三种数值分析方法报告

合集下载

数值分析综合实验报告

数值分析综合实验报告

一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。

二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。

(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。

(2)Newton法:利用函数的导数信息,通过迭代逼近根。

(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。

3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。

(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。

(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。

三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。

(2)计算插值多项式在未知点的函数值。

2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。

(2)计算插值多项式在未知点的函数值。

3. 方程求根方法(1)输入方程和初始值。

(2)选择求解方法(二分法、Newton法、不动点迭代法)。

(3)迭代计算,直到满足精度要求。

4. 数值积分方法(1)输入被积函数和积分区间。

(2)选择积分方法(矩形法、梯形法、辛普森法)。

(3)计算积分值。

四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。

(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。

2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。

(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。

(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。

3. 数值积分方法(1)矩形法:计算简单,但精度较低。

数据报告分析方法和技巧

数据报告分析方法和技巧

数据报告分析方法和技巧一、引言数据报告是现代企业决策和运营中不可或缺的一部分。

随着信息技术的飞速发展,数据的收集和分析变得更加便捷和全面。

然而,如何正确地分析数据,并从中获取有价值的洞察成为了一个关键的问题。

本文将介绍几种常用的数据报告分析方法和技巧,并探讨它们的优缺点和应用场景。

二、描述性统计分析描述性统计分析是最基本的数据分析方法之一。

通过对数据的集中趋势、离散程度和分布形态进行统计,可以帮助我们对数据的整体特征有一个直观的了解。

常用的描述性统计分析方法包括平均值、中位数、标准差、四分位数、频率分布等。

这些统计指标可以帮助我们揭示数据中的规律和趋势,为后续的分析提供基础。

三、相关性分析相关性分析是一种用于衡量两个或多个变量之间关系强度的方法。

通过计算变量之间的相关系数,我们可以判断它们是正相关、负相关还是不存在相关性。

常用的相关性分析方法包括皮尔逊相关系数和斯皮尔曼等级相关系数。

相关性分析可以帮助我们了解变量之间的关联程度,为后续的预测和决策提供依据。

四、回归分析回归分析是一种用于揭示自变量和因变量之间关系的统计方法。

通过建立回归模型,我们可以预测因变量在给定自变量的情况下的数值。

回归分析可以帮助我们理解自变量对因变量的影响程度和方向,并通过模型评估和预测对未来进行预测。

常用的回归分析方法包括线性回归、多项式回归和逻辑回归等。

五、聚类分析聚类分析是一种用于将数据集划分为相似的子集或群体的方法。

通过计算变量之间的相似度,可以将数据点划分为不同的聚类簇。

聚类分析可以帮助我们发现数据中的隐藏模式和群体,并为个性化推荐、市场细分等提供支持。

常用的聚类分析方法包括k-means聚类和层次聚类等。

六、时间序列分析时间序列分析是一种用于揭示时间相关数据的演变规律的方法。

通过对时间序列数据进行建模,我们可以预测未来的趋势和波动。

时间序列分析可以帮助我们了解事件的周期性、趋势性和季节性,并制定相应的策略。

常用的时间序列分析方法包括移动平均、指数平滑和ARIMA模型等。

数值分析计算方法实验报告

数值分析计算方法实验报告
break;
end;
end;
X=x;
disp('迭代结果:');
X
format short;
输出结果:
因为不收敛,故出现上述情况。
4.超松弛迭代法:
%SOR法求解实验1
%w=1.45
%方程组系数矩阵
clc;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
b=[10,5,-2,7]'
b=[10,5,-2,7]'
[m,n]=size(A);
if m~=n
error('矩阵A的行数和列数必须相同');
return;
end
if m~=size(b)
error('b的大小必须和A的行数或A的列数相同');
return;
end
if rank(A)~=rank([A,b])
error('A矩阵的秩和增广矩阵的秩不相同,方程不存在唯一解');
3.实验环境及实验文件存档名
写出实验环境及实验文件存档名
4.实验结果及分析
输出计算结果,结果分析和小结等。
解:1.高斯列主元消去法:
%用高斯列主元消去法解实验1
%高斯列主元消元法求解线性方程组Ax=b
%A为输入矩阵系数,b为方程组右端系数
%方程组的解保存在x变量中
format long;
A=[2,10,0,-3;-3,-4,-12,13;1,2,3,-4;4,14,9,-13]
return;
end
c=n+1;
A(:,c)=b;
for k=1:n-1

数值分析积分实验报告(3篇)

数值分析积分实验报告(3篇)

第1篇一、实验目的本次实验旨在通过数值分析的方法,研究几种常见的数值积分方法,包括梯形法、辛普森法、复化梯形法和龙贝格法,并比较它们在计算精度和效率上的差异。

通过实验,加深对数值积分理论和方法的理解,提高编程能力和实际问题解决能力。

二、实验内容1. 梯形法梯形法是一种基本的数值积分方法,通过将积分区间分割成若干个梯形,计算梯形面积之和来近似积分值。

实验中,我们选取了几个不同的函数,对积分区间进行划分,计算积分近似值,并与实际积分值进行比较。

2. 辛普森法辛普森法是另一种常见的数值积分方法,它通过将积分区间分割成若干个等距的区间,在每个区间上使用二次多项式进行插值,然后计算多项式与x轴围成的面积之和来近似积分值。

实验中,我们对比了辛普森法和梯形法的计算结果,分析了它们的精度差异。

3. 复化梯形法复化梯形法是对梯形法的一种改进,通过将积分区间分割成多个小区间,在每个小区间上使用梯形法进行积分,然后计算所有小区间积分值的和来近似积分值。

实验中,我们对比了复化梯形法和辛普森法的计算结果,分析了它们的精度和效率。

4. 龙贝格法龙贝格法是一种通过外推加速提高计算精度的数值积分方法。

它通过比较使用不同点数(n和2n)的积分结果,得到更高精度的积分结果。

实验中,我们使用龙贝格法对几个函数进行积分,并与其他方法进行了比较。

三、实验步骤1. 编写程序实现梯形法、辛普森法、复化梯形法和龙贝格法。

2. 选取几个不同的函数,对积分区间进行划分。

3. 使用不同方法计算积分近似值,并与实际积分值进行比较。

4. 分析不同方法的精度和效率。

四、实验结果与分析1. 梯形法梯形法在计算精度上相对较低,但当积分区间划分足够细时,其计算结果可以接近实际积分值。

2. 辛普森法辛普森法在计算精度上优于梯形法,但当积分区间划分较细时,计算量较大。

3. 复化梯形法复化梯形法在计算精度上与辛普森法相当,但计算量较小。

4. 龙贝格法龙贝格法在计算精度上优于复化梯形法,且计算量相对较小。

数值分析实验报告

数值分析实验报告

数值分析实验报告
一、实验背景
本实验主要介绍了数值分析的各种方法。

在科学计算中,为了求解一
组常微分方程或一些极限问题,数值分析是一种有用的方法。

数值分析是
一种运用计算机技术对复杂模型的问题进行数学分析的重要手段,它利用
数学模型和计算机程序来解决复杂的数学和科学问题。

二、实验内容
本实验通过MATLAB软件,展示了以下几种数值分析方法:
(1)拉格朗日插值法:拉格朗日插值法是由法国数学家拉格朗日发
明的一种插值方法,它可以用来插值一组数据,我们使用拉格朗日插值法
对给定的点进行插值,得到相应的拉格朗日多项式,从而计算出任意一个
点的函数值。

(2)最小二乘法:最小二乘法是一种常用的数据拟合方法,它可以
用来拟合满足一定函数的点的数据,它的主要思想是使得数据点到拟合曲
线之间的距离的平方和最小。

(3)牛顿插值法:牛顿插值法是一种基于差商的插值方法,它可以
用来插值一组数据,可以求得一组数据的插值函数。

(4)三次样条插值:三次样条插值是一种基于三次样条的插值方法,它可以用来对一组数据进行插值,可以求得一组数据的插值函数。

三、实验步骤
1.首先启动MATLAB软件。

数值分析原理实验报告

数值分析原理实验报告

一、实验目的通过本次实验,掌握数值分析的基本原理和方法,了解数值分析在科学和工程领域的应用,培养动手能力和分析问题的能力。

二、实验内容1. 二分法求方程根(1)原理:二分法是一种在实数域上寻找函数零点的算法。

对于连续函数f(x),如果在区间[a, b]上f(a)f(b)<0,则存在一个根在区间(a, b)内。

二分法的基本思想是将区间[a, b]不断二分,缩小根所在的区间,直到满足精度要求。

(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化区间[a, b]和中间点c=a+(b-a)/2;③ 判断f(c)与f(a)的符号,若符号相同,则将区间缩小为[a, c],否则缩小为[c,b];④ 重复步骤②和③,直到满足精度要求;⑤ 输出根的近似值。

2. 牛顿法求方程根(1)原理:牛顿法是一种在实数域上寻找函数零点的算法。

对于可导函数f(x),如果在点x0附近,f(x0)f'(x0)≠0,则存在一个根在点x0附近。

牛顿法的基本思想是通过泰勒展开近似函数,然后求解近似方程的根。

(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化迭代次数n=0,近似根x0;③ 计算导数f'(x0);④ 求解近似方程x1=x0-f(x0)/f'(x0);⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1,n=n+1,返回步骤③。

3. 雅可比迭代法解线性方程组(1)原理:雅可比迭代法是一种解线性方程组的迭代算法。

对于线性方程组Ax=b,雅可比迭代法的基本思想是利用矩阵A的对角线元素将方程组分解为多个一元线性方程,然后逐个求解。

(2)实验步骤:① 输入系数矩阵A和常数向量b;② 初始化迭代次数n=0,近似解向量x0;③ 计算对角线元素d1, d2, ..., dn;④ 更新近似解向量x1=x0-A/d1, x2=x0-A/d2, ..., xn=x0-A/dn;⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1, x2, ..., xn,n=n+1,返回步骤③。

数值分析高斯顺序消去法、列主元消去法LU分解法

数值分析高斯顺序消去法、列主元消去法LU分解法

数值分析实验报告(1)学院:信息学院班级:计算机0903班姓名:***学号:********课题一A.问题提出给定下列几个不同类型的线性方程组,请用适当的方法求解线性方程组1、设线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------------------------1368243810041202913726422123417911101610352431205362177586832337616244911315120130123122400105635680000121324⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x =⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-2119381346323125 x *= ( 1, -1, 0, 1, 2, 0, 3, 1, -1, 2 )T2、设对称正定阵系数阵线方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------------19243360021411035204111443343104221812334161206538114140231212200420424⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡87654321x x x x x x x x = ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---4515229232060 x * = ( 1, -1, 0, 2, 1, -1, 0, 2 )T3、三对角形线性方程组⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------------------4100000000141000000001410000000014100000000141000000001410000000014100000000141000000001410000000014⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡10987654321x x x x x x x x x x = ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----5541412621357 x *= ( 2, 1, -3, 0, 1, -2, 3, 0, 1, -1 )TB.(1)对上述三个方程组分别用Gauss 顺序消去法与Gauss 列主元消去法;平方根 与改进平方根法;追赶法求解(选择其一) (2)编写算法通用程序(3)在应用Gauss 消去时,尽可能利用相应程序输出系数矩阵的三角分解式C.(1)通过该课题的程序编制,掌握模块化结构程序设计方法 (2)掌握求解各类线性方程组的直接方法,了解各种方法的特点 (3)体会高斯消去法选主元的必要性 实验步骤:(高斯消去法,列主元,LU )1顺序高斯消去法2.LU 分解法3.列主元高斯消去法(如下图)(1)高斯消去法运行结果如下(2)对方程的系数矩阵进行LU分解并求出方程组的解(3)列主元高斯消去法实验体会总结:利用gauss消去法解线性方程组的时候,如果没有经过选主元,可能会出现数值不稳定的现象,使得方程组的解偏离精确解。

数值分析上机实践报告

数值分析上机实践报告

数值分析上机实践报告一、实验目的本次实验主要目的是通过上机操作,加深对数值分析算法的理解,并熟悉使用Matlab进行数值计算的基本方法。

在具体实验中,我们将实现三种常见的数值分析算法:二分法、牛顿法和追赶法,分别应用于解决非线性方程、方程组和线性方程组的求解问题。

二、实验原理与方法1.二分法二分法是一种常见的求解非线性方程的数值方法。

根据函数在给定区间端点处的函数值的符号,不断缩小区间的长度,直到满足精度要求。

2.牛顿法牛顿法是求解方程的一种迭代方法,通过构造方程的泰勒展开式进行近似求解。

根据泰勒展式可以得到迭代公式,利用迭代公式不断逼近方程的解。

3.追赶法追赶法是用于求解三对角线性方程组的一种直接求解方法。

通过构造追赶矩阵,采用较为简便的向前追赶和向后追赶的方法进行计算。

本次实验中,我们选择了一组非线性方程、方程组和线性方程组进行求解。

具体的实验步骤如下:1.调用二分法函数,通过输入给定区间的上下界、截止误差和最大迭代次数,得到非线性方程的数值解。

2.调用牛顿法函数,通过输入初始迭代点、截止误差和最大迭代次数,得到方程组的数值解。

3.调用追赶法函数,通过输入追赶矩阵的三个向量与结果向量,得到线性方程组的数值解。

三、实验结果与分析在进行实验过程中,我们分别给定了不同的参数,通过调用相应的函数得到了实验结果。

下面是实验结果的汇总及分析。

1.非线性方程的数值解我们通过使用二分法对非线性方程进行求解,给定了区间的上下界、截止误差和最大迭代次数。

实验结果显示,根据给定的输入,我们得到了方程的数值解。

通过与解析解进行比较,可以发现二分法得到的数值解与解析解的误差在可接受范围内,说明二分法是有效的。

2.方程组的数值解我们通过使用牛顿法对方程组进行求解,给定了初始迭代点、截止误差和最大迭代次数。

实验结果显示,根据给定的输入,我们得到了方程组的数值解。

与解析解进行比较,同样可以发现牛顿法得到的数值解与解析解的误差在可接受范围内,说明牛顿法是有效的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方差分析(Analysis of variance, ANOV A )的基本思想是将所有观察值的总变异分解成不同的变异来源,即对总变异的自由度和平方和进行分解,进而获得不同变异来源的方差估计值。

这种方法是从观测样本变量的方差入手,研究诸多控制变量中哪些是对观测变量有显著影响的变量。

系统聚类分析(Hierarchical Cluster Analysis, HCA )根据一批样本(参数)的亲疏程度对观测样本进行分类,是将对象的集合区分并加以组合成由类似的对象组成的多个类的分类过程,其目标就是在收集数据的基础上,根据相似度来进行分类。

分类的依据一般按照样本间的距离或相似系数来进行,按样本间的距离来定义类间距离,首先将n 个样本各自看作一类,然后对两类之间距离最小的样本进行合并,最后重新计算类间距离。

这种区分和合并的过程反复进行,直到所有的样本可以合并为一类,结果最终会在聚类系谱图中反映。

SAS 软件中,系统聚类分析运行程序如下:
121211211
12222
12@;
@1,2;
;
12;
@;
;@;
@;
;
n n x x x n n j j nj
x x x data input i i i j cards x x x x x x j x x x proc cluster methou average outtree var i i i ID proc tree data horizontal graphics run ===
其中观察对象名用@来表示,每一行变量所对应的观察对象序号用1,2……j 来表示,x 为变量,i x1,i x2……i xn 为每一列变量所对应的变量名,每一行变量数用n 表示,j 为每一列观察值总数(变量数),method=average 表示算法为类平均法。

主成分分析(Principal Component Analysis, PCA )是一个减少变量个数、简化数据结构的有效工具,通过线性转换将多个变量中选出较少个数重要变量的一种重要的多元统计分析方法。

这种分析方法的特点就是简化运算,因为在分析多个变量数据的过程中,各个变量之间往往会存在着一定的相关性联系,如果用多元分析方法同时对这些变量进行分析往往会很复杂。

可以利用变量之间的相关性来从新构造一个能反映原变量信息的综合参数(变量),在此基础上再进行分析,这样会大大简化分析的过程。

比如有p 个数值变量,通过主成分分析会由这些变量产生p 个主分量。

其中原始变量的每一个线性组合会形成一个分量,其系统为数值变量的相关系数矩阵(或方差、协方差矩阵)的特征向量,特征值为方差。

排列顺序按照主分量的特征值大小,第一主分量为特征值最大的一个,具有最大的方差。

主成分分析运行程序如下:
121211211
12222
12;
@$1,2;
;
12;
;
;1;
in;@;
123;
;
in 2*1@;
in 2*1n n x x x n n j j nj
x x x data input i i i j cards x x x x x x j x x x proc princomp out crimcomp proc sport by prin proc pr ID var prin prin prin i i i proc plot plot pr prin plot pr prin ===
@;
in 2*1@;
;plot pr prin run =
其中观察对象名用@来表示,每一行变量所对应的观察对象序号用1,2……j 来表示,x 为变量,i x1,i x2……i xn 为每一列变量所对应的变量名,每一行变量数用n 表示,j 为每一列观察值总数(变量数),method=average 表示算法为类平均法。

主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差一协 方差结构。

综合指标即为主成分。

所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关。

聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程。

其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。

也就是说,聚类分析 是把研究对象视作多维空间中的许多点,并合理地分成若干类,因此它是一种根据变量域之间的相似性而逐步归群成类的方法,它能客观地反映这些变量或区域之间的内在组合关系。

聚类分析是通过一个大的对称矩阵来探索相关关系的一种数学分析方法,是多元统计分析方法,分析的结果为群集。

对向量聚类后,我们对数据的处理难度也自然降低,所以从某种意义上说,聚类分析也起到了降维的作用。

并且新的变量彼此间互不相关,消除了多重共线性。

这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量。

在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x ,x2,…,x3,经过坐标变换,将原有的p 个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到。

在诸多主
成分zi中,z.在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。

并且新的变量彼此间互不相关,消除了多重共线性。

主成分分析是研究如何通过少数几个主成分来解释多变量的方差一协方差结构的分析方法,也就是求出少数几个主成分(变量),使它们尽可能多地保留原始变量的信息,且彼此不相关。

它是一种数学变换方法,即把给定的一组变量通过线性变换,转换为一组不相关的变量(两两相关系数为0,或样本向量彼此相互垂直的随机变量),在这种变换中,保持变量的总方差(方差之和)不变,同时具有最大方差,称为第一主成分;具有次大方差,称为第二主成分。

依次类推。

若共有P个变量,实际应用中一般不是找P个主成分,而是找出m(m<p)个主成分就够了,只要这m个主成分能反映原来所有变量的绝大部分的方差。

主成分分析可以作为因子分析的一种方法出现。

聚类分析算法是给定in维空间R中的n个向量,把每个向量归属到k个聚类中的某一个,使得每一个向量与其聚类中心的距离最小。

聚类可以理解为:类内的相关性尽量大,类间相关性尽量小。

聚类问题作为一种无指导的学习问题,目的在于通过把原来的对象集合分成相似的组或簇,来获得某种内在的数据规律。

聚类分析中并没于产生新变量,但是主成分分析产生了新变量。

主成分分析中为了消除量纲和数量级,通常需要将原始数据进行标准化,将其转化为均值为0,方差为1的无量纲数据。

聚类分析中如果参与聚类的变量的量纲不同会导致错误的聚类结果。

因此在聚类过程进行之前必须对变量值进行标准化,即消除量纲的影响。

不同方法进行标准化,会导致不同的聚类结果要注意变量的分布。

如果是正态分布应该采用z分数法。

主成分分析
1、优点。

首先它利用降维技术用少数几个综合变量来代替原始多个变量,这些综合变量集中了原始变量的大部分信息。

其次它通过计算综合主成分函数得分,对客观经济现象进行科学评价再次它在应用上侧重于信息贡献影响力综合评价。

2、缺点。

当主成分的因子负荷的符号有正有负时,综合评价函数意义就不明确。

命名清晰性低。

聚类分析
1、优点:聚类分析模型的优点就是直观,结论形式简明。

2、缺点:在样本量较大时,要获得聚类结论有一定困难。

由于相似系数是根据被试的反映来建立反映被试问内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。

相关文档
最新文档