是非零向量且不唯一)3.确定平面的法向量的方法(1)直接法:几何体中有具体的直线与平面垂直,只需证明线面垂直,取该垂线的方向向量即得平面的法向量,即观察是否有垂直于平面的向量,若有,则此向量就是法向量。
(2)待定系数法:几何体中没有具体的直线,一般要建立空间直角坐标系,然后用待定系数法求解,一般步骤如下:(i )设出平面的法向量为(,,)n x y z =(ii )找出(求出)平面内的两个不共线的向量的坐标a 111(,,)a b c =,222,,)(b a b c =(iii )根据法向量的定义建立关于,,x y z 的方程0n a n b ⎧⋅=⎪⎨⋅=⎪⎩ ;(iv )解方程组,取其中的一个解,即得法向量.由于一个平面的法向量有无数个,故可在代入方程组的解中取一个最简单的作为平面的法向量. 4. 空间位置关系的向量表示12,n n2l 1212//(n n n kn k R ⇔=∈2l ⊥12120n n n n ⊥⇔⋅=n , 的法向量为m l α0n m n m ⊥⇔⋅=α⊥//()n m n km k R ⇔=∈的法向量分别为,n mβ //()n m n km k R ⇔=∈β⊥0n m n m ⊥⇔⋅=【例题讲解】★☆☆例题1.(2020•和平区)若(1A -,0,1),(1B ,4,7)在直线l 上,则直线l 的一个方向向量为( ) A .(1,2,3) B .(1,3,2) C .(2,1,3) D .(3,2,1)★☆☆练习1.已知直线1l 的方向向量(2,,1)m m =,2l 的方向向量1(1,,2)2n =,且21l l ⊥,则(m = )A .8B .8-C .1D .1-★☆☆练习2.直线1l 、2l 的方向向量分别为(1a =,2,2)-,(2b =-,3,2),则( ) A .12//l l B .1l 与2l 相交,但不垂直C .12l l ⊥D .不能确定★☆☆练习3.若直线l 的方向向量为(2v =,1,3),且直线l 过(0A ,y ,3),(1B -,2-,)z 两点.则y = ,z = .★☆☆练习4.已知点(1A ,2-,0)和向量(3,4,6)a =-,||2||AB a =,且AB 与a 方向相反,则点B 坐标为( )A .(7-,6,12)B .(7,10-,12)-C .(7,6-,12)D .(7-,10,12)★☆☆例题2.已知(2AB =,2,1),(4AC =,5,3),则下列向量中是平面ABC 的法向量的是( ) A .(1,2,6)-B .(2-,1,1)C .(1,2-,2)D .(4,2-,1)★☆☆练习1.(2020•聊城)若直线l 的方向向量为m ,平面α的法向量为n ,则能使//l α的是( ) A .(1m =,2,1),(1n =,0,1) B .(0m =,1,0),(0n =,3,0)C .(1m =,2-,3),(2n =-,2,2)D .(0m =,2,1),(1n =-,0,1)-★☆☆练习2.(2020秋•和平区)如图,在单位正方体1111ABCD A B C D -中,以D 为原点,DA ,DC ,1DD 为坐标向量建立空间直角坐标系,则平面11A BC 的法向量是( )A .(1,1,1)B .(1-,1,1)C .(1,1-,1)D .(1,1,1)-★★☆练习3.(2020•辽宁)已知平面α上三点(3A ,2,1),(1B -,2,0),(4C ,2-,1)-,则平面α的一个法向量为( )A .(4,9-,16)-B .(4,9,16)-C .(16-,9,4)-D .(16,9,4)-★☆☆例题3.直线l 的方向向量(1a =,3-,5),平面α的法向量(1n =-,3,5)-,则有( ) A .//l α B .l α⊥C .l 与α斜交D .l α⊂或//l α★★☆练习1.(2019•杨浦区)空间直角坐标系中,两平面α与β分别以1(2n =,1,1)与2(0n =,2,1)为其法向量,若l αβ=,则直线l 的一个方向向量为 (写出一个方向向量的坐标)★☆☆练习2.若直线l 的方向向量为(4,2,)m ,平面α的法向量为(2,1,1)-,且l α⊥,则m = . ★☆☆练习3.(2020•菏泽)设平面α的法向量为(1,2-,)λ,平面β的法向量为(2,μ,4),若//αβ,则(λμ+= ) A .2 B .4C .2-D .4-二、利用空间向量证明平行关系【知识点】(1)线线平行:若空间不重合两条直线,a b 的方向向量分别为,a b ,则////a b a b ⇔⇔()a b R λλ=∈; (2)线面平行:若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔0a n a n ⇔⊥⇔⋅=;(3)面面平行:若空间不重合的两个平面,αβ的法向量分别为a b ,,则////a b αβ⇔⇔a b λ=.【例题讲解】★☆☆例题1.如图,在长方体1111OAEB O A E B -中,||3OA =,||4OB =,1||2OO =,点在棱1AA 上,且12AP PA =,点S 在棱1BB 上,且12SB BS =,点Q 、R 分别是11O B 、AE 的中点,求证://PQ RS .★☆☆例题2.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD DC =,E 是PC 的中点,作EF PB ⊥交PB 于点F .建立适当的空间直角坐标系,利用空间向量方法解答以下问题: 求证://PA 平面EDB .★☆☆练习1. 如图,在长方体1111ABCD A B C D -中,12AD AA ==,6AB =,E 、F 分别为11A D 、11D C 的中点.分别以DA 、DC 、1DD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -. (1)求点E 、F 的坐标; (2)求证:1//EF ACD 平面.P★★☆练习2. 如图,在四棱锥P ABCD -中,PB ⊥平面ABCD ,AB AD ⊥,//AB CD ,且1AB =,2AD CD ==,E 在线段PD 上.若E 是PD 的中点,试证明://AE 平面PBC .★☆☆例题3.如图,在正方体1111ABCD A B C D -中,求证:平面11//AB D 平面1BDC .★☆☆练习1. 已知正方体1111ABCD A B C D -的棱长为2,E ,F 分别是1BB ,1DD 的中点,求证: (1)1//FC 平面ADE ; (2)平面//ADE 平面11B C F .★★☆练习2. 如图,已知棱长为4的正方体1111ABCD A B C D -中,M ,N ,E ,F 分别是棱11A D ,11A B ,11D C ,11B C 的中点,求证:平面//AMN 平面EFBD .三、利用空间向量证明垂直关系【知识点】(1)线线垂直:设直线,的方向向量分别为,,则要证明,只需证明,即。
空间中的平行与垂直例题和知识点总结

空间中的平行与垂直例题和知识点总结在立体几何的学习中,空间中的平行与垂直关系是非常重要的内容。
理解和掌握这些关系,对于解决相关的几何问题具有关键作用。
下面我们通过一些例题来深入探讨,并对相关知识点进行总结。
一、平行关系(一)线线平行1、定义:如果两条直线在同一平面内没有公共点,则这两条直线平行。
2、判定定理:如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行。
例 1:在正方体 ABCD A₁B₁C₁D₁中,E,F 分别是 AB,BC 的中点,求证:EF∥A₁C₁。
证明:连接 AC,因为 E,F 分别是 AB,BC 的中点,所以 EF∥AC。
又因为正方体中,AC∥A₁C₁,所以 EF∥A₁C₁。
(二)线面平行1、定义:如果一条直线与一个平面没有公共点,则称这条直线与这个平面平行。
2、判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
例 2:已知四棱锥 P ABCD 的底面是平行四边形,M 是 PC 的中点,求证:PA∥平面 MBD。
证明:连接 AC 交 BD 于 O,连接 MO。
因为四边形 ABCD 是平行四边形,所以 O 是 AC 的中点。
又因为 M 是 PC 的中点,所以MO∥PA。
因为 MO⊂平面 MBD,PA⊄平面 MBD,所以 PA∥平面MBD。
(三)面面平行1、定义:如果两个平面没有公共点,则称这两个平面平行。
2、判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
例 3:在正方体 ABCD A₁B₁C₁D₁中,求证:平面 A₁BD∥平面 B₁D₁C。
证明:因为 A₁B∥D₁C,A₁D∥B₁C,且 A₁B 和 A₁D 是平面A₁BD 内的两条相交直线,D₁C 和 B₁C 是平面 B₁D₁C 内的两条相交直线,所以平面 A₁BD∥平面 B₁D₁C。
二、垂直关系(一)线线垂直1、定义:如果两条直线所成的角为 90°,则这两条直线垂直。
苏教版高考总复习一轮数学精品课件 几何与代数 第八章 解答题专项第1课时 利用空间向量证明平行与垂直

面 ⊥平面,为的中点.
解如图,取的中点,连接,在梯形中,由题意易知 ⊥ ,
∵ = ,为的中点,∴ ⊥ .
又平面 ⊥平面,∴ ⊥平面,
则 ⋅ = 0
2
+
2
2
−
2
,
= 0,所以 ⊥ ,所以 ⊥ .
由题可知 ⊥ ,且 ∩ = ,, ⊂平面,所以 ⊥平面.
规律方法
利用空间向量证明空间垂直、平行的一般步骤
(1)建立空间直角坐标系,建系时要尽可能地利用条件中的垂直关系.
由 ⋅ = 0 × 5 + 1 × 4 + × −3 = 0,得 ⊥ ,即平面 ⊥平面.
考向二 与平行、垂直有关的探索性问题
典例2(2023宿迁月考)如图,在直三棱柱 − 1 1 1 中,
1 1 = 1 1 ,为1 1 的中点,,分别是棱,1 上的点,且
∵ 1 ⊄平面, ⊂平面,∴ 1 //平面.
(2)若△ 是正三角形,为1 的中点,则能否在线段1 上找一点,使得1 //平
面?若存在,确定该点的位置;若不存在,请说明理由.
在线段1 上存在一点,使得1 //平面,此时是线段1 的中点,证明如下:
在直三棱柱 − 1 1 1 中,
∵ //1 ,∴ ⊥ , ⊥ .又∵ ⊥ ,∴ ,,两两垂直,
如图,以为原点,直线为轴,直线为轴,直线为轴,建立空
间直角坐标系.
设1 1 = 2,1 = 2,
∵点在线段1 上,∴设 = 1 ,0 ≤ ≤ 1,则 −1,0,2 ,
∴ ⋅ = 0 × −8 + 3 × 0 + 4 × 0 = 0,
用空间向量法证明平行垂直

用空间向量法证明平行垂直嘿,大家好,今天咱们来聊聊空间向量的那些事儿。
听起来挺学术的对吧?别担心,我们不打算用什么复杂的公式,把它变得像背唐诗那样枯燥。
相反,咱们就像在咖啡馆里聊八卦一样轻松,来一场有趣的向量之旅。
咱们得明白什么叫空间向量。
想象一下,你在一个立体的空间里,就像在三维游戏中走来走去。
空间向量就是从一个点指向另一个点的箭头,简单吧?有了这个概念,咱们可以开始讲平行和垂直这两个小伙伴的故事了。
平行就像是两条平行线,永远不相交,怎么走也不会碰上。
垂直呢,就是像个十字架,两条线碰面,形成个直角,嘿,这可是数学界的“老友记”。
现在,咱们说说平行。
要证明两个向量平行,简单得很。
只要它们的方向相同,或者说一个是另一个的倍数,这就够了。
比如说,你有一个向量 ( vec{a = (2, 4, 6) ),再给你一个向量 ( vec{b = (1, 2, 3) )。
哇,这不就是 ( vec{a = 2vec{b )吗?所以,它们平行,没跑!就像你跟你家狗子,走到哪儿都不离不弃,谁也不影响谁。
再来聊聊垂直。
要证明两个向量垂直,我们用到个小妙招:点积。
点积的计算就像是把两个向量的分量一一相乘,然后加起来。
嘿,只要点积等于零,这俩家伙就立马变成了“好兄弟”,结下不解之缘。
比如,咱们有向量 ( vec{c = (1, 2, 3) ) 和向量 ( vec{d = (3, 1, 0) )。
你算算它们的点积:( 1 times 3 + 2 times (1) + 3 times 0 = 3 2 + 0 = 1 )。
哎呀,这可不等于零啊,所以它们并不是垂直的,可能是“朋友”关系,没那么亲密。
咱们就得提一下空间向量的应用。
想象一下,你在操场上打篮球,向量就是你投篮的路径。
你想让投篮更精准,那就得找到平行和垂直的关系。
比如,平行的向量可以代表你的助攻,而垂直的向量则可以是防守的对手。
你得在这两者之间找到平衡,才能把球稳稳地投进篮筐。
专题08 利用空间向量证明平行、垂直(解析版)

2020年高考数学立体几何突破性讲练08利用空间向量证明平行、垂直一、考点传真:能用向量语言表述线线、线面、面面的平行和垂直关系二、知识点梳理:证明平行、垂直问题的思路(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.3其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.三、例题:例1. (2019江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【解析】证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .例2.(2016年北京卷) 如图,在四棱锥中,平面PAD ⊥平面,,,,,,(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.【解析】(1)∵面PAD面ABCD AD =,面PAD ⊥面ABCD ,∵AB ⊥AD ,AB ⊂面ABCD ,∴AB ⊥面PAD ,P ABCD -ABCD PA PD ⊥PA PD =AB AD ⊥1AB =2AD =AC CD ==PD ⊥PAB PB PCD PA M //BM PCD AMAP∵PD ⊂面PAD , ∴AB ⊥PD , 又PD ⊥PA ,∴PD ⊥面PAB , (2)取AD 中点为O ,连结CO ,PO ,∵CD AC == ∴CO ⊥AD , ∵PA PD =, ∴PO ⊥AD ,以O 为原点,如图建系易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,,则(111)PB =-,,,(011)PD =--,,,(201)PC =-,,,(210)CD =--,,, 设n 为面PDC 的法向量,令00(,1)n x y =,.011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨⎪⎝⎭⋅=⎪⎩,,则PB 与面PCD 夹角θ有,sin cos ,1n PB n PB n PBθ⋅=<>== (3)假设存在M 点使得BM ∥面PCD , 设AMAPλ=,()0,','M y z , 由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-,()1,1,0B ,()0,'1,'AM y z =- 有()0,1,AM AP M λλλ=⇒- ∴()1,,BM λλ=--∵BM ∥面PCD ,n 为PCD 的法向量, ∴0BM n ⋅=,即102λλ-++=,∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求. 例3.(2011安徽)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,1,2,OA OD ==OAB ∆,OAC ∆,ODE ∆,ODF ∆都是正三角形. (Ⅰ)证明直线BC ∥EF ; (Ⅱ)求棱锥F OBED -的体积.【解析】(Ⅰ)(综合法)证明:设G 是线段DA 与EB 延长线的交点. 由于OAB ∆与ODE∆都是正三角形,所以OB ∥DE 21,OG=OD=2, 同理,设G '是线段DA 与线段FC 延长线的交点,有.2=='OD G O 又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合.在GED ∆和GFD 中,由OB ∥DE 21和OC ∥DF 21,可知B 和C 分别是GE 和GF 的中点,所以BC 是GEF ∆的中位线,故BC ∥EF .(向量法)过点F 作AD FQ ⊥,交AD 于点Q ,连QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q 为坐标原点,QE 为x 轴正向,QD 为y 轴正向,QF 为z 轴正向,建立如图所示空间直角坐标系. 由条件知).23,23,0(),0,23,23(),3,0,0(),0,0,3(--C B F E则有33(,0,),(3,0,BC EF =-=- 所以,2=即得BC ∥EF .(Ⅱ)由OB=1,OE=2,23,60=︒=∠EOB S EOB 知,而O E D ∆是边长为2的正三角形,故.3=OED S 所以.233=+=OED EOB OBED S S S过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F —OBED 的高,且FQ=3,所以.2331=⋅=-OBED OBED F S FQ V 例4.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点. 求证:(Ⅰ)直线EF ∥平面PCD ;(Ⅱ)平面BEF ⊥平面PAD .【证明】(Ⅰ)在△PAD 中,因为E 、F 分别为AP ,AD 的中点,所以EF//PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,所以直线EF//平面PCD .(Ⅱ)连结DB ,因为AB=AD ,∠BAD=60°,所以ABD ∆为正三角形,因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD ,平面PAD 平面ABCD=AD ,所以BF ⊥平面PAD .又因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .例5.(2010广东)如图,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =.(Ⅰ)证明:EB FD ⊥;(Ⅱ)已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值.【证明】:(Ⅰ)连结CF ,因为¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,所以EB AC ⊥.在RT BCE ∆中,EC ===.在BDF ∆中,BF DF ==,BDF ∆为等腰三角形, 且点C 是底边BD 的中点,故CF BD ⊥.在CEF ∆中,222222)(2)6CE CF a a EF +=+==,所以CEF ∆为Rt ∆,且CF EC ⊥.因为CF BD ⊥,CF EC ⊥,且CE BD C =I ,所以CF ⊥平面BED , 而EB ⊂平面BED ,CF EB ∴⊥.因为EB AC ⊥,EB CF ⊥,且AC CF C =I ,所以EB ⊥平面BDF , 而FD ⊂平面BDF ,EB FD ∴⊥.(Ⅱ)设平面BED 与平面RQD 的交线为DG .由23FQ FE =,23FR FB =,知//QR EB . 而EB ⊂平面BDE ,∴//QR 平面BDE , 而平面BDE I 平面RQD = DG , ∴////QR DG EB .由(Ⅰ)知,BE ⊥平面BDF ,∴DG ⊥平面BDF , 而,DR DB ⊂平面BDF ,∴DG DR ⊥,DG DQ ⊥, ∴RDB ∠是平面BED 与平面RQD 所成二面角的平面角. 在Rt BCF ∆中,2CF a ===,sin FC RBD BF ∠===cos RBD ∠==. 在BDR ∆中,由23FR FB =知,133BR FB ==,由余弦定理得,RD== 由正弦定理得,sin sin BR RD RDB RBD=∠∠,即332sin RDB =∠,sin RDB ∠=故平面BED 与平面RQD 所成二面角的正弦值为29.为GC 的中点,FO =3,且FO ⊥平面ABCD .(1)求证:AE ∥平面BCF ; (2)求证:CF ⊥平面AEF .【解析】证明 取BC 中点H ,连接OH ,则OH ∥BD ,又四边形ABCD 为正方形, ∴AC ⊥BD ,∴OH ⊥AC ,故以O 为原点,建立如图所示的直角坐标系,则A (3,0,0),C (-1,0,0),D (1,-2,0),F (0,0,3),B (1,2,0).BC →=(-2,-2,0),CF →=(1,0,3),BF →=(-1,-2,3). (1)设平面BCF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·CF →=0,即⎩⎨⎧-2x -2y =0,x +3z =0,取z =1,得n =(-3,3,1). 又四边形BDEF 为平行四边形, ∴DE →=BF →=(-1,-2,3), ∴AE →=AD →+DE →=BC →+BF →=(-2,-2,0)+(-1,-2,3)=(-3,-4,3), ∴AE →·n =33-43+3=0,∴AE →⊥n , 又AE ⊄平面BCF ,∴AE ∥平面BCF .(2)AF →=(-3,0,3),∴CF →·AF →=-3+3=0,CF →·AE →=-3+3=0, ∴CF →⊥AF →,CF →⊥AE →, 即CF ⊥AF ,CF ⊥AE , 又AE ∩AF =A , AE ,AF ⊂平面AEF , ∴CF ⊥平面AEF .2.如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .【解析】证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱,所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2), 所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎪⎨⎪⎧-x 1+2y 1=0,x 1+2z 1=0,,令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 3.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,∠BAD =60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,DE =2,M 为线段BF 的中点.(1)求M 到平面DEC 的距离及三棱锥M -CDE 的体积; (2)求证:DM ⊥平面ACE .【解析】(1)设AC ∩BD =O ,以O 为原点,OB 为x 轴,OC 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,则C (0,3,0),D (-1,0,0),E (-1,0,2),M (1,0,1), DE →=(0,0,2),DC →=(1,3,0),DM →=(2,0,1), ∵DE →·DC →=0, ∴DE ⊥DC ,∴S △DEC =12×DE ×DC =12×2×2=2,设平面DEC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DE →=2z =0,n ·DC →=x +3y =0,取x =3,得n =(3,-1,0),∴M 到平面DEC 的距离h =|DM →·n ||n |=233+1=3,∴三棱锥M -CDE 的体积V =13×S △CDE ×h =13×2×3=233.(2)证明:A (0,-3,0),AC →=(0,23,0),AE →=(-1,3,2), AC →·DM →=0,AE →·DM →=-2+2=0, ∴AC ⊥DM ,AE ⊥DM ,∵AC ∩AE =A ,∴DM ⊥平面ACE .4.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AB ⊥平面PDC .【解析】证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为P A =PD ,所以PO ⊥AD .因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又ABCD 是正方形,所以OF ⊥AD . 因为P A =PD =22AD , 所以P A ⊥PD ,OP =OA =a2.以O 为原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系, 则A ⎝⎛⎭⎫a 2,0,0,F ⎝⎛⎭⎫0,a 2,0,D ⎝⎛⎭⎫-a2,0,0, P ⎝⎛⎭⎫0,0,a 2,B ⎝⎛⎭⎫a 2,a ,0,C ⎝⎛⎭⎫-a2,a ,0. 因为E 为PC 的中点,所以E ⎝⎛⎭⎫-a 4,a 2,a4. 易知平面P AD 的一个法向量为OF →=⎝⎛⎭⎫0,a 2,0, 因为EF →=⎝⎛⎭⎫a 4,0,-a 4,且OF →·EF →=⎝⎛⎭⎫0,a 2,0·⎝⎛⎭⎫a4,0,-a 4=0, 又因为EF ⊄平面P AD , 所以EF ∥平面P AD .(2)因为P A →=⎝⎛⎭⎫a 2,0,-a 2,CD →=(0,-a,0), 所以P A →·CD →=⎝⎛⎭⎫a2,0,-a 2·(0,-a,0)=0, 所以P A →⊥CD →,所以P A ⊥CD . 又P A ⊥PD ,PD ∩CD =D , PD ,CD ⊂平面PDC , 所以P A ⊥平面PDC . 又P A ⊂平面P AB , 所以平面P AB ⊥平面PDC .5.如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .【解析】证明 如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4).(1)∵AP →=(0,3,4),BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0,AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝⎛⎭⎫0,95,125. 又AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则A P →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,BM ∩BC =B , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM .6. 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .【解析】证明 (1)取BC 的中点O ,连接PO ,△PBC 为等边三角形,即PO ⊥BC , ∵平面PBC ⊥底面ABCD ,BC 为交线,PO ⊂平面PBC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD →, ∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝⎛⎭⎫12,-1,32.∵DM →=⎝⎛⎭⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB , ∴DM ⊥平面P AB . ∵DM ⊂平面P AD , ∴平面P AD ⊥平面P AB .7.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,A 1D ⊥平面ABCD ,底面ABCD 是边长为1的正方形,侧棱A 1A =2.(1)证明:AC ⊥A 1B ;(2)是否在棱A 1A 上存在一点P ,使得AP →=λP A 1→且面AB 1C 1⊥面PB 1C 1.【解析】 如图所示,以DA ,DC ,DA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则D (0,0,0),A (1,0,0),C (0,1,0),A 1(0,0,3),B (1,1,0),D 1(-1,0,3),B 1(0,1,3),C 1(-1,1,3).(1)证明:AC →=(-1,1,0),A 1B →=(1,1,-3), ∴AC →·A 1B →=0,∴AC ⊥A 1B . (2)假设存在, ∵AP →=λP A 1→, ∴P ⎝⎛⎭⎪⎫11+λ,0,3λ1+λ. 设平面AB 1C 1的一个法向量为n 1=(x 1,y 1,z 1), ∵AB 1→=(-1,1,3),AC 1→=(-2,1,3), ∴⎩⎪⎨⎪⎧n 1·AB 1→=-x 1+y 1+3z 1=0,n 1·AC 1→=-2x 1+y 1+3z 1=0.令z 1=3,则y 1=-3,x 1=0.∴n 1=(0,-3,3).同理可求面PB 1C 1的一个法向量为n 2=⎝ ⎛⎭⎪⎫0,3λ+1,-1, ∴n 1·n 2=0.∴-331+λ-3=0,即λ=-4.∵P 在棱A 1A 上,∴λ>0,矛盾. ∴这样的点P 不存在.8.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.【解析】(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的法向量为n 3=(x 3,y 3,z 3), 则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1, 则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .。
2019-2020学年高三数学《第82课 利用空间向量证明平行与垂直问题》基础教案.doc

2019-2020学年高三数学《第82课 利用空间向量证明平行与垂直问题》基础教案考点解说利用直线的方向向量和平面的法向量判定直线与直线,直线与平面,平面与平面的位置关系,掌握用向量方法处理空间中的平行与垂直问题.一、基础自测1.已知向量),,3(),5,4,2(y x b a ==分别是直线12,l l 的方向向量,若1l ∥2l ,则=x =y .2.已知)5,6,2(),,3,8(b n a m ==,若m //n ,则=+b a .3.已知,,a b c 分别为直线,,a b c 的方向向量且(0),0,a b b c λλ=≠⋅=则a 与c 的位置关系是 .4.在空间四边形ABCD 中,E 、F 是分别是AB 、AD 上的点,且AE:EB=AF:FD=1:4,又H,G 分别是BC 、CD 的中点,则EFGH 是 形.5.正三棱柱111ABC A B C -中,底面边长AB=1,且11AB BC ⊥,则侧棱1AA 的长为 .6.已知平行六面体1111ABCD A B C D -底面为菱形,01160,C CB BD CA ∠=⊥,则1C CD ∠的大小为 .7.正方体1111ABCD A B C D -中,M 、N 、P 分别是棱1CC 、BC 、CD 的中点,则直线1A P 与平面MND 所成角为 .8.空间四边形ABCD 中,,AB CD BC AD ⊥⊥,则AC 与BD 的位置关系为 .二、例题讲解例1.如图,正方体ABCD -A 1B 1C 1D 1中,O 是AC 和BD 的交点,M 是CC 1的中点,求证:A 1O ⊥平面MBD.例2.正方体ABCD -A 1B 1C 1D 1中,E,F 分别是BB 1,CD 的中点,求证:平面AED ⊥平面A 1FD 1.例3.如图正方体ABCD -A 1B 1C 1D 1中,M,N,E,F 分别是所在棱的中点,求证:平面AMN ∥平面EFBD.例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点,试确定点F 的位置,使得D 1E ⊥平面AB 1F.板书设计教后感三、课后作业1.在直二面角MN αβ--中,,,,,AB CD AB MN CD MN B αβ⊂⊂⊥⊥、C 为垂足,2,1,AD BC ==求AD 与BC 所成的角 .2.已知M 为长方体1AC 的棱BC 的中点,则点P 在长方体1AC 的面11CC D D 内,且PM //面11,BB D D 则点P 的位置应落在 .3.直三棱柱111ABC A B C -中,00190,30,1,ACB BAC BC AA M ∠=∠===是1CC 的中点,则1AB 与1A M 所成的角为 .4.正方体1111ABCD A B C D -中,,,,,,E F G H M N 分别是正方体六个面得中心,则平面EFGB 与平面 平行.5.正方体1111ABCD A B C D -中,,E F 分别是1,BB CD 的中点,则面AED 与面 垂直.6. 已知ABCD 是平行四边形,若A(4,1,3),B(2,-5,1),C (3, 7,-5),则顶点D 的坐标为___________.7.已知),1,2,2(),4,1,8(=-=b a 则以b a ,为邻边的平行四边形的面积为 .8.过三棱柱 ABC -A 1B 1C 1 的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共 有 条.9.若三个平面γβα,,两两垂直,它们的法向量分别为),4,2,(),,2,1(-=-=x b z a )3,,1(y c -=,则=x =y =z .11.如图在正方体ABCD -A 1B 1C 1D 1中,PQ 与AC 、C 1D 都垂直,试确定P 在AC,Q 在C 1D 上的位置.12.已知空间四边形OABC 中,AB=OC,M 为BC 的中点,N 为AC 的中点,P 为OA 的中点,Q 为OB 的中点,求证:PM ⊥QN.13.如图长方体ABCD -A 1B 1C 1D 1中,AD=AA 1,AB=2AD,点E 是线段C 1D 1的中点,求证:DE ⊥面EBC.14. (选做题) 如图甲,在直角梯形PBCD 中,//PB CD ,,2,CD BC BC PB CD A ⊥==是PB 的中点.现沿AD 把平面PAD 折起,使得PA AB ⊥(如图乙所示),E 、F 分别为BC 、AB 边的中点.(1)求证PA ⊥平面ABCD ; (2)求证平面PAE ⊥平面PDE ;FG平面PDE.(3)在PA上找一点G,使得//。
空间向量巧解平行、垂直关系

高中数学空间向量巧解平行、垂直关系编稿老师刘咏霞一校黄楠二校杨雪审核郑建彬知识点课标要求题型说明空间向量巧解平行、垂直关系1. 能够运用向量的坐标判断两个向量的平行或垂直。
2. 理解直线的方向向量与平面的法向量。
3. 能用向量方法解决线面、面面的垂直与平行问题,体会向量方法在立体几何中的作用。
选择题填空题解答题注意用向量方法解决平行和垂直问题中坐标系的建立以及法向量的求法。
二、重难点提示重点:用向量方法判断有关直线和平面的平行和垂直关系问题。
难点:用向量语言证明立体几何中有关平行和垂直关系的问题。
考点一:直线的方向向量与平面的法向量1. 直线l上的向量a或与a共线的向量叫作直线l的方向向量。
2. 如果表示向量a的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a⊥α,此时向量a叫作平面α的法向量。
【核心归纳】①一条直线的方向向量有无数多个,一个平面的法向量也有无数多个,且它们是共线的。
②在空间中,给定一个点A和一个向量a,那么以向量a为法向量且经过点A的平面是唯一确定的。
【随堂练习】已知A(1,1,0),B(1,0,1),C(0,1,1),则平面ABC的一个法向量的单位向量是()A. (1,1,1)B. (333C.111(,,)333D. ()333-思路分析:设出法向量坐标,列方程组求解。
答案:设平面ABC的一个法向量为n=(x,y,z),AB=(0,-1,1),BC=(-1,1,0),AC=(-1,0,1),则·0·0·0AB y zBC x yAC x z⎧=-+=⎪⎪=-+=⎨⎪=-+=⎪⎩nnn,∴x=y=z,又∵单位向量的模为1,故只有B正确。
技巧点拨:一般情况下,使用待定系数法求平面的法向量,步骤如下:(1)设出平面的法向量为n=(x,y,z)。
(2)找出(求出)平面内的两个不共线的向量a=(a1,b1,c1),b=(a2,b2,c2)。
高考数学一轮总复习 8.6 立体几何中的向量方法(一)证明平行与垂直课件 理 苏教版

(2)由(1)知|AP|=5, 又|AM|=3,且点 M 在线段 AP 上, ∴A→M=35A→P=0,95,152, 又B→C=(-8,0,0),A→C=(-4,5,0),B→A=(-4,-5,0), ∴B→M=B→A+A→M=-4,-156,152, 则A→P·B→M=(0,3,4)·-4,-156,152=0, ∴A→P⊥B→M,即 AP⊥BM, 又根据(1)的结论知 AP⊥BC, ∴AP⊥平面 BMC,于是 AM⊥平面 BMC. 又 AM⊂平面 AMC,故平面 AMC⊥平面 BCM.
A1B1的中点,则直线NO,AM的位置关系是
异面垂直.
(√)
第五页,共42页。
• [感悟·提升] • 1.一是切莫混淆向量平行与向量垂直的坐标
表示,二是理解直线平行与直线方向向量平行 的差异,如(2).否则易造成解题不严谨. • 2.利用向量知识证明空间(kōngjiān)位置关系 ,要注意立体几何中相关定理的活用,如证明 直线a∥b,可证向量a=λb,若用直线方向向 量与平面法向量垂直判定线面平行,必需强调
第六页,共42页。
考点一 利用空间向量证明平行问题 【例 1】 如图所示,在正方体 ABCD-A1B1C1D1 中,M,N 分别
是 C1C,B1C1 的中点.求证:MN∥平面 A1BD.
审题路线 若用向量证明线面平行,可转化为判定向量M→N ∥D→A1,或证明M→N与平面 A1BD 的法向量垂直.
第二十页,共42页。
(2)B→1F=(-2,2,-4),E→F=(2,-2,-2),A→F=(2,2,0), B→1F·E→F=(-2)×2+2×(-2)+(-4)×(-2)=0, 则B→1F⊥E→F,∴B1F⊥EF, ∵B→1F·A→F=(-2)×2+2×2+(-4)×0=0, ∴B→1F⊥A→F,即 B1F⊥AF. 又∵AF∩EF=F,∴B1F⊥平面 AEF.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第82课时 利用空间向量证明平行与垂直问题
考点解说
利用直线的方向向量和平面的法向量判定直线与直线,直线与平面,平面与平面的位置关系,掌握用向量方法处理空间中的平行与垂直问题. 一、基础自测
1.已知向量),,3(),5,4,2(y x b a ==分别是直线12,l l 的方向向量,若1l ∥2l ,则=x
=y .
2.已知)5,6,2(),,3,8(b n a m ==,若m //n ,则=+b a .
3.已知,,a b c r r r 分别为直线,,a b c 的方向向量且
(0),0,a b b c λλ=≠⋅=r r r r 则a 与c 的位置关系是 .
4.在空间四边形ABCD 中,E 、F 是分别是AB 、AD 上的点,且AE:EB=AF:FD=1:4,又H,G 分别是BC 、CD 的中点,则EFGH 是 形.
5.正三棱柱111ABC A B C -中,底面边长AB=1,且11AB BC ⊥,则侧棱1AA 的长为 .
6.已知平行六面体1111ABCD A B C D -底面为菱形, 0
1160,C CB BD CA ∠=⊥,则1C CD
∠的大小为 .
7.正方体1111ABCD A B C D -中,M 、N 、P 分别是棱1CC 、BC 、CD 的中点,则直线1A P 与平面MND 所成角为 .
8.空间四边形ABCD 中,,AB CD BC AD ⊥⊥,则AC 与BD 的位置关系为 . 二、例题讲解
例1.如图,正方体ABCD -A 1B 1C 1D 1中,O 是AC 和BD 的交点,M 是CC 1的中点,求证:A 1O ⊥平面MBD.
例2.正方体ABCD -A 1B 1C 1D 1中,E,F 分别是BB 1,CD 的中点,求证:平面AED ⊥平面A 1FD 1.
例 3.如图正方体ABCD -A 1B 1C 1D 1中,M,N,E,F 分别是所在棱的中点,求证:平面AMN ∥平面EFBD.
例4.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E 是棱BC 的中点,点F 是棱CD 上的动点,试确定点F 的位置,使得D 1E ⊥平面AB 1F.
板书设计
教后感
三、课后作业
1.在直二面角MN αβ--中,,,,,AB CD AB MN CD MN B αβ⊂⊂⊥⊥、C 为垂足,2,1,AD BC ==求AD 与BC 所成的角 .
2.已知M 为长方体1AC 的棱BC 的中点,则点P 在长方体1AC 的面11CC D D 内,且PM //面11,BB D D 则点P 的位置应落在 .
3.直三棱柱111ABC A B C -中,00190,30,1,6,ACB BAC BC AA M ∠=∠===是
1CC 的
中点,则1AB 与1A M 所成的角为 .
4.正方体1111ABCD A B C D -中,,,,,,E F G H M N 分别是正方体六个面得中心,则平面
EFGB 与平面 平行.
5.正方体1111ABCD A B C D -中,,E F 分别是1,BB CD 的中点,则面AED 与面 垂直.
6. 已知ABCD 是平行四边形,若A(4,1,3),B (2,-5,1),C (3, 7,-5),则顶点D 的坐标为___________.
7.已知),1,2,2(),4,1,8(=-=b a 则以b a ,为邻边的平行四边形的面积为 . 8.过三棱柱 ABC -A 1B 1C 1 的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共 有 条.
9.若三个平面γβα,,两两垂直,它们的法向量分别为),4,2,(),,2,1(-=-=x b z a
)3,,1(y c -=,则=x =y =z .
11.如图在正方体ABCD -A 1B 1C 1D 1中,PQ 与AC 、C 1D 都垂直,试确定P 在AC,Q 在C 1D 上的位置.
12.已知空间四边形OABC 中,AB=OC,M 为BC 的中点,N 为AC 的中点,P 为OA 的中点,Q 为OB 的中点,求证:PM ⊥QN.
13.如图长方体ABCD -A 1B 1C 1D 1中,AD=AA 1,AB=2AD,点E 是线段C 1D 1的中点,求证: DE ⊥面EBC.
14. (选做题) 如图甲,在直角梯形PBCD 中,//PB CD ,,2,CD BC BC PB CD A ⊥==是
PB 的中点.现沿AD 把平面PAD 折起,使得PA AB ⊥(如图乙所示),E 、F 分别为BC 、AB 边的中点.
(1)求证PA ⊥平面ABCD ; (2)求证平面PAE ⊥平面PDE ; (3)在PA 上找一点G ,使得//FG 平面PDE .。