1000W逆变器原理图
1000W正弦波逆变器制作过程详解

1000W正弦波逆变器制作过程详解1000W正弦波逆变器制作过程详解作者:老寿这个机器,输入电压是直流是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器.具体电路图请参考:1000W正弦波逆变器(直流12V转交流220V)电路图也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。
升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。
因为电流较大,所以用了三对6平方的软线直接焊在功率板上:吸取了以前的教训:以前因为PCB设计得不好,打了很多样,花了很多冤枉钱,常常是PCB打样回来了,装了一片就发现了问题,其它的板子就这样废弃了。
所以这次画PCB 时,我充分考虑到板子的灵活性,尽可能一板多用,这样可以省下不少钱,哈哈。
如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感。
上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。
上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4个大功率管,那个白色的东西是0.1R电流取样电阻。
二个直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。
上图是DC-DC升压电路的驱动板,用的是KA3525。
这次共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。
H桥部分的大功率管,我有二种选择,一种是常用的IRFP460,还有一种是IGBT管40N60,显然这二种管子不是同一个档次的,40N60要贵得多,但我的感觉,40N60的确要可靠得多,贵是有贵的道理,但压降可能要稍大一点。
逆变器原理图_框图

车载逆变器的整个电路大体上可分为两大部分,每部分各采用一只TL494或KA7500芯片组成控制电路,其中第一部分电路的作用是将汽车电瓶等提供的12V直流电,通过高频PWM (脉宽调制)开关电源技术转换成30kHz-50kHz、220V左右的交流电;第二部分电路的作用则是利用桥式整流、滤波、脉宽调制及开关功率输出等技术,将30kHz~50kHz、220V左右的交流电转换成50Hz、220V的交流电。
图1电路中,由芯片IC1及其外围电路、三极管VT1、VT3、MOS功率管VT2、VT4以及变压器T1组成12V直流变换为220V/50kHz交流的逆变电路。
由芯片IC2及其外围电路、三极管VT5、VT8、MOS功率管VT6、VT7、VT9、VT10以及220V/50kHz整流、滤波电路VD5-VD8、C12等共同组成220V/50kHz高频交流电变换为220V/50Hz工频交流电的转换电路,最后通过XAC插座输出220V/50Hz交流电供各种便携式电器使用。
图1中IC1、IC2采用了TL494CN(或KA7500C)芯片,构成车载逆变器的核心控制电路。
TL494CN是专用的双端式开关电源控制芯片,其尾缀字母CN表示芯片的封装外形为双列直插式塑封结构,工作温度范围为0℃-70℃,极限工作电源电压为7V~40V,最高工作频率为300kHz。
TL494芯片内置有5V基准源,稳压精度为5 V±5%,负载能力为10mA,并通过其14脚进行输出供外部电路使用。
TL494芯片还内置2只NPN图二本逆变器输入端为汽车蓄电池(+12V,4.5Ah),输出端为工频方波电压(50Hz,220V)。
其系统主电路和控制电路框图如图1所示,采用了典型的二级变换,即DC/DC变换和DC/AC逆变。
12V直流电压通过推挽式变换逆变为高频方波,经高频升压变压器升压,再整流滤波得到一个稳定的约320V直流电压;然后再由桥式变换以方波逆变的方式,将稳定的直流电压逆变成有效值稍大于220V的方波电压,以驱动负载。
1000w 光伏微型逆变方案

1000w 光伏微型逆变方案
一种1000W光伏微型逆变方案可以是采用 MPPT(最大功率点
跟踪)技术的充电控制器和单相逆变器组合。
具体实施方案如下:
1. 光伏面板:选择适当功率的光伏面板组合,总功率为
1000W。
2. 充电控制器:选择功率适配的充电控制器,能够对光伏电池组进行充电、监控和管理。
采用MPPT技术,通过监测光伏
电池的电压和电流,实时跟踪光伏电池的最大功率点,确保最大化光伏电池的输出功率。
3. 逆变器:选择单相逆变器,将光伏电池组的直流电转换为交流电。
逆变器需要具备以下功能:稳定输出电压和频率、提供过压、过载和短路保护、具备网络监测和远程控制功能等。
4. 电池储能系统(可选):如果需要在光伏电池组无法输出或光伏电量不足时继续供电,可以添加电池储能系统。
充电控制器可以控制将多余的光伏电能存储到电池中,在需要时再将电池的电能转换为交流电供给负载。
5. 监控系统:为了方便监测和管理光伏系统的工作状态和性能,可以添加监控系统。
监控系统可以实时显示光伏电池组的输出功率、电压和电流等信息,以及逆变器的运行状态和故障信息。
总结:该方案通过光伏面板将阳光能转换为电能,并通过充电控制器和逆变器将直流电转换为交流电,从而为负载提供1000W的电力供应。
可根据实际需求选配电池储能系统和监控系统,以提高系统的稳定性和可管理性。
逆变器的工作原理和控制技术全解ppt课件

u UN'
a)
O
Ud
u VN'
2
b)
O
u WN'
c)
O
u UV
Ud
d)
O
u NN'
e)
O
u UN
f)
O
iU
g)
O
id
h)
O
2Ud 3
t
t
t
t
Ud 6
t
Ud 3
t
t
22 t
4.4 三相逆变电路结构和工作原理
改进SPWM的技术
直流电压利用率
——逆变电路输出交流电压基波最大幅值U1m和直流电压Ud之比。
设计
uUN'
uVN'
Ud 2
k
k sin
sint t 1200
Ud 2
uWN'
k sin t 2400
关键: uUN’、 uVN’、 uWN’
的幅值小于Ud/2
三次谐波注入法
uWN
uWN'
uNN
'
负载中点电压
uNN '
uUN'
uVN' 3
uWN'
负载三相对称时有uUN+uVN+uWN=0
19
4.4 三相逆变电路结构和工作原理
开关动作与输出电压关系
电压基准点:
以电源中点N’为0电平基准点。
根据电路结构
开关模式
输出电压
U相上开关管导通
逆变电路

逆变电源设计概要大家知道,市电或其他的交流电可以通过二极管或可控硅的单向导电性整流成直流电供给需要使用直流电的场合。
这种把交流电变换成直流电的过程我们叫做整流,也叫做顺变。
那么逆变呢?我们自然地就会想到,应该就是把直流电变换成交流电的过程。
逆变电源就是相对于整流器而言通过半导体功率开关器件的开通和关断把直流电变换成交流电的这么一个装置。
逆变电源也叫做逆变器,下面分单元地讲一下逆变器主要的单元电路。
主要内容为:一.电池输入电路二.辅助电源电路1. 12V电池输入的辅助电源电路2. 24V-48V电池输入的辅助电源电路3. 多路隔离辅助电源电路三.高频逆变器前级电路的设计1. 闭环前级变压器匝数比的设计2. 准开环前级变压器匝数比的设计四.高频逆变器后级电路的设计1. 米勒电容对高压MOS管安全的影响及其解决办法2. IR2110应用中需要注意的问题3. 正弦波逆变器LC滤波器的参数五.逆变器的部分保护电路1. 防反接保护电路2. 电池欠压保护3. 逆变器的过流短路保护电路的设计4. IGBT的驱动和短路保护一.电池输入电路逆变器大多用在车载上,利用汽车上的蓄电池和发电机组成的低压直流供电系统供电。
这个系统上往往还给其他的用电器供电,所以有必要在逆变器的输入端设计一个输入电路保证能滤除大部分来自直流供电系统的纹波和干扰,同时也滤除逆变器对直流供电系统上其他用电器的干扰。
输入电路一般由LC构成,如上图所示:输入电路设计中需要注意的是L要能过足够的电流不会饱和和过热。
LC的参数还要能起到滤波效果。
在实际的电路中也往往在节省成本或要求不高时省去L.二.辅助电源电路。
逆变器除了功率变换回路外,还包含了小信号部分的供电,例如PWM信号芯片的12V供电,运放的单电源或双电源供电,单片机的5V或3.3V供电等。
对上述电路提供一个稳定的纯净的电源供电在逆变器中也显得很重要。
1.12V电池输入的辅助电源电路对于12V电池供电的逆变器,一般经过一级RC滤波给PWM芯片如TL494,SG3525等供电即可。
正弦波逆变器电路图及制作过程

1000W正弦波逆变器制作过程详解
作者:老寿
电路图献上!!
这个机器,输入电压是直流是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器.具体电路图请参考:1000W正弦波逆变器(直流12V转交流220V)电路图
也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。
升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。
:
因为电流较大,所以用了三对6平方的软线直接焊在功率板上
如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感
上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K 的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。
1000瓦正弦波逆变器原理实图

这个机器,BT是12V,也可以是24V,12V时我的目标是800W,力争1000W,整体结构是学习了钟工的3000W机器,也是下面一个大散热板,上面是一块和散热板一样大小的功率主板,长228MM,宽140MM。
升压部分的4个功率管,H桥的4个功率管及4个TO220封装的快速二极管直接拧在散热板;DC-DC升压电路的驱动板和SPWM的驱动板直插在功率主板上。
因为电流较大,所以用了三对6平方的软线直接焊在功率板上:吸取了以前的教训:以前因为PCB设计得不好,打了很多样,花了很多冤枉钱,常常是PCB打样回来了,装了一片就发现了问题,其它的板子就这样废弃了。
所以这次画PCB时,我充分考虑到板子的灵活性,尽可能一板多用,这样可以省下不少钱,哈哈。
如上图:在板子上预留了一个储能电感的位置,一般情况用准开环,不装储能电感,就直接搭通,如果要用闭环稳压,就可以在这个位置装一个EC35的电感。
上图红色的东西,是一个0.6W的取样变压器,如果用差分取样,这个位置可以装二个200K的降压电阻,取样变压器的左边,一个小变压器样子的是预留的电流互感器的位置,这次因为不用电流反馈,所以没有装互感器,PCB下面直接搭通。
上面是SPWM驱动板的接口,4个圆孔下面是装H桥的4个大功率管,那个白色的东西是0.1R电流取样电阻。
二个直径40的铁硅铝磁绕的滤波电感,是用1.18的线每个绕90圈,电感量约1MH,磁环初始导磁率为90。
上图是DC-DC升压电路的驱动板,用的是KA3525。
这次共装了二板这样的板,一块频率是27K,用于普通变压器驱动,还有一块是16K,想试试非晶磁环做变压器效果。
这是SPWM驱动板的PCB,本方案用的是张工提供的单片机SPWM芯片TDS2285,输出部分还是用250光藕进行驱动,因为这样比较可靠。
也是为了可靠起见,这次二个上管没有用自举供电,而是老老实实地用了三组隔离电源对光藕进行供电。
因为上面的小变压器在打样,还没有回来,所以这块板子还没有装好。
1000W逆变器

1000W逆变器---带参数表
82937816 称号:助理工程师积分: 288分发帖: 201帖第1帖2008-10-20 10:26
逆变器,1000W.采用4 个EC40加8个场管作为前级驱动.后级采用IRF360做成桥式电路输出,过压过流,高低压保护是最基本保护方式.对于电路上的设计,我个人认为,除有好的电路原理外,最重要的还是采用怎样的电路结构.同一张图,不同的结构,出来的确产品往往差别很大.如下图:
合理的内部设计,能使电源电压输出极为稳定.但还必需配合好的散热.
电路原理图:(改进型)
在使用逆变器过程中,往往出问题是在电池快没电的情况下,这只要是逆变器没计有输出电压的上下限,因为电池电压低时,输出级得到的直流电压也低了,因此场管得不到饱和导通,发热过大而坏.所以给逆变器设计一个好的输出电压上下限是很重要的.
有很多使用过逆变器的朋友,都知12V的大电容比较热.这个只要是因为前级电路处于开关下工作,变压器自感生产很高的尖峰电压,如果不采用合适的方法处理,哪电容发热,坏就常见了.
做一款逆变器,会使用变压器,场管,桥变换电路是最基本与最简单的,逆变器真正精华还是在电路布局,保护电路上.真正做到一款理想的逆变器,不是容易的事情呵!亲手开发的逆变器可能有40款了,新出的肯定要比以前的机要好,但用起来就感觉没有自己想像的好.因为只有这款新产品开了出来了,我才会感觉到下一款的产品如何改进.
在这里不多说了,如果要详细了解逆变器方面的,可以到电源网我的个人空间上看看.
http://www.mm
QQ:417278103,可以直接聊嘛!大家交流交流!到我的空里,保证你不白跑.。