数学竞赛-奇数和偶数
新课标小学数学奥林匹克辅导及练习 奇数与偶数(一)(含答案)-

奇数与偶数(一)阅读思考:其实,在日常生活中同学们就已经接触了很多的奇数、偶数。
凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。
因为偶数是2的倍数,所以通常用2k这个式子来表示偶数(这里k是整数)。
因为任何奇数除以2其余数都是1,所以通常用式子21k+来表示奇数(这里k是整数)。
奇数和偶数有许多性质,常用的有:性质1 两个偶数的和或者差仍然是偶数。
例如:8+4=12,8-4=4等。
两个奇数的和或差也是偶数。
例如:9+3=12,9-3=6等。
奇数与偶数的和或差是奇数。
例如:9+4=13,9-4=5等。
单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。
性质2 奇数与奇数的积是奇数。
例如:91199⨯=等偶数与整数的积是偶数。
例如:25102816,等。
⨯=⨯=性质3 任何一个奇数一定不等于任何一个偶数。
例1. 有5张扑克牌,画面向上。
小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?分析与解答:同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。
要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。
5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。
而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。
所以无论他翻动多少次,都不能使5张牌画面都向下。
例2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。
那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?分析与解答:不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。
所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。
小学奥数数论专题--奇数与偶数(六年级)竞赛测试.doc

小学奥数数论专题--奇数与偶数(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】的和是奇数还是偶数?【答案】奇数【解析】在1至1993中,共有1993个连续自然数,其中997个奇数,996个偶数,即共有奇数个奇数,那么原式的计算结果为奇数.【题文】得数是奇数还是偶数?【答案】偶数【解析】偶数。
原式中共有60个连续自然数,奇数开头偶数结尾说明有30个奇数,为偶数个。
【题文】得数是奇数还是偶数?【答案】偶数【解析】200至288共89个数,其中偶数比奇数多1,44个奇数的和是偶数;151至233共83个数,奇数比偶数多1,42个奇数,为偶数;偶数减去偶数仍为偶数。
【题文】的计算结果是奇数还是偶数,为什么?【答案】奇数【解析】特殊数字:“”.在这个算式中,所有做乘法运算的都是奇数偶数,所以它们的乘积都是偶数,这些偶数相加的结果还是偶数,只有是奇数,又因为奇数偶数奇数,所以这个题的计算结果是奇数.【题文】的和是奇数还是偶数?为什么?【答案】偶数【解析】在算式中,都出现了次,所以是偶数,而也是偶数,所以的和是偶数.【题文】东东在做算术题时,写出了如下一个等式:,他做得对吗?【答案】不对【解析】等式左边是偶数,是奇数,是偶数,根据奇数偶数奇数,等式右边是奇数,偶数不等于奇数,因此东东写出的等式是不对的.【题文】能否在下式的“□”内填入加号或减号,使等式成立,若能请填入符号,不能请说明理由(1)1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=10(2)1 □ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=27【答案】(1)不能(2)可以【解析】不能。
很多学生拿到这个题就开始试数,试了半天也试不出来因为,这时给他讲解,原式有5个奇数,无论经加、减运算后结果一定是奇数。
初中数学竞赛整数的性质及应用(一) 奇数与偶数

整数的性质及应用(一) 奇数与偶数全体整数可以分为两大类,一类是奇数,一类是偶数。
任何一个整数不是偶数就是奇数,奇数和偶数,有以下几条性质:一、性质1:任何奇数不可能与偶数相等。
性质2:奇数±奇数=偶数 偶数±偶数=偶数 奇数±偶数=奇数性质3:奇数X 奇数=奇数 奇数X 偶数=偶数 偶数X 偶数=偶数性质4:整数a 的a n 幂与a 的奇偶性相同 性质5:两个连续整数的积是偶数。
二、例题:例1.设4个正整数之和为9,求证:它们的立方和不可能为100例2.若n 是大于1的整数,那么数2)1(12)1(n n n p ---+=的值一定是偶数?一定是奇数?还是可以是偶数也可以是奇数。
例3.是否有满足x 2-y 2=1986的整数解x 和y?例4.平面上有15个点,任意三点不共线,试问能不能从每个点都引三条线段,且仅引三条线段和其余的某三点相连?证明你的结论。
例5.设有n 盏亮着的灯,规定每次拉动n-1个拉线开关,试问:能否将所有的灯都关闭?证明你的结论。
例6.用15个由4个小方格组成的L 字形纸片和1个田字形纸片,能否盖满1个8X8的方格棋盘 例7.设a 1,a 2,…,a n 是一组数,它们中的每一个数都取1或-1,而且013221=+++a a a a a a n ,证明:n 必是4的倍数。
例8. 在1,2,3,…,1998中的每一个数的前面,任意添上一个“+”或“-”,那么最后运算的结果是奇数还是偶数?例9 设a ,b 是自然数,且满足关系式(11111+a)(11111-b)=123456789.求证:a-b 是4的倍数. 例10 某次数学竞赛,共有40道选择题,规定答对一题得5分,不答得1分,答错倒扣1分.证明:不论有多少人参赛,全体学生的得分总和一定是偶数.*例11.是否存在整数m,n,使得5m 2-6mn+7n 2=1987*例12.设正整数d 不等于2,5,13,证明从数2,5,13,d 中可以找到两个数a,b,使得ab-1不是整数的平方。
初中数学竞赛:奇数和偶数

初中数学竞赛讲座-奇数和偶数整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示,奇数可用2k+1表示,这里k是整数.关于奇数和偶数,有下面的性质:(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数;(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;(4)若a、b为整数,则a+b与a-b有相同的奇数偶;(5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数.以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜.1.代数式中的奇偶问题例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?□+□=□,□-□=□,□×□=□□÷□=□.解因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数.例2 (第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组是整数,那么(A)p、q都是偶数. (B)p、q都是奇数.(C)p是偶数,q是奇数(D)p是奇数,q是偶数分析由于1988y是偶数,由第一方程知p=x=n+1988y,所以p是偶数,将其代入第二方程中,于是11x也为偶数,从而27y=m-11x为奇数,所以是y=q奇数,应选(C)例3 在1,2,3…,1992前面任意添上一个正号和负号,它们的代数和是奇数还是偶数.分析因为两个整数之和与这两个整数之差的奇偶性相同,所以在题设数字前面都添上正号和负号不改变其奇偶性,而1+2+3+…+1992==996×1993为偶数于是题设的代数和应为偶数.2.与整除有关的问题例4(首届“华罗庚金杯”决赛题)70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,1,3,8,21,….问最右边的一个数被6除余几?解设70个数依次为a1,a2,a3据题意有a1=0, 偶a2=1 奇a3=3a2-a1, 奇a4=3a3-a2, 偶a5=3a4-a3, 奇a6=3a5-a4, 奇………………由此可知:当n被3除余1时,a n是偶数;当n被3除余0时,或余2时,a n是奇数,显然a70是3k+1型偶数,所以k必须是奇数,令k=2n+1,则a70=3k+1=3(2n+1)+1=6n+4.解设十位数,五个奇数位数字之和为a,五个偶数位之和为b(10≤a≤35,10≤b≤35),则a+b=45,又十位数能被11整除,则a-b应为0,11,22(为什么?).由于a+b与a-b有相同的奇偶性,因此a-b=11即a=28,b=17.要排最大的十位数,妨先排出前四位数9876,由于偶数位五个数字之和是17,现在8+6=14,偶数位其它三个数字之和只能是17-14=3,这三个数字只能是2,1,0.故所求的十位数是9876524130.例6(1990年日本高考数学试题)设a、b是自然数,且有关系式123456789=(11111+a)(11111-b),①证明a-b是4的倍数.证明由①式可知11111(a-b)=ab+4×617②∵a>0,b>0,∴a-b>0首先,易知a-b是偶数,否则11111(a-b)是奇数,从而知ab是奇数,进而知a、b 都是奇数,可知(11111+a)及(11111-b)都为偶数,这与式①矛盾其次,从a-b是偶数,根据②可知ab是偶数,进而易知a、b皆为偶数,从而ab+4×617是4的倍数,由②知a-b是4的倍数.3.图表中奇与偶例7(第10届全俄中学生数学竞赛试题)在3×3的正方格(a)和(b)中,每格填“+”或“-”的符号,然后每次将表中任一行或一列的各格全部变化试问重复若干次这样的“变号”程序后,能否从一张表变化为另一张表.解按题设程序,这是不可能做到的,考察下面填法:在黑板所示的2×2的正方形表格中,按题设程序“变号”,“+”号或者不变,或者变成两个.表(a)中小正方形有四个“+”号,实施变号步骤后,“+”的个数仍是偶数;但表(b)中小正方形“+”号的个数仍是奇数,故它不能从一个变化到另一个.显然,小正方形互变无法实现,3×3的大正方形的互变,更无法实现.例8(第36届美国中学生数学竞赛试题)将奇正数1,3,5,7…排成五列,按右表的格式排下去,1985所在的那列,从左数起是第几列?(此处无表)解由表格可知,每行有四个正奇数,而1985=4×496+1,因此1985是第497行的第一个数,又奇数行的第一个数位于第二列,偶数行的第一个数位于第四列,所以从左数起,1985在第二列.例9 如图3-1,设线段AB的两个端点中,一个是红点,一个是绿点,在线段中插入n个分点,把AB分成n+1个不重叠的小线段,如果这些小线段的两个端点一个为红点而另一个为绿点的话,则称它为标准线段.证明不论分点如何选取,标准线段的条路总是奇数.分析 n个分点的位置无关紧要,感兴趣的只是红点还是绿点,现用A、B分别表示红、绿点;不难看出:分点每改变一次字母就得到一条标准线段,并且从A点开始,每连续改变两次又回到A,现在最后一个字母是B,故共改变了奇数次,所以标准线段的条数必为奇数.4.有趣的应用题例 10(第2届“从小爱数学”赛题)图3-2是某一个浅湖泊的平面图,图中所有曲线都是湖岸.(1)如果P点在岸上,那么A点在岸上还是在水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.如果有一点B,他脱鞋次数与穿鞋的次数和是个奇数,那么B点是在岸上还是在水中?说明理由.解(1)连结AP,显然与曲线的交点数是个奇数,因而A点必在水中.(2)从水中经过一次陆地到水中,脱鞋与穿鞋的次数和为2,由于 A点在水中,所以不管怎样走,走在水中时,脱鞋、穿鞋的次数的和总是偶数,可见B点必在岸上.例11 书店有单价为10分,15分,25分,40分的四种贺年片,小华花了几张一元钱,正好买了30张,其中某两种各5张,另两种各10张,问小华买贺年片花去多少钱?分析设买的贺年片分别为a、b、c、d(张),用去k张1元的人民币,依题意有10a+15b+25c+40d=100k,(k为正整数)即 2a+3b+5c+8d=20k显然b、c有相同的奇偶性.若同为偶数,b-c=10 和a=b=5,不是整数;若同为奇数,b=c=5和a=d=10,k=7.例12 一个矩形展览厅被纵横垂直相交的墙壁隔成若干行、若干列的小矩形展览室,每相邻两室间都有若干方形门或圆形门相通,仅在进出展览厅的出入口处有若干门与厅外相通,试证明:任何一个参观者选择任何路线任意参观若干个展览室(可重复)之后回到厅外,他经过的方形门的次数与圆形门的次数(重复经过的重复计算)之差总是偶数.证明给出入口处展览室记“+”号,凡与“+”相邻的展览室记“-”号,凡与“-”号相邻的展览室都记“+”号,如此则相邻两室的“+”、“-”号都不同.一参观者从出入口处的“+”号室进入厅内,走过若干个展览室又回到入口处的“+”号室,他的路线是+-+-…+-+-,即从“+”号室起到“+”号室止,中间“-”、“+”号室为n+1(重复经过的重复计算),即共走了2n+1室,于是参观者从厅外进去参观后又回到厅外共走过了2n+2个门(包括进出出入口门各1次).设其经过的方形门的次数是r次,经过圆形门的次数是s,则s+r=2n+2为偶数,故r-s也为偶数,所以命题结论成立.例13 有一无穷小数A=0.a1a2a3…a n a n+1a n+2…其中a i(i=1,2)是数字,并且a1是奇数,a2是偶数,a3等于a1+a2的个位数…,a n+2是a n+a n+1(n=1,2…,)的个位数,证明A 是有理数.证明为证明A是有理数,只要证明A是循环小数即可,由题意知无穷小数A的每一个数字是由这个数字的前面的两位数字决定的,若某两个数字ab重复出现了,即0.…ab…ab…此小数就开始循环.而无穷小数A的各位数字有如下的奇偶性规律:A=0.奇偶奇奇偶奇奇偶奇……又a是奇数可取1,3,5,7,9;b是偶数可取0,2,4,6,8.所以非负有序实数对一共只有25个是不相同的,在构成A的前25个奇偶数组中,至少出现两组是完全相同的,这就证得A是一循环小数,即A是有理数.练习1.填空题(1)有四个互不相等的自然数,最大数与最小数的差等于4,最大数与最小数的积是一个奇数,而这四个数的和是最小的两位奇数,那么这四个数的乘积是______.(2)有五个连续偶数,已知第三个数比第一个数与第五个数和的多18,这五个偶数之和是____.(3)能否把1993部电话中的每一部与其它5部电话相连结?答____.2.选择题(1)设a、b都是整数,下列命题正确的个数是()①若a+5b是偶数,则a-3b是偶数;②若a+5b是偶数,则a-3b是奇数;③若a+5b是奇数,则a-3b是奇数;④若a+5b是奇数,则a-3b是偶数.(A)1 (B)2 (C)3 (D)4(2)若n是大于1的整数,则的值().(A)一定是偶数(B)必然是非零偶数(C)是偶数但不是2 (D)可以是偶数,也可以是奇数(3)已知关于x的二次三项式ax2+bx+c(a、b、c为整数),如果当x=0与x=1时,二次三项式的值都是奇数,那么a()(A)不能确定奇数还是偶数(B)必然是非零偶数(C)必然是奇数(D)必然是零3.(1986年宿州竞赛题)试证明11986+91986+81986+61986是一个偶数.4.请用0到9十个不同的数字组成一个能被11整除的最小十位数.5.有n 个整数,共积为n,和为零,求证:数n能被4整除6.在一个凸n边形内,任意给出有限个点,在这些点之间以及这些点与凸n边形顶点之间,用线段连续起来,要使这些线段互不相交,而且把原凸n边形分为只朋角形的小块,试证这种小三我有形的个数与n有相同的奇偶性.7.(1983年福建竞赛题)一个四位数是奇数,它的首位数字泪地其余各位数字,而第二位数字大于其它各位数字,第三位数字等于首末两位数字的和的两倍,求这四位数.8.(1909年匈牙利竞赛题)试证:3n+1能被2或22整除,而不能被2的更高次幂整除.9.(全俄15届中学生数学竞赛题)在1,2,3…,1989之间填上“+”或“-”号,求和式可以得到最小的非负数是多少?练习参考答案1.(1)30.(最小两位奇数是11,最大数与最小数同为奇数)(2)180.设第一个偶数为x,则后面四个衣次为x+2,x+4,x+6,x+8.(3)不能.2.B.B.A3.11986是奇数1,91986的个位数字是奇数1,而81986,61986都是偶数,故最后为偶数.4.仿例51203465879.5.设a1,a2,…,an满足题设即a1+a2+…+an=0①a1·a2……an=n②。
初中数学竞赛教程及练习之奇数 偶数附答案

奇数偶数一、内容提翼.奇数和偶数是在整数集合里定义的.能被2整除的整数是偶数,如2,0—2…,不能被2整除的整数是奇数,如一1,3。
如果n是整数,那么2n是偶数,2n-I或2n+l是奇数。
如果n是正整数,那么2n是正偶数,2n-l是正奇数。
.奇数、偶数是整数的一种分类。
可表示为:[奇数整数或整数集合偶数这就是说,在整数集合中是偶数就不是奇数,不是偶数就是奇数,如果既不是偶数又不是奇数,那么它就不是整数。
.奇数偶数的运算性质:奇数土奇数=偶数,奇数土偶数=奇数,偶数土偶数=偶数奇数X奇数=奇数奇数X偶数=偶数.偶数X偶数=偶数奇数的正整数次第是奇数,偶数的正整数次第是偶数,两个速续整数的和是奇数,积是偶数。
二、例题-求证:任意奇数的平方减去1是8的倍数证明:设k为整数,那么2k-l是任意奇数,(2k-l)2-1=4k2-4k+1-1 =4k(k-1)Vk(k-l)是两个速续整数的积,必是偶数.・.4k(k-l)是8的倍数即任意奇数的平方减去1是8的倍数.已知:有n个整数它们的积等于n,和等于0求证:n是4的倍数证明:设n个整数为X.X2冬,…七根据题意得x l x2x3…工”=〃①X,+工2+工3----X n=0②如果n为正奇数,由方程(1)可知X|,X2,X3,“・Xn都只能是奇数,而奇数个奇数的和必是奇数,这不适合方程(2)右边的0,所以n一定是偶数:当n为正偶数时,方程(1)左边的Xl,x2,x3,-x n中,至少有一个是偶数,而要满足方程(2)右边的0,左边的奇数必滇是偶数个,偶数至少有2个。
所以n是4的倍数。
例3己知:a,b,c都是奇数求证:方程ax2+bx+c=0没有整数解证明:设方程的有整数解x,若它是奇数,这时方程左边的ax?,bx,c都是奇数,而右边0是偶数,故不能成立:若方程的整数解x是偶数,那么ax2,bx,都是偶数,c是奇数,所以左边仍然是奇数,不可能等于0o既然方程的解不可能是奇数,也不能是偶数,..・方程ax2+bx+c=0没有整数解(以上的证明方法是反证法) 例4求方程x2-y2=60的正整数解解:(x+y)(x —y)=60,60 可分解为:1X60, 2X30, 3X20, 4X15, 5X12, 6X10 左边两个因式(x+y), (x —y)至少有一个是偶数因此x, y 必滇是同奇数或同偶数,且x>y>0,适合条件的只有两组x + y = 30x-y = 2x = 16y = 14x + y = 10 x-y = 6x = 8,J = 2解得4x = 16 x = 8••・方程x 2-y 2=6O 的正整数解是< _ -j = 14 [y = 2三、练习171.选择题① 设n 是正整数,那么n 斗n-1的值是( )(A)偶数(B)奇数(C)可能是奇数也可能是偶数② 求方程85x-324y=101的整数解.下列哪一个解是错误的?()②能被9和15整除的最小正奇数是—最大的三位数 —(A) ,x = 5(B) )=1x = 329(C)* = 86x = 653(D) y = 171x = 978y = 2562.填空:①能被3,5, 7都整除的最小正偶数是③ 1+2+3 + •••+2001+2002的和是奇数或偶数?答④ 正整数1234-20012002是奇位数或偶位数?答—⑤ 性业能被11整除,那么n 是正奇数或正偶数?答.~~3. 任意三个整数中,必有两个的和是偶数,这是为什么?4. 试说明方程2x+10y=77没有整数解的理由5. 求证:两个速续奇数的平方差能被8整除6. 试涯明:任意两个奇数的平方和的一半是奇数7. 求方程(2x-y-2) 2+ (x+y+2)的整数解8. 方程 19x+78y=8637 的解是()fx = 78 * = 84 [x = 88 [x = 81(A); (B){ (C)《 (D)《y = 91 [y = 92 [* = 93 \y = 919.卜进制中.六位数19^87能被33整除,求a,b 的值练习17掺考答案:】.①B,②D2. ①210,②45.945③奇数(有奇数个奇数),④奇数位,⑤正偶数3. 整数按奇数.偶数分为两类,3个整数中必有两个同是奇数或同偶数,故它们的和是偶数4二•左边2, 10、都是偶数,x.y 不论取什么整数,都是偶数,而右边是奇数,等式不能成 立5. (2n+l)2-(2n-l)2=8n6. 任意两个奇数可设为2m-l,2n-l7....两个整数的平方和5为,只有(±[>^±2)2=5或(±2p+(±l)2=5可得四个方程组,2x - y-2 = 1,2,—1,-2x + y + 2 = 2,1,-2,-18. (D) 9. a=9, b=2: a=2, b=6: a=5 , b=9o。
初中数学竞赛奇数与偶数

奇数与偶数例1在1,2,3,…,1998中的每一个数的前面,任意添上一个“+”或“-”,那么最后运算的结果是奇数还是偶数?例2设1,2,3,…,9的任一排列为a1,a2,…,a9.求证:(a1-1)(a2-2)…(a9-9)是一个偶数.例3有n个数x1,x2,…,x n,它们中的每一个数或者为1,或者为-1.如果x1x2+x2x3+…+x n-1x n+x n x1=0,求证:n是4的倍数.例4设a,b是自然数,且满足关系式(11111+a)(11111-b)=123456789.求证:a-b是4的倍数.例5某次数学竞赛,共有40道选择题,规定答对一题得5分,不答得1分,答错倒扣1分.证明:不论有多少人参赛,全体学生的得分总和一定是偶数.例6证明15块4×1的矩形骨牌和1块2×2的正方形骨牌不能盖住8×8的正方形.练习1.设有101个自然数,记为a1,a2,…,a101.已知a1+2a2+3a3+…+100a100+101a101=s是偶数,求证:a1+a3+a5+…+a99+a101是偶数.2.设x1,x2,…,x1998都是+1或者-1.求证:x1+2x2+3x3+…+1998x1998≠0.3.设x1,x2,…,x n(n>4)为1或-1,并且x1x2x3x4+x2x3x4x5+…+x n x1x2x3=0.求证:n是4的倍数.4.(1)任意重排某一自然数的所有数字,求证:所得数与原数之和不等于99…9(共n个9,n是奇数);(2)重排某一数的所有数字,并把所得数与原数相加,求证:如果这个和等于1010,那么原数能被10整除.5.(1)有n个整数,其和为零,其积为n.求证:n是4的倍数;(2)设n是4的倍数,求证:可以找到n个整数,其积为n,其和为零.6.7个杯子杯口朝下放在桌子上,每次翻转4个杯子(杯口朝下的翻为杯口朝上,杯口朝上的翻为杯口朝下),问经过若干次这样的翻动,是否能把全部杯子翻成杯口朝上?7.能否把1,1,2,2,3,3,4,4,5,5这10个数排成一行,使得两个1中间夹着1个数,两个2之间夹着2个数,…,两个5之间夹着5个数?奇数与偶数参考答案1.a1+a3+…+a101=S-(2a2+2a3+4a4+4a5+…+100a100+100a101)为偶数.2.x1+2x2+3x3+…+1998x=(2x2+4x4+…+1998x1998)+(x1+3x3+…+1997x1997)后一括号中的每一加数均为奇数,且1-1997中共有999个奇数,故它是奇数个奇数的和为奇数.3.在n个加数中,+1的个数和-1的个数一样多,故n为偶数,令n=2k,又(x1x2x3x4)(x2x3x4x5) …(x n x1x2x3)= (x1x2x3…x n)4 =1,故这个加数中-1的个数是偶数,即k为偶数,从而n是4的倍数.4.(1)若原数和所得数之和为99…9,则此加法没有进位,且原数中的各位上的奇数和偶数一样多,这与是偶数矛盾.(2)如果原数末位不为0,则它与重排数的末位数字之和为10,而其余9个数位上的数字之和都为9,故原数与重排数之和为9×9+10=91,这与它应为奇数矛盾.5.(1)设a1a2a3…a n=n ①, a1+a2+a3+…+a n=0 ② 若n为奇数,由①知a1,a2,a3,…,a n均为奇数,这n个数之和为奇数,与②矛盾,故n为偶数。
高一年级竞赛数学数论专题讲义:7.奇数偶数

高一竞赛数论专题7.奇数偶数1.求所有的正整数2n ≥使得对于任意的两个整数,(0,)i j i j n ≤≤均有i j +与i j n n C C +同奇偶.2.在一个国家里,国王要建n 座城市,并且在它们之间建1n -条道路,使得从每座城市可通往任何一座城市(每条道路连接两座城市,道路不相交,也不经过其他城市).国王要求:沿着道路网,两座城市之间的最短距离分别为1公里,2公里,3公里,,(1)2n n -公里. (1)若6n =;国王的要求能实现?(2)若2017n =;国王的要求能实现?3.设111212122212(4)n n n n nn a a a a a a A n a a a ⎛⎫ ⎪ ⎪=≥ ⎪ ⎪⎝⎭中的1(1,)ij a i j n =±≤≤,现将矩阵A 中n 个两两既不同行也不同列的的数的乘积称为一个基本项,例如1122nn a a a 就是一个基本项.证明:矩阵A 的全部基本项的和总能被4整除.4.求所有使得212122x x y +++=的整数对(,).x y高一竞赛数论专题7.奇数偶数解答1.求所有的正整数2n ≥使得对于任意的两个整数,(0,)i j i j n ≤≤均有i j +与i jn n C C +同奇偶. 解:i j +与i j n n C C +同奇偶就是说()i j n n C C i j +-+是偶数,也就是,i j n n C i C j --同奇偶.注意到当0i =时,对任意的正整数2n ≥都有1i n C i -=,所以i n C i -的只能都是奇数.再注意到当i n =时,对任意的正整数2n ≥都有1n n C n n -=-,所以n 一定是偶数.所以当i 为奇数时,i n C 为偶数,当i 为偶数时,i n C 为奇数,且n 是偶数.于是111i i i n n n C C C +++=+必为奇数.若111i i i n n n C C C +++=+为奇数,注意到01n C =时奇数,所以i 为奇数时,i n C 为偶数,当i 为偶数时,i n C 为奇数.从而我们证明了i j +与i j n n C C +同奇偶的充要条件是11i n C ++为奇数.若11i n C ++为奇数,则2(1,2,,1)k n C k n +=+都是偶数,因为1212.k k n n n C C k -+++= 由任意性可取11212s s k n +≤=≤+<,因为2n ≥,所以1s ≥,则221212.2ss n n s n C C -+++=于是2| 2.s n + 所以1222s s n +<+≤,于是122.s n ++=于是12222(2)s k n k +=-=-≥.另一方面若22(2)kn k =-≥,我们证明21(2)k q C k -≥都是奇数. 21(21)(22)(2)12k k k k qq C q----=⋅,2k t -与t 所含的2的方幂相同,这是因为2||,u t 则u k <,2|2,u k t - 但因为12u t +Œ,12|2,u k +所以122.u k t +-Œ即2||2.u k t -所以21(2)k q C k -≥都是奇数. 法2:i j +与i j n n C C +同奇偶就是说()i j n n C C i j +-+是偶数,也就是,i j n n C i C j --同奇偶.注意到当0i =时,对任意的正整数2n ≥都有1i n C i -=,所以in C i -的只能都是奇数.再注意到当i n =时,对任意的正整数2n ≥都有1n n C n n -=-,所以n 一定是偶数.101022,22k k k k n a a a i b b b =+++=+++,,0,1.i i a b =因为n 一定是偶数,00.a =①若i 是奇数,则01,b =由Lucas 定理知道011101100(mod2).k k k k b b b b b i n a a a a a C C C C C C C ≡=≡ 所以in C i -是奇数.满足条件.②若i 是偶数,则00,b =若存在i i b a >,则0i i b a C =, 于是由Lucas 定理知道01100(mod2).ki k i b b b b i n a a a a C C C C C ≡≡所以i n C i -是偶数矛盾. 所以对任意的0,1,,i n =都有.i i a b ≥取最大的12120k i =⋅++⋅+, 则此时的n 只能是11212022(1)22(2).k k m n k m +=⋅++⋅+=-≥=-≥ 此时由Lucas 定理知道01101101101(mod2).kk b b b in a a a C C C C C C C ≡=≡ 所以i n C i -是奇数.满足条件. 若22(2),m n m =-≥则12120.k n =⋅++⋅+由Lucas 定理i nC i -是奇数. 所以22(2).m n m =-≥2.在一个国家里,国王要建n 座城市,并且在它们之间建1n -条道路,使得从每座城市可通往任何一座城市(每条道路连接两座城市,道路不相交,也不经过其他城市).国王要求:沿着道路网,两座城市之间的最短距离分别为1公里,2公里,3公里,,(1)2n n -公里. (1)若6n =;国王的要求能实现?(2)若2017n =;国王的要求能实现?解:首先由要建n 座城市,并且在它们之间建1n -条道路知道从任何一座城市到另外一座城市只有唯一的线路,若不然,一定存在某几座城市可以形成环线,不妨设00(2)n n ≥座城市形成环线,这个环线至少需要0n 条道路,每增加一座城市,至少需要建1条道路,所以增加0n n -座城市至少需要建0n n -条道路,从而总共至少要建n 条道路.矛盾.。
(完整版)四年级奥数奇数与偶数(教师用含答案)

第二讲:奇数与偶数教学目标本讲知识点属于数论大板块内的“定性分析”部分,小学生的数学思维模式大多为“纯粹的定量计算,拿到一个题就先去试数,或者是找规律,在性质分析层面几乎为0,本讲力求实现的一个主要目标是提高孩子对数学的严密分析能力,培养孩子明白做题前有时要“先看能不能这么做,再去动手做”的思维模式。
无论是小升初还是杯赛会经常遇到,但不会单独出题,而是结合其他知识点来考察学生综合能力。
知识点拨一、奇数和偶数的定义整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
二、奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数三、两个实用的推论:推论1:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性。
推论2:对于任意2个整数a,b ,有a+b 与a-b 同奇或同偶模块一:奇数偶数基本概念及基本加减法运算性质【例 1】 1231993++++……的和是奇数还是偶数?【解析】 在1至1993中,共有1993个连续自然数,其中997个奇数,996个偶数,即共有奇数个奇数,那么原式的计算结果为奇数【巩固】 123456799100999897967654321+++++++++++++++++++++L L 的和是奇数还是偶数?为什么?【解析】 在算式中,1~99都出现了2次,所以123499999897964321++++++++++++++L L 是偶数,而100也是偶数,所以1234567991009998979676++++++++++++++++L L54321+++++的和是偶数.【巩固】 2930318788+++++……得数是奇数还是偶数?【解析】 偶数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奇数和偶数整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示,奇数可用2k+1表示,这里k是整数.关于奇数和偶数,有下面的性质:(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数;(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;(4)若a、b为整数,则a+b与a-b有相同的奇数偶;(5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数.以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜.1.代数式中的奇偶问题例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?□+□=□,□-□=□,□×□=□□÷□=□.解因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数.例2 (第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组是整数,那么(A)p、q都是偶数. (B)p、q都是奇数.(C)p是偶数,q是奇数(D)p是奇数,q是偶数分析由于1988y是偶数,由第一方程知p=x=n+1988y,所以p是偶数,将其代入第二方程中,于是11x也为偶数,从而27y=m-11x为奇数,所以是y=q奇数,应选(C)例3 在1,2,3…,1992前面任意添上一个正号和负号,它们的代数和是奇数还是偶数.分析因为两个整数之和与这两个整数之差的奇偶性相同,所以在题设数字前面都添上正号和负号不改变其奇偶性,而1+2+3+…+1992==996×1993为偶数于是题设的代数和应为偶数.2.与整除有关的问题例4(首届“华罗庚金杯”决赛题)70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,1,3,8,21,….问最右边的一个数被6除余几?解设70个数依次为a1,a2,a3据题意有a1=0, 偶a2=1 奇a3=3a2-a1, 奇a4=3a3-a2, 偶a5=3a4-a3, 奇a6=3a5-a4, 奇………………由此可知:当n被3除余1时,a n是偶数;当n被3除余0时,或余2时,a n是奇数,显然a70是3k+1型偶数,所以k必须是奇数,令k=2n+1,则a70=3k+1=3(2n+1)+1=6n+4.解设十位数,五个奇数位数字之和为a,五个偶数位之和为b(10≤a≤35,10≤b≤35),则a+b=45,又十位数能被11整除,则a-b应为0,11,22(为什么?).由于a+b与a-b有相同的奇偶性,因此a-b=11即a=28,b=17.要排最大的十位数,妨先排出前四位数9876,由于偶数位五个数字之和是17,现在8+6=14,偶数位其它三个数字之和只能是17-14=3,这三个数字只能是2,1,0.故所求的十位数是9876524130.例6(1990年日本高考数学试题)设a、b是自然数,且有关系式123456789=(11111+a)(11111-b),①证明a-b是4的倍数.证明由①式可知11111(a-b)=ab+4×617②∵a>0,b>0,∴a-b>0首先,易知a-b是偶数,否则11111(a-b)是奇数,从而知ab是奇数,进而知a、b 都是奇数,可知(11111+a)及(11111-b)都为偶数,这与式①矛盾其次,从a-b是偶数,根据②可知ab是偶数,进而易知a、b皆为偶数,从而ab+4×617是4的倍数,由②知a-b是4的倍数.3.图表中奇与偶例7(第10届全俄中学生数学竞赛试题)在3×3的正方格(a)和(b)中,每格填“+”或“-”的符号,然后每次将表中任一行或一列的各格全部变化试问重复若干次这样的“变号”程序后,能否从一张表变化为另一张表.解按题设程序,这是不可能做到的,考察下面填法:在黑板所示的2×2的正方形表格中,按题设程序“变号”,“+”号或者不变,或者变成两个.表(a)中小正方形有四个“+”号,实施变号步骤后,“+”的个数仍是偶数;但表(b)中小正方形“+”号的个数仍是奇数,故它不能从一个变化到另一个.显然,小正方形互变无法实现,3×3的大正方形的互变,更无法实现.例8(第36届美国中学生数学竞赛试题)将奇正数1,3,5,7…排成五列,按右表的格式排下去,1985所在的那列,从左数起是第几列?(此处无表)解由表格可知,每行有四个正奇数,而1985=4×496+1,因此1985是第497行的第一个数,又奇数行的第一个数位于第二列,偶数行的第一个数位于第四列,所以从左数起,1985在第二列.例9 如图3-1,设线段AB的两个端点中,一个是红点,一个是绿点,在线段中插入n个分点,把AB分成n+1个不重叠的小线段,如果这些小线段的两个端点一个为红点而另一个为绿点的话,则称它为标准线段.证明不论分点如何选取,标准线段的条路总是奇数.分析 n个分点的位置无关紧要,感兴趣的只是红点还是绿点,现用A、B分别表示红、绿点;不难看出:分点每改变一次字母就得到一条标准线段,并且从A点开始,每连续改变两次又回到A,现在最后一个字母是B,故共改变了奇数次,所以标准线段的条数必为奇数.4.有趣的应用题例 10(第2届“从小爱数学”赛题)图3-2是某一个浅湖泊的平面图,图中所有曲线都是湖岸.(1)如果P点在岸上,那么A点在岸上还是在水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.如果有一点B,他脱鞋垢次数与穿鞋的次数和是个奇数,那么B点是在岸上还是在水中?说明理由.解(1)连结AP,显然与曲线的交点数是个奇数,因而A点必在水中.(2)从水中经过一次陆地到水中,脱鞋与穿鞋的次数和为2,由于 A点在水中,氢不管怎样走,走在水中时,脱鞋、穿鞋的次数的和总是偶数,可见B点必在岸上.例11 书店有单价为10分,15分,25分,40分的四种贺年片,小华花了几张一元钱,正好买了30张,其中某两种各5张,另两种各10张,问小华买贺年片花去多少钱?分析设买的贺年片分别为a、b、c、d(张),用去k张1元的人民币,依题意有10a+15b+25c+40d=100k,(k为正整数)即 2a+3b+5c+8d=20k显然b、c有相同的奇偶性.若同为偶数,b-c=10 和a=b=5,不是整数;若同为奇数,b=c=5和a=d=10,k=7.例12 一个矩形展览厅被纵横垂直相交的墙壁隔成若干行、若干列的小矩形展览室,每相邻两室间都有若干方形门或圆形门相通,仅在进出展览厅的出入口处有若干门与厅外相通,试证明:任何一个参观者选择任何路线任意参观若干个展览室(可重复)之后回到厅外,他经过的方形门的次数与圆形门的次数(重复经过的重复计算)之差总是偶数.证明给出入口处展览室记“+”号,凡与“+”相邻的展览室记“-”号,凡与“-”号相邻的展览室都记“+”号,如此则相邻两室的“+”、“-”号都不同.一参观者从出入口处的“+”号室进入厅内,走过若干个展览室又回到入口处的“+”号室,他的路线是+-+-…+-+-,即从“+”号室起到“+”号室止,中间“-”、“+”号室为n+1(重复经过的重复计算),即共走了2n+1室,于是参观者从厅外进去参观后又回到厅外共走过了2n+2个门(包括进出出入口门各1次).设其经过的方形门的次数是r次,经过圆形门的次数是s,则s+r=2n+2为偶数,故r-s也为偶数,所以命题结论成立.例13 有一无穷小数A=0.a1a2a3…a n a n+1a n+2…其中a i(i=1,2)是数字,并且a1是奇数,a2是偶数,a3等于a1+a2的个位数…,a n+2是a n+a n+1(n=1,2…,)的个位数,证明A 是有理数.证明为证明A是有理数,只要证明A是循环小数即可,由题意知无穷小数A的每一个数字是由这个数字的前面的两位数字决定的,若某两个数字ab重复出现了,即0.…ab…ab…此小数就开始循环.而无穷小数A的各位数字有如下的奇偶性规律:A=0.奇偶奇奇偶奇奇偶奇……又a是奇数可取1,3,5,7,9;b是偶数可取0,2,4,6,8.所以非负有序实数对一共只有25个是不相同的,在构成A的前25个奇偶数组中,至少出现两组是完全相同的,这就证得A是一循环小数,即A是有理数.练习1.填空题(1)有四个互不相等的自然数,最大数与最小数的差等于4,最大数与最小数的积是一个奇数,而这四个数的和是最小的两位奇数,那么这四个数的乘积是______.(2)有五个连续偶数,已知第三个数比第一个数与第五个数和的多18,这五个偶数之和是____.(3)能否把1993部电话中的每一部与其它5部电话相连结?答____.2.选择题(1)设a、b都是整数,下列命题正确的个数是()①若a+5b是偶数,则a-3b是偶数;②若a+5b是偶数,则a-3b是奇数;③若a+5b是奇数,则a-3b是奇数;④若a+5b是奇数,则a-3b是偶数.(A)1 (B)2 (C)3 (D)4(2)若n是大于1的整数,则的值().(A)一定是偶数(B)必然是非零偶数(C)是偶数但不是2 (D)可以是偶数,也可以是奇数(3)已知关于x的二次三项式ax2+bx+c(a、b、c为整数),如果当x=0与x=1时,二次三项式的值都是奇数,那么a()(A)不能确定奇数还是偶数(B)必然是非零偶数(C)必然是奇数(D)必然是零3.(1986年宿州竞赛题)试证明11986+91986+81986+61986是一个偶数.4.请用0到9十个不同的数字组成一个能被11整除的最小十位数.5.有n 个整数,共积为n,和为零,求证:数n能被4整除6.在一个凸n边形内,任意给出有限个点,在这些点之间以及这些点与凸n边形顶点之间,用线段连续起来,要使这些线段互不相交,而且把原凸n边形分为只朋角形的小块,试证这种小三我有形的个数与n有相同的奇偶性.7.(1983年福建竞赛题)一个四位数是奇数,它的首位数字泪地其余各位数字,而第二位数字大于其它各位数字,第三位数字等于首末两位数字的和的两倍,求这四位数.8.(1909年匈牙利竞赛题)试证:3n+1能被2或22整除,而不能被2的更高次幂整除.9.(全俄15届中学生数学竞赛题)在1,2,3…,1989之间填上“+”或“-”号,求和式可以得到最小的非负数是多少?练习参考答案1.(1)30.(最小两位奇数是11,最大数与最小数同为奇数)(2)180.设第一个偶数为x,则后面四个衣次为x+2,x+4,x+6,x+8.(3)不能.2.B.B.A3.11986是奇数1,91986的个位数字是奇数1,而81986,61986都是偶数,故最后为偶数.4.仿例51203465879.5.设a1,a2,…,an满足题设即a1+a2+…+an=0①a1·a2……an=n②。