平面向量全部讲义全
第六章第二节平面向量的基本定理及坐标表示课件共49张PPT

设正方形的边长为
1
,
则
→ AM
= 1,12
,
→ BN
=
-12,1 ,A→C =(1,1),
∵A→C =λA→M +μB→N
=λ-12μ,λ2 +μ ,
λ-12μ=1, ∴λ2 +μ=1,
解得λμ= =6525, .
∴λ+μ=85 .
法二:由A→M
=A→B
+12
→ AD
,B→N
=-12
→ AB
+A→D
栏目一 知识·分步落实 栏目二 考点·分类突破 栏目三 微专题系列
栏目导引
课程标准
考向预测
1.理解平面向量的基本定理及其意义. 考情分析: 平面向量基本定理及
2.借助平面直角坐标系掌握平面向量 其应用,平面向量的坐标运算,向
的正交分解及其坐标表示.
量共线的坐标表示及其应用仍是
3.会用坐标表示平面向量的加法、减 高考考查的热点,题型仍将是选择
A.(-2,3)
B.(2,-3)
C.(-2,1)
D.(2,-1)
D [设 D(x,y),则C→D =(x,y-1),2A→B =(2,-2),根据C→D =2A→B , 得(x,y-1)=(2,-2),
即xy= -21, =-2, 解得xy= =2-,1, 故选 D.]
2.(2020·福建三明第一中学月考)已知 a=(5,-2),b=(-4,-3),若
解析: ∵ma+nb=(2m+n,m-2n)=(9,-8), ∴2mm-+2nn==9-,8, ∴mn==52., ∴m-n=2-5=-3. 答案: -3
考点·分类突破
⊲学生用书 P93
平面向量基本定理及其应用
(1)(多选)(2020·文登区期中)四边形 ABCD 中,AB∥CD,∠A=90°,
平面向量全部讲义

第一节平面向量的概念及其线性运算→ 例 3:化简 AC → -BD→ → → +CD -AB 得()A. AB →B. DA →C.BCD .01. 向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.例 4:(1)如图,在正六边形 ABCDEF 中, BA +CD + E F =()(2)零向量:长度为 0 的向量,其方向是任意的. (3)单位向量:长度等于 1 个单位的向量.A .0B . BEC . ADD . CF(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定: 0 与任一向量共线.(5)相等向量:长度相等且方向相同的向量. 1 2 (2)设 D ,E 分别是△ ABC 的边 AB ,BC 上的点,AD = AB ,BE = 2 3BC.若 D E =λ1 AB +λ2 AC(6)相反向量:长度相等且方向相反的向量.(λ1,λ2 为实数 ),则 λ1+λ2 的值为 ________.例 1.若向量 a 与 b 不相等,则 a 与 b 一定( )巩固练习: A .有不相等的模B .不共线C .不可能都是零向量D .不可能都是单位向量1.将 4(3a +2b )-2(b -2a )化简成最简式为 ______________.例 2..给出下列命题:①若 |a |=|b |,则 a =b ;②若 A ,B ,C ,D 是不共线的四点,则 AB = D C 等价于 四边形 → → → → → → +OB -OB ,OB 的关系是 ( ) A .平行B .重合C .垂直D .不确2.若|OA |=|OA |,则非零向量 OAABCD 为平行四边形;③若 a =b ,b =c ,则 a =c ;④a =b 等价于 |a |=|b |且 a ∥b ;⑤若 a ∥b ,b ∥c ,则 a ∥c .定 其中正确命题的序号是 ( ) 3.若菱形 ABCD 的边长为 2,则| AB -CB + C D |=________ A .②③B .①②C .③④D .④⑤4.D 是△ABC 的边 AB 上的中点,则向量 CD 等于( )CAA .- BC + 1 2BA B .- BC - 1 1 1 2 BAC . BC -2 BAD . B C +2BA2. 向量的线性运算5.若 A ,B ,C ,D 是平面内任意四点, 给出下列式子: ① AB +CD = B C + D A ;② AC + B D = B C + AD ;向量运算 定义 法则(或几何意义 ) 运算律③ AC - BD = DC + AB .其中正确的有 ()A .0 个B .1 个C .2 个D .3 个(1)交换律:a +b =b +a ;求两个向量和的运三角形法则 加法(2)结合律:算→ → → →=3a ,CB =2b ,求CD ,CE6.如图,在△ ABC 中,D ,E 为边 AB 的两个三等分点, CA .减法求 a 与 b 的相反向量-b 的和的运算平行四边形法则(a +b )+c = a +(b +c )a -b =a +(-b )1→ → → =AC +CB=-3a +2b ,∵D ,EDD 2 巩固练习 1。
平面向量基本定理及坐标表示讲义

专题3:平面向量基本定理及坐标表示核心知识点1:平面向量基本定理1.平面向量基本定理(1)由平面向量基本定理可知,在平面内任一向量都可以沿两个不共线的方向分解成两个向量的和,且这样的分解是唯一的,同一个非零向量在不同的基底下的分解式是不同的,而零向量的分解式是唯一的,即0=λ1e 1+λ2e 2,且λ1=λ2=0.(2)对于固定的e 1,e 2(向量e 1与e 2不共线)而言,平面内任一确定的向量的分解是唯一的,但平面内的基底却不唯一,只要平面内的两个向量不共线,就可以作为基底,它有无数组.(3)这个定理可推广为:平面内任意三个不共线的向量中,任何一个向量都可表示为其余两个向量的线性组合且形式唯一.核心知识点2:平面向量的正交分解及坐标表示1.平面向量的正交分解把一个平面向量分解为两个互相垂直的向量,叫做平面向量的正交分解.2.平面向量的坐标表示(1)基底:在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底.(2)坐标:对于平面内的一个向量a ,有且只有一对实数x 、y ,使得a =x i +y j ,我们把有序实数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ),其中x 叫做向量a 在x 轴上的坐标,y 叫做向量a 在y 轴上的坐标.(3)坐标表示:a =(x ,y )就叫做向量的坐标表示.(4)特殊向量的坐标:i =(1,0),j =(0,1),0=(0,0).3.向量与坐标的关系设OA →=x i +y i ,则向量OA →的坐标(x ,y )就是终点A 的坐标;反过来,终点A 的坐标就是向量OA →的坐标(x ,y ).因此,在平面直角坐标系内,每一个平面向量都可以用一有序实数对唯一表示.即以原点为起点的向量与实数对是一一对应的.【知识微点评】点的坐标与向量的坐标的联系与区别点的坐标反映的是点的位置,而向量的坐标反映的是向量的大小和方向,向量仅由大小和方向决定,与位置无关.1.联系:(1)当且仅当向量的起点为原点时,向量终点的坐标等于向量本身的坐标.(2)两个向量相等,当且仅当它们的坐标相同.即若a =(x 1,y 1),b =(x 2,y 2),则a =b ⇔⎩⎪⎨⎪⎧x 1=x 2,y 1=y 2. 注意:相等向量的坐标是相同的,但是两个相等向量的起点、终点的坐标却可以不同.2.区别:(1)书写不同,如a =(1,2),A (1,2).(2)给定一个向量,它的坐标是唯一的;给定一个有序实数对,由于向量可以平移,故以这个有序实数对为坐标的向量有无穷多个.因此,符号(x ,y )在平面直角坐标系中有双重意义,它既可以表示一个固定的点,又可以表示一个向量.为了加以区分,在叙述中,常说点(x ,y )或向量(x ,y ).4.平面向量的坐标运算设向量a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则有下表:核心知识点3:平面向量的垂直与平行1.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,当且仅当x 1y 2=x 2y 1时,a ∥b .【知识微点评】两个向量共线条件的三种表示方法已知a =(x 1,y 1),b =(x 2,y 2).(1)当b ≠0时,a =λb .这是几何运算,体现了向量a 与b 的长度及方向之间的关系.(2)x 1y 2-x 2y 1=0.这是代数运算,用它解决向量共线问题的优点在于不需要引入参数“λ”,从而减少未知数的个数,而且使问题的解决具有代数化的特点和,程序化的特征.(3)当x 2y 2≠0时,x 1x 2=y 1y 2. 即两向量的相应坐标成比例,通过这种形式较易记忆向量共线的坐标表示,而且不易出现搭配错误.2.平面向量的数量积与向量垂直的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2). 数量积 两个向量的数量积等于它们对应坐标的乘积的和,即a·b =x 1x 2+y 1y 2 两个向量垂直 a ⊥b ⇔x 1x 2+y 1y 2=0知识微点评】1.公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解.2.已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.3.平面向量的模与夹角的坐标表示设向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则有下表:坐标表示模 |a |2=x 21+y 21或|a |=x 21+y 21 设A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2夹角cos θ=a·b |a||b|=x 1x 2+y 1y 2x 21+y 21x 22+y 22(a ,b 为非零向量) 【知识微点评】向量的模的坐标运算的实质向量的模即向量的长度,其大小应为平面直角坐标系中两点间的距离,如a =(x ,y ),则在平面直角坐标系中,一定存在点A (x ,y ),使得OA →=a =(x ,y ),∴|OA →|=|a |=x 2+y 2,即|a |为点A 到原点的距离.同样,若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),∴|AB →|=(x 2-x 1)2+(y 2-y 1)2,即平面直角坐标系中任意两点间的距离.由此可知,向量的模的坐标运算的实质为平面直角坐标系中两点间的距离的运算. 必考必会题型1:用基底表示向量【典型例题】在平行四边形ABCD 中,,且,则λ+μ= .【题型强化】1.如图,在△ABC 中,,P 是BN 上的一点,若m ,则实数m 的值为 .2.如图,已知,与的夹角为60°,与的夹角为30°,,用,表示,则.【名师点睛】用基底表示向量的两种基本方法:用基底表示向量的基本方法有两种:一种是运用向量的线性运算对待求向量不断地进行转化,直至用基底表示为止;另一种是通过列向量方程(组),利用基底表示向量的唯一性求解.必考必会题型2:平面向量基本定理在平面几何中的应用【典型例题】如图,在长方形ABCD中,E为边DC的中点,F为边BC上一点,且.设.(Ⅰ)试用基底{,},表示;(Ⅱ)若G为长方形ABCD内部一点,且.求证:E,G,F三点共线.【题型强化】1.如图所示,在△ABO中,,,AD与BC相交于点M.设,.(1)试用向量表示;(2)在线段AC上取点E,在线段BD上取点F,使EF过点M.设,其中λ,μ∈R.当EF与AD重合时,λ=1,μ,此时5;当EF与BC重合时,λ,μ=1,此时5;能否由此得出一般结论:不论E,F在线段AC,BD上如何变动,等式5恒成立,请说明理由.2.如图,M为△ABC的中线AD的中点,过点M的直线分别交AB,AC两边于点P,Q,设,请求出x、y的关系式,并记y=f(x)(1)求函数y=f(x)的表达式;(2)设△APQ的面积为S1,△ABC的面积为S2,且S1=kS2,求实数k的取值范围.(参考:三角形的面积等于两边长与这两边夹角正弦乘积的一半.)必考必会题型3:平面向量坐标运算【典型例题】已知向量,.那么向量的坐标是.【题型强化】1.已知A(﹣4,6),B(2,4),点P在线段AB的延长线上,且||||,则点P的坐标为.2.如图所示,在平面直角坐标系中,(2,﹣3),则点D的坐标为.【名师点睛】利用向量线性运算的坐标表示解决有关问题的基本思路:1.向量的线性运算的坐标表示主要是利用加、减、数乘运算法则进行的,若已知有向线段两端点的坐标,则应先求出向量的坐标,然后再进行向量的坐标运算,另外解题过程中要注意方程思想的运用.2.利用向量线性运算的坐标表示解题,主要根据相等向量的坐标相同这一原则,通过列方程(组)进行求解.3.利用坐标运算求向量的基底表示,一般先求出基底向量和被表示向量的坐标,再用待定系数法求出相应系数.必考必会题型4:向量共线、垂直的坐标表示的应用【典型例题】已知向量(1,3),(2,),若单位向量与2平行,则.【题型强化】1.已知向量(1,3),(﹣2,1),(3,2).若向量与向量k共线,则实数k=.2.已知2,2,与的夹角为45°,且λ与垂直,则实数λ=.【名师点睛】根据向量共线、垂直求参数的值的基本思路:借助两向量平行和垂直的条件求解某参数的值,是向量坐标运算的重要应用之一,具体做法就是先借助或(其中,),列关于某参数的方程(或方程组),然后解之即可.必考必会题型5:向量坐标运算与平面几何的交汇【典型例题】如图,在△ABC中,,,P为CD上一点,且满足,若△ABC的面积为.(1)求m的值;(2)求的最小值.【题型强化】1.如图,平行四边形ABCD中,E,F分别是AD,AB的中点,G为BE与DF的交点.若,.(1)试以,为基底表示,;(2)求证:A,G,C三点共线.2.如图,在△ABC中,AB=8,AC=5,BC=7,O为△ABC的外心,,求x,y的值.【名师点睛】利用向量解决平面几何问题的基本思路:利用向量可以解决与长度、角度、垂直、平行等有关的几何问题,其解题的关键在于把其他语言转化为向量语言,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题.常用方法是建立平面直角坐标系,借助向量的坐标运算转化为代数问题来解决.必考必会题型6:向量坐标运算与三角函数的交汇【典型例题】设向量.(1)当时,求的值;(2)若,且,求的值.【题型强化】1.已知△ABC内角A,B,C的对边分别为a,b,c,向量(cos A,a﹣2b),(2c,1)且.(1)求角C;(2)若c=2,△ABC的面积为,求△ABC的周长.2.已知A,B,C为△ABC的三个内角,向量(2﹣2sin A,sin A+cos A)与向量(sin A﹣cos A,1+sin A)共线,且角A 为锐角.(Ⅰ)求角A 的大小; (Ⅱ)求函数的值域. 【名师点睛】解决数量积的坐标表示与三角函数交汇问题的基本思路: 先运用平面向量数量积的坐标表示的相关知识(平面向量数量积的坐标表示、平面向量模与夹角的坐标表示、平面向量平行与垂直的坐标表示等)将问题转化为与三角函数有关的问题(如化简、求值、证明等),再利用三角函数的相关知识求解即可.解决这类问题时应注意充分挖掘题目中的隐含条件,使问题得到快速解决,注意到,可以简化运算. 【课后巩固】 1.已知AB =(2,3),AC =(3,t ),BC =1,则AB BC ⋅=A .-3B .-2C .2D .32.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144+AB ACD .1344+AB AC 3.已知向量(sin ,2),(1,cos )a b θθ=-=,且a b ⊥,则2sin 2cos θθ+的值为( )A .1B .2C .12D .34.如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2AE EO =,则ED =( ) A .1233AD AB - B .2133AD AB + C .2133AD AB - D .1233AD AB + 5.在ABC 中,E 为AC 上一点,3AC AE =,P 为BE 上任一点,若(0,0)AP mAB nAC m n =+>>,则31m n+的最小值是 A .9 B .10 C .11 D .126.已知向量a,b 满足a 1=,a b 1⋅=-,则a (2a b)⋅-=A .4B .3C .2D .07.设向量a =(1,0),b =(−1,m ),若()a ma b ⊥-,则m =_________.8.已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 9.已知()2,1a =--,(),1b λ=,若a 与b 的夹角α为钝角,则实数λ的取值范围为______. 10.已知向量a =(﹣1,2),b =(m ,1),若()a b a +⊥,则m=_________.11.在平面直角坐标系xoy 中,已知向量2(,2m =,(sin ,cos )n x x =,(0,)2x π∈. (1)若m n ⊥,求tan x 的值;(2)若m 与n 的夹角为3π,求x 的值. 12.已知平面向量()3,4a =,()9,b x =,()4,c y =,且//a b ,a c ⊥.(1)求b 和c ; (2)若2m a b =-,n a c =+,求向量m 与向量n 的夹角的大小.13.在ABC 中,角A ,B ,C 所对的边为a ,b ,c ,(,),(,)p a c b q b a c a =+=--,若//p q , (1)求角C 的大小;(2)若()cos 23ab C c =,求11tan tan A B +的值.。
最新平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模. (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. (5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量.例1.若向量a 与b 不相等,则a 与b 一定( )A .有不相等的模B .不共线C .不可能都是零向量D .不可能都是单位向量例2..给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB u u u r =DC u u ur 等价于四边形ABCD 为平行四边形;③若a =b ,b =c ,则a =c ;④a =b 等价于|a |=|b |且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( )A .②③B .①②C .③④D .④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则(1)交换律:a +b =b +a ; (2)结合律: (a +b )+c =a +(b +c )平行四边形法则减法求a 与b 的相反向量-b 的和的运算叫做a 与b 的差三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μ a )=(λμ)a ; (λ+μ)a =λa +μa ; λ(a +b )=λa +λb 例3:化简AC -BD +CD -AB 得( ) A.AB B.DA C.BC D .0例4:(1)如图,在正六边形ABCDEF 中,BA u u u r +CD u u u r +EF u u u r=( )A .0B .BE u u u rC .AD u u u rD .CF u u u r(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE u u u r =λ1AB u u u r +λ2AC u u u r(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a +2b )-2(b -2a )化简成最简式为______________.2.若|OA →+OB →|=|OA →-OB →|,则非零向量OA →,OB →的关系是( ) A .平行 B .重合 C .垂直 D .不确定3.若菱形ABCD 的边长为2,则|AB u u u r -CB u u ur +CD u u u r |=________4.D 是△ABC 的边AB 上的中点,则向量CD u u u r等于( )A .-BC u u u r +12BA u u u rB .-BC u u u r -12BA u u u r C .BC u u u r -12BA u u u rD .BC u u u r +12BA u u u r5.若A ,B ,C ,D 是平面内任意四点,给出下列式子:①AB u u u r +CD u u u r =BC u u u r +DA u u u r ;②AC u u u r +BD u u u r =BC u u u r +AD u u u r;③AC u u u r -BD u u u r =DC u u u r +AB u u u r.其中正确的有( )A .0个B .1个C .2个D .3个6.如图,在△ABC 中,D ,E 为边AB 的两个三等分点,CA →=3a ,CB →=2b ,求CD →,CE →. DD 12巩固练习 1。
(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。
平面向量讲义

平面向量第一节 平面向量的概念及线性运算一、基础知识1.向量的有关概念(1)向量的定义及表示:既有大小又有方向的量叫做向量.以A 为起点、B 为终点的向量记作AB ―→,也可用黑体的单个小写字母a ,b ,c ,…来表示向量.(2)向量的长度(模):向量AB ―→的大小即向量AB ―→的长度(模),记为|AB ―→|. 2.几种特殊向量单位向量有无数个,它们大小相等,但方向不一定相同;与向量a 平行的单位向量有两个,即向量a |a |和-a|a |.3.向量的线性运算❷多个向量相加,利用三角形法则,应首尾顺次连接,a+b+c表示从始点指向终点的向量,只关心始点、终点.4.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . 只有a ≠0才保证实数λ的存在性和唯一性.二、常用结论(1)若P 为线段AB 的中点,O 为平面内任一点,则OP ―→=12(OA ―→+OB ―→).(2)OA ―→=λOB ―→+μOC ―→(λ,μ为实数),若点A ,B ,C 三点共线,则λ+μ=1. 考点一 平面向量的有关概念[典例] 给出下列命题: ①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件; ③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.[解析] ①正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c . ②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→,又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. [解题技法] 向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任意向量共线. [题组训练] 1.给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa =0(λ为实数),则λ必为零; ③λ,μ为实数,若λa =μb ,则a 与b 共线.其中错误的命题的个数为( ) A .0 B .1C .2 D .3解析:①错误,两向量共线要看其方向而不是起点或终点.②错误,当a =0时,不论λ为何值,λa =0.③错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量.故错误的命题有3个,故选D.2.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0,假命题的个数是( )A .0B .1C .2D .3解析:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.考点二 平面向量的线性运算[典例] (1)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ―→=( ) A.34AB ―→-14AC ―→ B.14AB ―→-34AC ―→C.34AB ―→+14AC ―→ D.14AB ―→+34AC ―→ (2)如图,在直角梯形ABCD 中,DC ―→=14AB ―→,BE ―→=2EC ―→, 且AE ―→=r AB ―→+s AD ―→,则2r+3s =( )A .1B .2C .3D .4[解析] (1)作出示意图如图所示.EB ―→=ED ―→+DB ―→=12AD ―→+12CB ―→=12×12(AB ―→+AC ―→)+12(AB ―→-AC ―→)=34AB ―→-14AC ―→.故选A. (2)根据图形,由题意可得AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23(BA ―→+AD ―→+DC ―→)=13AB ―→+23(AD ―→+DC ―→)=13AB ―→+23⎝⎛⎭⎫AD ―→+14AB ―→=12AB ―→+23AD ―→. 因为AE ―→=r AB ―→+s AD ―→,所以r =12,s =23,则2r +3s =1+2=3.[解题技法] 向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解. (3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.(4)与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值.[题组训练]1.设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( )A .AD ―→=-13AB ―→+43AC ―→ B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→ D .AD ―→=43AB ―→-13AC ―→解析: 由题意得AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→=AC ―→+13AC ―→-13AB ―→=-13AB ―→+43AC ―→.2.在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC ―→=λAM ―→+μAN ―→,则实数λ+μ=________. 解析:如图,∵AM ―→=AB ―→+BM ―→=AB ―→+12BC ―→=DC ―→+12BC ―→,①AN ―→=AD ―→+DN ―→=BC ―→+12DC ―→,②由①②得BC ―→=43AN ―→-23AM ―→,DC ―→=43AM ―→-23AN ―→,∴AC ―→=AB ―→+BC ―→=DC ―→+BC ―→=43AM ―→-23AN ―→+43AN ―→-23AM ―→=23AM ―→+23AN ―→,∵AC ―→=λAM ―→+μAN ―→,∴λ=23,μ=23,λ+μ=43.考点三 共线向量定理的应用[典例] 设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 同向.[解] (1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→,∴AB ―→,BD ―→共线. 又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的非零向量,∴⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1, 又∵λ>0,∴k =1.1.向量共线问题的注意事项(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.[题组训练]1.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( ) A .矩形 B .平行四边形C .梯形 D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→.又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.2.已知向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,若向量a 与向量b 共线,则( ) A .λ=0 B .e 2=0C .e 1∥e 2 D .e 1∥e 2或λ=0解析:选D 因为向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,又因为向量a 和b 共线,存在实数k ,使得a =k b ,所以e 1+λe 2=2k e 1,所以λe 2=(2k -1)e 1,所以e 1∥e 2或λ=0.3.已知O 为△ABC 内一点,且AO ―→=12(OB ―→+OC ―→),AD ―→=t AC ―→,若B ,O ,D 三点共线,则t =( )A.14B.13C.12D.23解析:选B 设E 是BC 边的中点,则12(OB ―→+OC ―→)=OE ―→,由题意得AO ―→=OE ―→,所以AO ―→=12AE ―→=14(AB ―→+AC ―→)=14AB ―→+14t AD ―→,又因为B ,O ,D 三点共线,所以14+14t =1,解得t =13,故选B.4.已知O ,A ,B 三点不共线,P 为该平面内一点,且OP ―→=OA ―→+AB―→|AB ―→|,则( )A .点P 在线段AB 上B .点P 在线段AB 的延长线上C .点P 在线段AB 的反向延长线上D .点P 在射线AB 上解析:由OP ―→=OA ―→+AB ―→|AB ―→|,得OP ―→-OA ―→=AB ―→|AB ―→|,∴AP ―→=1|AB ―→|·AB ―→,∴点P 在射线AB 上,故选D.第二节 平面向量基本定理及坐标表示一、基础知识1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1e 2叫做表示这一平面内所有向量的一组基底. (1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模:设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.若a =b ,则x 1=x 2且y 1=y 2. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例.考点一 平面向量基本定理及其应用[典例] 如图,以向量OA ―→=a ,OB ―→=b 为邻边作平行四边形OADB ,BM ―→=13BC ―→,CN―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→. [解] ∵BA ―→=OA ―→-OB ―→=a -b ,BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b .∵OD ―→=a +b ,∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→=23OD ―→=23a +23b ,∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b .综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b .[解题技法]1.平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.[题组训练]1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB ―→=a ,AC ―→=b ,则P Q―→=( )A.13a +13b B .-13a +13b C.13a -13b D .-13a -13b 解析:由题意知P Q ―→=PB ―→+B Q ―→=23AB ―→+13BC ―→=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b .2.已知在△ABC 中,点O 满足OA ―→+OB ―→+OC ―→=0,点P 是OC 上异于端点的任意一点,且OP ―→=m OA ―→+n OB ―→,则m +n 的取值范围是________.解析:依题意,设OP ―→=λOC ―→ (0<λ<1),由OA ―→+OB ―→+OC ―→=0,知OC ―→=-(OA ―→+OB ―→), 所以OP ―→=-λOA ―→-λOB ―→,由平面向量基本定理可知,m +n =-2λ,所以m +n ∈(-2,0).考点二 平面向量的坐标运算[典例] 已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b , (1)求3a +b -3c ;(2)求M ,N 的坐标及向量MN ―→的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c ,∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18). [变透练清]1.(变结论)本例条件不变,若a =m b +n c ,则m =________,n =________.解析:∵m b +n c =(-6m +n ,-3m +8n ),a =(5,-5),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.2.已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.解析:设P (x ,y ),由题意可得A ,B 两点的坐标分别为(2,3),(4,-1),由AP ―→=3PB ―→,可得⎩⎪⎨⎪⎧x -2=12-3x ,y -3=-3y -3,解得⎩⎪⎨⎪⎧x =72,y =0,故|OP ―→|=72.[解题技法]1.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解. 2.向量坐标运算的注意事项(1)向量坐标与点的坐标形式相似,实质不同. (2)向量坐标形式的线性运算类似多项式的运算.(3)向量平行与垂直的坐标表达形式易混淆,需清楚结论推导过程与结果,加以区分. 考点三 平面向量共线的坐标表示[典例] 已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1),∴k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2),∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3),BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→,∴8m -3(2m +1)=0,∴m =32.[解题技法]1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb . 2.两个向量共线的充要条件的作用判断两个向量是否共线(或平行),可解决三点共线的问题;另外,利用两个向量共线的充要条件可以列出方程(组),求参数的值.[题组训练]1.已知向量a =(1,2),b =(-3,2),若(k a +b )∥(a -3b ),则实数k 的取值为( ) A .-13 B.13C .-3D .3解析:选A k a +b =k (1,2)+(-3,2)=(k -3,2k +2).a -3b =(1,2)-3(-3,2)=(10,-4), 则由(k a +b )∥(a -3b )得(k -3)×(-4)-10×(2k +2)=0,所以k =-13.2.已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3―→与向量a =(1,-1)共线,若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则λ=( )A .-3B .3C .1D .-1解析:设OP 3―→=(x ,y ),则由OP 3―→∥a 知x +y =0,于是OP 3―→=(x ,-x ).若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.3.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→. 设点D 的坐标为(x ,y ),则DC ―→=(4-x,2-y ),AB ―→=(1,-1), ∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π].当θ=0时,两向量a ,b 共线且同向;当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a ||b | cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b |cos θ叫做向量b 在向量a 的方向上的投影,|a |cos θ叫做向量a 在向量b 的方向上的投影.(2)a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律(1)交换律:a ·b =b ·a .(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ). (3)分配律:(a +b )·c =a ·c +b ·c .向量数量积的运算不满足乘法结合律,即(a ·b )·c 不一定等于a ·(b ·c ),这是由于(a ·b )·c 表示一个与c 共线的向量,a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.5.平面向量数量积的性质设a ,b 为两个非零向量,e 是与b 同向的单位向量,θ是a 与e 的夹角,则 (1)e ·a =a ·e =|a |cos θ.(2)a ⊥b ⇔a ·b =0.(3)当a 与b 同向时,a ·b =|a||b|;当a 与b 反向时,a ·b =-|a||b|. 特别地,a ·a =|a|2或|a|=a ·a .(4)cos θ=a ·b|a ||b |.(5)|a ·b |≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则(1)|a |=x 21+y 21; (3)a ⊥b ⇔x 1x 2+y 1y 2=0;(2)a ·b =x 1x 2+y 1y 2;_ (4)cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.二、常用结论汇总1.平面向量数量积运算的常用公式(1)(a +b )·(a -b )=a 2-b 2;(2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论(1)两个向量a 与b 的夹角为锐角,则有a ·b >0,反之不成立(因为夹角为0时不成立); (2)两个向量a 与b 的夹角为钝角,则有a ·b <0,反之不成立(因为夹角为π时不成立).考点一 平面向量的数量积的运算[典例] (1)若向量m =(2k -1,k )与向量n =(4,1)共线,则m ·n =( ) A .0 B .4C .-92D .-172(2)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12,∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (2)法一:如图,连接MN .∵BM ―→=2MA ―→,CN ―→=2NA ―→,∴AM AB =AN AC =13.∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→).∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2)=3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0.故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解. [题组训练]1.已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1C.6D .2 2 解析:选B 设AB ―→=a ,AD ―→=b ,则a ·b =0,∵|a |=2,|b |=1,∴AC ―→·CB ―→=(a +b )·(-b )=-a ·b -b 2=-1.2.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( ) A.55 B .-55C .-255 D .-355解析:由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2, ∴a ·b =-3,∴向量b 在a 方向上的投影为a ·b |a |=-355.3.在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→(λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0,∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14.考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)已知非零向量a ,b 满足a ·b =0,|a |=3,且a 与a +b 的夹角为π4,则|b |=( )A .6B .32C .2 2D .3(2)已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1 B.12C.34 D.32[解析] (1)∵a ·b =0,|a |=3,∴a ·(a +b )=a 2+a ·b =|a ||a +b |cos π4,∴|a +b |=32,将|a +b |=32两边平方可得,a 2+2a ·b +b 2=18,解得|b |=3,(2)∵向量c 与a +b 共线,∴可设c =t (a +b )(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c )2=(t +1)2a 2+2t (t +1)·a ·b +t 2b 2,∵向量a ,b 为单位向量,且a ·b =-12,∴(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c |≥32,∴|a +c |的最小值为32,考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________. [解析] (1)因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |= 3.又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b |cos 〈a ,b 〉=-3,又|a |=12+(3)2=2,所以a ·b =|a ||b |cos 〈a ,b 〉=-6,又a ·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b |=32+(-33)2=6,所以cos 〈a ,b 〉=a ·b|a ||b |=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3.考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a |=223|b |,(a -b )⊥(3a +2b ), 所以(a -b )·(3a +2b )=3|a |2-2|b |2-a ·b =83|b |2-2|b |2-223|b |2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→·BC ―→=0,即AP ―→·BC ―→=(λAB ―→+AC ―→)·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ) A .-4 B .-3C .-2 D .-1解析: ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B. 2.已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=( ) A.12B .1C. 2 D .2 解析: ∵非零向量a ,b 的夹角为60°,且|b |=1,∴a ·b =|a |×1×12=|a |2,∵|2a -b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1,∴4|a |2-2|a |=0,∴|a |=12,故选A.3.已知向量a ,b 满足|a |=1,|b |=2,a +b =(1,3),记向量a ,b 的夹角为θ,则t a n θ=________. 解析:∵|a |=1,|b |=2,a +b =(1,3),∴(a +b )2=|a |2+|b |2+2a ·b =5+2a ·b =1+3,∴a ·b =-12,∴cosθ=a ·b|a |·|b |=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴t a n θ=sin θc os θ=-15. 第四节 平面向量的综合应用 考点一 平面向量与平面几何[典例] 在平行四边形ABCD 中,|AB ―→|=12,|AD ―→|=8.若点M ,N 满足BM ―→=3MC ―→,DN ―→=2NC ―→,则AM ―→·NM ―→=( )A .20B .15C .36D .6[解析] 法一:由BM ―→=3MC ―→,DN ―→=2NC ―→知,点M 是BC 的一个四等分点,且BM =34BC ,点N 是DC 的一个三等分点,且DN =23DC ,所以AM ―→=AB ―→+BM ―→=AB ―→+34AD ―→,AN ―→=AD ―→+DN ―→=AD ―→+23AB ―→,所以NM ―→=AM ―→-AN ―→=AB ―→+34AD ―→-⎝⎛⎭⎫AD ―→+23AB ―→=13AB ―→- 14AD ―→,所以AM ―→·NM ―→=⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫13AB ―→-14AD ―→=13⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫AB ―→-34AD ―→= 13⎝⎛⎭⎫AB ―→2-916AD ―→2=13⎝⎛⎭⎫144-916×64=36,故选C.法二:不妨设∠DAB 为直角,以AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系.则M (12,6),N (8,8),所以AM ―→=(12,6),NM ―→=(4,-2),所以AM ―→·NM ―→=12×4+6×(-2)=36,故选C.[题组训练]1.若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形C .正三角形 D .等腰直角三角形解析:选A 由(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,得CB ―→·(AB ―→+AC ―→)=0,∵AB ―→-AC ―→=CB ―→, ∴(AB ―→-AC ―→)·(AB ―→+AC ―→)=0,即|AB ―→|=|AC ―→|,∴△ABC 是等腰三角形.2.已知P 为△ABC 所在平面内一点,AB ―→+PB ―→+PC ―→=0,|AB ―→|=|PB ―→|=|PC ―→|=2,则△ABC 的面积等于( )A. 3 B .23C .3 3 D .4 3解析:由|PB ―→|=|PC ―→|得,△PBC 是等腰三角形,取BC 的中点D ,连接PD (图略),则PD ⊥BC ,又AB ―→+PB ―→+PC ―→=0,所以AB ―→=-(PB ―→+PC ―→)=-2PD ―→,所以PD =12AB =1,且PD ∥AB ,故AB ⊥BC ,即△ABC 是直角三角形,由|PB ―→|=2,|PD ―→|=1可得|BD ―→|=3,则|BC ―→|=23,所以△ABC 的面积为12×2×23=2 3.3.如图,在扇形OAB 中,OA =2,∠AOB =90°,M 是OA 的中点,点P 在弧AB 上,则PM ―→·PB ―→的最小值为________.解析:如图,以O 为坐标原点,OA ―→为x 轴的正半轴,OB ―→为y 轴的正半轴建立平面直角坐标系,则M (1,0),B (0,2),设P (2cos θ,2sin θ),θ∈⎣⎡⎦⎤0,π2,所以PM ―→·PB ―→=(1-2cos θ,-2sin θ)·(-2cos θ,2-2sin θ)=4-2cos θ- 4sin θ=4-2(cos θ+2sin θ)=4-25sin(θ+φ)⎝⎛⎭⎫其中sin φ=55,c os φ=255,所以PM ―→·PB ―→的最小值为4-2 5.答案:4-2 5考点二 平面向量与解析几何[典例] 已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. [解] (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .则t a n x =-33.又x ∈[0,π],所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎫x +π6. 因为x ∈[0,π],所以x +π6∈⎣⎡⎦⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎫x +π6≤32. 于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.[题组训练]1.已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.解析:∵AB ―→=OB ―→-OA ―→=(4-k ,-7),BC ―→=OC ―→-OB ―→=(6,k -5),且AB ―→∥BC ―→,∴(4-k )(k -5)+6×7=0,解得k =-2或k =11.由k <0,可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.2.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ―→·FP ―→的最大值为________.解析:由题意,得F (-1,0),设P (x 0,y 0),则有x 204+y 203=1,解得y 20=3⎝⎛⎭⎫1-x 204,因为FP ―→=(x 0+1,y 0),OP ―→=(x 0,y 0),所以OP ―→·FP ―→=x 0(x 0+1)+y 20=x 20+x 0+3⎝⎛⎭⎫1-x 204=x 204+x 0+3,对应的抛物线的对称轴方程为x 0=-2,因为-2≤x 0≤2,故当x 0=2时,OP ―→·FP ―→取得最大值224+2+3=6.考点三 平面向量与三角函数[典例] 已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A ―→+PB ―→+PC ―→|的最大值为( )A .6B .7C .8D .9[解析] 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,知线段AC 为圆的直径,设圆心为O ,故P A ―→+PC ―→=2PO ―→=(-4,0),设B (a ,b ),则a 2+b 2=1且a ∈[-1,1],PB ―→=(a -2,b ),所以P A ―→+PB ―→+PC ―→=(a -6,b ).故|P A ―→+PB ―→+PC ―→|=-12a +37,所以当a =-1时,|P A ―→+PB ―→+PC ―→|取得最大值49=7.[解题技法]平面向量与三角函数的综合问题的解题思路(1)若给出的向量坐标中含有三角函数,求角的大小,解题思路是运用向量共线或垂直的坐标表示,或等式成立的条件等,得到三角函数的关系式,然后求解.(2)若给出的向量坐标中含有三角函数,求向量的模或者向量的其他表达形式,解题思路是利用向量的运算,结合三角函数在定义域内的有界性或基本不等式进行求解.[题组训练]1.已知a =(cos α,sin α),b =(cos(-α),sin(-α)),那么a ·b =0是α=k π+π4(k ∈Z)的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵a ·b =cos α·cos(-α)+sin α·sin(-α)=cos 2α-sin 2α=cos 2α,若a ·b =0,则cos 2α=0,∴2α=2k π±π2(k ∈Z),解得α=k π±π4(k ∈Z).∴a ·b =0是α=k π+π4(k ∈Z)的必要不充分条件.故选B.2.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n = (cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3解析:选C 由m ⊥n ,得m ·n =0,即3cos A -sin A =0,由题意得cos A ≠0,∴t a n A =3,又A ∈(0,π),∴A =π3.又a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c (R 为△ABC 外接圆半径),且a cos B +b cos A =c sin C ,所以c =c sin C ,所以sin C =1,又C ∈(0,π),所以C =π2,所以B =π-π3-π2=π6.。
08第八章 平面向量【讲义】

第八章 平面向量一、基础知识定义1 既有大小又有方向的量,称为向量。
画图时用有向线段来表示,线段的长度表示向量的模。
向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。
书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。
零向量和零不同,模为1的向量称为单位向量。
定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。
定理1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。
加法和减法都满足交换律和结合律。
定理2 非零向量a, b 共线的充要条件是存在实数0,使得a= f≠λ.b λ定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。
定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。
定义4 向量的数量积,若非零向量a, b 的夹角为,则a, b 的数量积记作a ·b=|a|·|b|cos θθ=|a|·|b|cos<a, b>,也称内积,其中|b|cos 叫做b 在a 上的投影(注:投影可能为负值)。
θ定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2), 1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2), 2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c ,3.a ·b=x 1x 2+y 1y 2, cos(a, b)=(a, b 0),222221212121yx y x y y x x +⋅++≠4. a//b x 1y 2=x 2y 1, a b x1x2+y 1y 2=0.⇔⊥⇔定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使,λ叫P 分21PP P P λ=21P P 所成的比,若O 为平面内任意一点,则。
6.1平面向量的概念课件共34张PPT

探究点二 相等向量与共线向量
如图,O是正六边形DEF的中心,分别写出图中与向量
→ OA
,
O→B,O→C相等的向量,与向量A→D共线的向量.
解析: 与O→A相等的向量有C→B,D→O,E→F; 与O→B相等的向量有F→A,E→O,D→C; 与O→C相等的向量有A→B,F→O,E→D. 与向量A→D共线的向量有9个:D→A,E→F,F→E,A→O,O→A,O→D,D→O,B→C, → CB.
探究点三 向量的表示及应用 在蔚蓝的大海上,有一艘巡逻艇在执行巡逻任务.它首先从A点出
发向西航行了200 km到达B点,然后改变航行方向,向西偏北50°航行了 400 km到达C点,最后又改变航行方向,向东航行了200 km到达D点.此时, 它完成了此片海域的巡逻任务.
(1)作出A→B,B→C,C→D; (2)求|A→D|.
[对点训练] 在等腰梯形ABCD中,AB∥CD,对角线AC与BD相交于点O,EF是过点O 且平行于AB的线段,在所标的方向向量中: (1)写出与A→B共线的向量; (2)写出与E→F方向相同的向量; (3)写出与O→B,O→D的模相等的向量; (4)写出与E→O相等的向量.
解析: 在等腰梯形ABCD中,AB∥CD∥EF,AD=BC. (1)题干图中与A→B共线的向量有D→C,E→O,O→F,E→F. (2)题干图中与E→F方向相同的向量有A→B,D→C,E→O,O→F. (3)题干图中与O→B的模相等的向量为A→O,与O→D的模相等的向量为O→C. (4)题干图中与E→O相等的向量为O→F.
→ 2.已知D为平行四边形ABPC两条对角线的交点,则|P→D|的值为( )
|AD|
A.12
B.13
C.1
D.2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模. (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. (5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量.例1.若向量a 与b 不相等,则a 与b 一定( )A .有不相等的模B .不共线C .不可能都是零向量D .不可能都是单位向量例2..给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB u u u r =DC u u ur 等价于四边形ABCD 为平行四边形;③若a =b ,b =c ,则a =c ;④a =b 等价于|a |=|b |且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c .其中正确命题的序号是( )A .②③B .①②C .③④D .④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则(1)交换律:a +b =b +a ;(2)结合律: (a +b )+c =a +(b +c )平行四边形法则减法求a 与b 的相反向量-b 的和的运算叫做a 与b 的差三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μ a )=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b )=λa +λb例3:化简AC -BD +CD -AB 得( ) A.AB B.DA C.BC D .0例4:(1)如图,在正六边形ABCDEF 中,BA u u u r +CD u u u r +EF u u u r=( )A .0B .BE u u u rC .AD u u u rD .CF u u u r(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE u u u r =λ1ABu u u r +λ2AC u u u r(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a +2b )-2(b -2a )化简成最简式为______________.2.若|OA →+OB →|=|OA →-OB →|,则非零向量OA →,OB →的关系是( ) A .平行 B .重合 C .垂直 D .不确定3.若菱形ABCD 的边长为2,则|AB u u u r -CB u u ur +CD u u u r |=________4.D 是△ABC 的边AB 上的中点,则向量CD u u u r等于( )A .-BC u u u r +12BA u u u r B .-BC u u u r -12BA u u u r C .BC u u u r -12BA u u u r D .BC u u u r +12BA u u u r5.若A ,B ,C ,D 是平面内任意四点,给出下列式子:①AB u u u r +CD u u u r =BC u u u r +DA u u u r ;②AC u u u r +BD u u u r =BC u u u r +AD u u u r;③AC u u u r -BD u u u r =DC u u u r +AB u u u r.其中正确的有( )A .0个B .1个C .2个D .3个6.如图,在△ABC 中,D ,E 为边AB 的两个三等分点,CA →=3a ,CB →=2b ,求CD →,CE →.DD 12 巩固练习 1。
16a +6b 2。
C 3。
2 4。
A 5。
C 6.解:AB →=AC →+CB →=-3a +2b ,∵D ,E 为AB →的两个三等分点,∴AD →=13AB →=-a +23b =DE →. ∴CD →=CA →+AD →=3a -a +23b =2a +23b .∴CE→=CD →+DE →=2a +23b -a +23b =a +43b.3.共线向量定理:向量a (a ≠0)与b 共线等价于存在唯一一个实数λ,使得b =λa .例5.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________例6. 设两个非零向量a 与b 不共线,(1)若AB u u u r=a +b ,BC u u u r =2a +8b ,CD u u u r =3(a -b ),求证:A ,B ,D 三点共线.(2)试确定实数k ,使k a +b 和a +k b 共线. 巩固练习: 1.给出下列命题:①两个具有公共终点的向量,一定是共线向量.②两个向量不能比较大小,但它们的模能比较大小.③λa =0(λ为实数),则λ必为零.④λ,μ为实数,若λa =μb ,则a 与b 共线.其中错误的命题的个数为( ) A .1 B .2 C .3 D .42.如图,已知AB u u u r =a ,AC u u u r =b ,BD u u u r =3DC u u u r ,用a ,b 表示AD u u u r ,则AD u u u r=( )A .a +34b B.14a +34b C.14a +14bD.34a +14b 3.已知向量a ,b ,c 中任意两个都不共线,但a +b 与c 共线,且b +c 与a 共线,则向量a +b +c =( ) A .a B .b C .cD .04如图,在△ABC 中,∠A =60°,∠A 的平分线交BC 于D ,若AB =4,且AD u u u r =14AC u u u r +λAB u u u r(λ∈R ),则AD 的长为( )A .2 3B .3 3C .4 3D .5 35.在▱ABCD 中,AB u u u r =a ,AD u u u r =b ,AN u u u r =3NC u u u r ,M 为BC 的中点,则MN u u u u r=________(用a ,b 表示).6.设点M 是线段BC 的中点,点A 在直线BC 外,BC u u u r 2=16,|AB u u u r +AC u u u r |=|AB u u u r -AC u u u r |,则|AM u u u u r|=________.例5.-13例6. [解] (1)证明:∵AB u u u r =a +b ,BC u u u r =2a +8b ,CD u u u r =3(a -b ),∴BD u u u r =BC u u u r +CD u u u r =2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB u u u r .∴AB u u u r ,BD u u u r共线,又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)∵k a +b 与a +k b 共线,∴存在实数λ,使k a +b =λ(a +k b ),即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的两个非零向量, ∴k -λ=λk -1=0,∴k 2-1=0.∴k =±1. C B D B -14a +14b 24.向量的中线公式: 若P 为线段AB 的中点,O 为平面内一点,则OP u u u r =12(OA u u u r +OB u u u r).5.三点共线等价关系A ,P ,B 三点共线⇔AP u u u r =λAB u u u r(λ≠0)⇔OP u u u r =(1-t )·OA u u u r +t OB u u u r (O 为平面内异于A ,P ,B 的任一点,t ∈R)⇔OP u u u r =x OA u u u r +y OB u u u r(O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1).第二节 平面向量的基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模:设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB u u u r =(x 2-x 1,y 2-y 1),|AB u u u r |=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.a ∥b ⇔x 1y 2-x 2y 1=0.例7.若A (0,1),B (1,2),C (3,4),则AB →-2BC →=________例8.已知点M (5,-6)和向量a =(1,-2),若MN u u u u r=-3a ,则点N 的坐标为( )A .(2,0)B .(-3,6)C .(6,2)D .(-2,0)例9.已知A (-2,4),B (3,-1),C (-3,-4).设AB u u u r=a ,BC u u u r =b ,CA u u u r =c .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .巩固练习:1.若向量a =(1,1),b =(-1,1),c =(4,2),则c =( ) A .3a +b B .3a -b C .-a +3b D .a +3b2.已知向量a =(x ,y ),b =(-1,2),且a +b =(1,3),则|a |等于( ) A. 2 B. 3 C. 5 D.103.已知向量a =(-3,2),b =(x ,-4),若a ∥b ,则x =( ) A .4 B .5 C .6 D .74.设点A (2,0),B (4,2),若点P 在直线AB 上,且|AB →|=2|AP →|,则点P 的坐标为( ) A .(3,1) B .(1,-1) C .(3,1)或(1,-1) D .无数多个5.已知a =(1,2),b =(-3,2),当k a +b 与a -3b 平行时,k =( ) A.14 B .-14 C .-13 D.136.已知向量a =(cos θ,sin θ),向量b =(3,-1),则|2a -b |的最大值、最小值分别是( )D A .4 2,0 B .4 2,4 C .16,0 D .4,07.已知向量a =(1,2),b =(-2,3),c =(4,1),若用a 和b 表示c ,则c =________.8.已知向量a =(3,1),b =(1,3),c =(k,7),若(a -c )∥b ,则k =________..例7.(-3,-3) 例8.A 例9.解:由已知得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎨⎧ -6m +n =5,-3m +8n =-5,解得⎩⎨⎧m =-1,n =-1.B C C C C D 2a -b 5平面向量基本定理及其应用:如果,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.特别注意:若e 1,e 2是同一平面内的两个不共线向量, a =λ1e 1+λ2e 2,2211e e b μμ+=则⎩⎨⎧==⇔=2211μλμλb a例10:(1)如图,平面内有三个向量OA →,OB →,OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=23,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.(2)已知,AD BE u u u r u u u r 分别是ABC ∆的边,BC AC 上的中线,且,AD a BE b ==u u u r r u u u r r ,则BC u u u r可用向量,a b r r 表示为_____(3).如图,已知C 为OAB ∆边AB 上一点,且),(,2R n m n m ∈+==,则mn =__________变式训练:1.在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+u u u r u u u r u u u r u u u r u u u r,,则λ=( )AA .23B .13C .13-D .23-2..设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.3.若M 为ABC ∆内一点,且满足AC AB AM 4143+=,则ABM ∆与ABC ∆的面积之比为_________.4..若点M 是△ABC 所在平面内的一点,且满足5AM →=AB →+3AC →,则△ABM 与△ABC 的面积比为 ( )C A.15B.25C.35D.925例10:6 2433a b +r r29 A 12 1:4 C平面向量共线的坐标表示例11.已知a =(1,2),b =(-3,2),当实数k 取何值时,k a +2b 与2a -4b 平行?练习:1.已知向量a =(2,3),b =(-1,2),若(m a +n b )∥(a -2b ),则mn等于( )C A .-2 B .2 C .-12 D.122.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式;(2)若AC u u u r =2AB u u u r,求点C 的坐标.3.平面内给定三个向量a =(3,2),b =(-1,2),c =(4,1).(1)求满足a =m b +n c 的实数m ,n ;(2)若(a +k c )∥(2b -a ),求实数k ;例11.解法一:∵2a -4b ≠0,∴存在唯一实数λ,使k a +2b =λ(2a -4b ).将a ,b 的坐标代入上式, 得(k -6,2k +4)=λ(14,-4),得k -6=14λ且2k +4=-4λ,解得k =-1.解法二:同法一有k a +2b =λ(2a -4b ),即(k -2λ)a +(2+4λ)b =0.∵a 与b 不共线,∴⎩⎨⎧k -2λ=0,2+4λ=0.∴k =-1.1.C 2.解:(1)由已知得AB u u u r =(2,-2),AC u u u r =(a -1,b -1),∵A ,B ,C 三点共线,∴AB u u u r ∥AC u u ur .∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC u u u r =2AB u u u r ,∴(a -1,b -1)=2(2,-2).∴⎩⎨⎧ a -1=4,b -1=-4,解得⎩⎨⎧a =5,b =-3.∴点C 的坐标为(5,-3).3.[解] (1)由题意得(3,2)=m (-1,2)+n (4,1),所以⎩⎨⎧-m +4n =3,2m +n =2,得⎩⎪⎨⎪⎧m =59,n =89.(2)a +k c =(3+4k,2+k ),2b -a =(-5,2),由题意得2×(3+4k )-(-5)×(2+k )=0.∴k =-1613平面向量的数量积及应用知识梳理1.两个向量的夹角 (1)定义:已知两个__________向量a 和b ,作OA u u u r =a ,OB uuu r=b ,则__________称作向量a 与向量b 的夹角,记作〈a ,b 〉.(2)范围:向量夹角〈a ,b 〉的范围是__________,且__________=〈b ,a 〉.(3)向量垂直:如果〈a ,b 〉=__________,则a 与b 垂直,记作__________.2.平面向量的数量积(1)平面向量的数量积的定义:__________叫作向量a 和b 的数量积(或内积),记作a ·b =__________.可见,a ·b 是实数,可以等于正数、负数、零.其中|a |cos θ(|b |cos θ)叫作向量a 在b 方向上(b 在a 方向上)的投影.(2)向量数量积的运算律①a ·b =__________(交换律) ②(a +b )·c =__________(分配律) ③(λa )·b =__________=a ·(λb )(数乘结合律).3一、平面向量数量积的运算例1(1)在等边三角形ABC 中,D 为AB 的中点,AB =5,求AB u u u r ·BC uuur ,CD u u u r ;(2)若a =(3,-4),b =(2,1),求(a -2b )·(2a +3b )和|a +2b |.变式训练1.已知下列各式:①|a |2=a 2;②a ·b |a |2=b a ;③(a ·b )2=a 2b 2;④(a -b )2=a 2-2a ·b +b 2,其中正确的有( ). A .1个 B .2个 C .3个 D .4个 2.下列命题中:①→→→→→→→⋅-⋅=-⋅c a b a c b a )(; ② →→→→→→⋅⋅=⋅⋅c b a c b a )()(; ③2()a b →→-2||a →=22||||||a b b →→→-⋅+;④ 若0=⋅→→b a ,则0=→a 或0=→b ; ⑤若,a bc b ⋅=⋅r r r r则a c =r r ; 其中正确的是______(答:①)3.23120oa b a b ==r r r r 已知,,与的夹角为,求2212323a b a b a b a b ⋅--⋅+r r r r r r r r ();();()()()4..已知3a =r ,4b =r ,a r 与b r 的夹角为43π,求(3)(2)a b a b -⋅+r r r r 。