分式的运算2
(完整版)分式加减乘除运算

(三)分式 的运算知识点一:分式 的乘法 ---分式乘分式,用分子 的积作为积 的分子,分母 的积作为积 的分母23bc 2a b 4、 ;3a 16b4b 9a 24x y2b 2a 1、; 2、; 3、; 3y 2x 3 5a 2 2b5a 2 3c 22x 2 2x 2 4;x y x y ;x y x y3a 3b 25a b 396、; 7、5、a 2b 2x 2x x 3x210ab知识点二:分式 的乘方 ---要把分式 的分子、分母分别乘方 23222222 y 2x y 24a b a1 b 2a 2; 2、; 3、; 4、; 5、; 6、1、3y3x3zx y知识点四:分式 的除法 --分式除以分式,把除式 的分子、分母颠倒位置后,与被除式相乘2y 2 3x ab 22c 23a b 223x5y 220a y 4;3x512xy 5a28x y ;2、 3xy6xy16a y 321、;3、 ;4、 ;5、 4cd2x 2 y 2xyx 1 1 x x 2 4x 4 x 2;9、 x 4y 22x 2y2y x ;7、;8、6、x 2x xx 2xy y 2 2x 2xy2 2 x 1x 1知识点五:分式 的乘除混合运算322x 222322x 2 x x 2x x 21aab 2x y y 1、; 4、; 5、;2 x2b b4x2axay23232ab 3 6a 4 b 33c a b aba a ab 2;7、6、2b 22c db a1.下列各式计算结果是分式 的是( ). x 37x 2 n a m bn 3m m 2n(C) 3 5x x(A)(B)(D) 3y 24y32.下列计算中正确 的是().- 1(A)(-1)=- 1 (B)(- 1)=11 1 (C) 2a 33(D) ( a) ( a)72a 3a 43.下列各式计算正确 的是().1 (A) m ÷n · m =m (B) m nmn(C) 1 m m 1m (D) n ÷m · m =n).4.计算 ( a b )4 (a ) 5 的结果是 (ab a 1 a (A)-1(B)1(C) (D)aa b5.下列分式中,最简分式是( ).x 2xy y 2 2x y 2 2x 2y 221xy (A)(B)(C) (D) x yx y15 y 2x y2y 2 x x 9. ( ) ( )2 __________.3 10. [(x ) ]3 2__________.y 2 y知识点六:分式 的加减运算法则:①同分母分式相加减,分母不变,把分子相加减②异分母分式相加减,先通分,变为同分母 的分式,再加减x 1 1; 2、a 2a 3c117102;1、; 3、; 4、22c d 3cd 222xxabc abc abcx yz x y xyza 2a 3a3 8 11 x y y2x y ;y x; 6、 ; 7、 y x x y 5、 x 1 x 1 x 2 2 21b 1 b 1 b 1 1 y 1 2xy 3 2m n 8、; 9、; 10、;2x y x 2 y 222x y2m ny 2x2m n4 x 2 y 2 x 2 y 211、 a 2;12、 xy2 axy知识点 7:分式 的混合运算 2x y x 2y 2 x 11x a 1 2 a ; ;2、x1 ;3、 1、2x y 2 x a 2a 3 a 9 a2 2y1 1x y 1 x 2 y 21 3 x 5 4、5、x 22x 4x 2知识点 8:化简求值 ---化简求值问题 的解题步骤一般都是先对式子进行化简,再将已知值代入求值 2x 2 x 2 2x 11x 2x 2 2x 2 1、先化简,再求值: (2x 3xx 9,其中 x 2.2、先化简,再求值: 1)÷x ,其中 x=.x321 x 1 x 3 5 ),其中 x =- 4x 2x 3.4、先化简,再求值:2、先化简,再求值: 1,其中(x 2x 22x 4x 2a 1a 1a 1,其中aa 1 25、先化简,再求值:a 2 2a 1分式阶段水平测评(二)1.下列分式中是最简分式 的是( ).2x 4 x 1 1 x (D )x 1(A )(B )(C )22x 12xx 12.用科学记数法表示 0.000078,正确 的是().(A )7.8×10-5 (B )7.8×10-4 (C )0.78×10-3(D )0.78×10-41 3.下列计算:① ( 1)01;② ( 1) 1 1;③ 3a 35( x) ( x) 3 x 2.其;④3a 3中正确 的个数是().(A )4 (B )3(C )1( D )0 1 1 1(R 1 R ),则表示 R 的公式是( 4.已知公式1).2R R 1 R 2R 2 RRR 2RR 2 R( R R )2(A ) R 1(C ) R 1) .(D ) R 1() R 1B RR 2RR 2R 2RR 25.下列分式 的运算中,其中结果正确 的是(( a ) 231a 1 b2 a 3(A )( B )abaa 2b 2a 3a 2 6a 91 (C )a b( D )a b a 3a a ).a 24 a 2a6.化简 ( (A )-4的结果是().a 2(B ) 4 (C )2a(D)2a+4二、填空题(每小题 4分,计 16分)27.若 (a 1)0有意义,则 a ≠. 8.纳米是非常小 的长度单位, 1纳米 =0.000000001米,那么用科学记数法表示 1纳米 =米.x y y 1 2 x y9.如果= .,则 a b 2m dc10.若 a 、b 互为相反数, c 、d 互为倒数, m 的绝对值为 2,则 .a b c三、解答题11.计算化简(每小题 5分,计 20分)x 2 4x 2(x 9);( 1) 2 x x 2;(2)2x 3x2 3a 4 1 a 1;( 4) a(3) a 2 a 1.2a 4a 4 a 1 a 2 a 112.请将下面 的代数式尽可能化简,再选择一个你喜欢 的数(要合适哦! )代入求值:a 2 a 1 1.2a (a 1)2x 111 213.(10分)先化简,再求值,其中 x. 2x 2x 1 2x 2a x2bx 3 3 aba14.(10分)若关于 x 的方程的解是 x=2,其中 a b ≠ 0,求 的值. b快速练习21.①若 9x kxy 16y 2k =是一个完全平方式,则;2②若三项式 x 8xy m 是一个完全平方式,则 m = . 2.已知 a 2 ab 5,ab b 222,那么 a b 2.2x(x y 2 xy) y(x 2 x y) 2 34、 (3x 2y) (3x y)(3x y)5、211 2 23b c 27、 2m 26、 2a b 2ab c;2mnmn4 2228.已知 x y 3, xy 2,求 x 2 y ,x y的值。
分式的乘除法

分式的乘除法分式是数学中的一种表示形式,它由分子与分母组成,分子表示被分割的数量,分母表示分割成的份数。
在分式中,乘法和除法是常见的运算。
本文将介绍分式的乘法和除法的规则和运算方法。
一、分式的乘法分式的乘法是指两个或多个分式相乘的操作。
下面是分式乘法的规则:规则1:分子乘以分子,分母乘以分母。
示例1:(2/3) * (5/7) = (2 * 5) / (3 * 7) = 10/21规则2:任意常数乘以分式,可以将常数作为分子或分母的一部分。
示例2:3 * (4/5) = (3 * 4) / 5 = 12/5规则3:分子和分母都可以进行约分。
示例3:(8/12) * (3/5) = (8/3) * (3/5) = 24/15 = 8/5二、分式的除法分式的除法是指将一个分式除以另一个分式的操作。
下面是分式除法的规则:规则1:除法可以等价为乘法。
示例1:(2/3) ÷ (4/5) = (2/3) * (5/4) = (2 * 5) / (3 * 4) = 10/12 = 5/6规则2:除法的倒数等于分子和分母交换位置后的分式。
示例2:(3/4) ÷ (2/3) = (3/4) * (3/2) = (3 * 3) / (4 * 2) = 9/8规则3:分子和分母都可以进行约分。
示例3:(4/6) ÷ (2/3) = (4/6) * (3/2) = (4 * 3) / (6 * 2) = 12/12 = 1/1 = 1三、分式乘除法的综合运算分式乘除法可以结合使用,需要按照运算的优先级和顺序进行计算。
下面是一个综合运算的示例:示例:(2/3) * (3/4) ÷ (4/5) = (2/3) * (3/4) * (5/4) = (2 * 3 * 5) / (3 * 4 * 4) =30/48 = 5/8四、小结分式的乘法和除法是分式运算中常见的操作,掌握其规则和运算方法对于数学学习和实际计算都非常重要。
初中数学分式及其计算

1、分式的概念
A
A
一般地,用 A、B 表示两个整式,A÷B 就可以表示成 的形式,如果 B 中含有字母,式子 就叫做
B
B
分式。其中,A 叫做分式的分子,B 叫做分式的分母。分式和整式通称为有理式。
A
A
A
当 B≠0 时,分式 有意义,当 B=0 时,分式 无意义;当 A=0 且 B≠0,分式 的值等于 0.
=
=
,
.
故选:A.
)
,
D.
5.下面的计算过程中,从哪一步开始出现错误(
A.①
B.②
【解答】解:
=
﹣
﹣
=
=
.
故从第②步开始出现错误.
故选:B.
)
C.③
D.④
﹣
6.已知 P=
(a≠±b)
(1)化简 P;
(2)若点(a,b)在一次函数 y=x﹣
解:(1)P=
﹣
=
(2)∵点(a,b)在一次函数 y=x﹣
)
【解析】(x+3
x3
x3
x2 9
7
2 x2 8x
=(
)
x 3 x 3
x3
x 3
( x 4)( x 4)
·
2 x( x 4)
x 3
x4
,
2x
当 x=1 时,原式
1 4 5
.
2 1 2
a b 2 2a 2b
4a 2
3a
14 先化简,再求值:(
B
B
B
2、分式的性质
(1)分式的基本性质:
分式的分子和分母都乘以(或除以)同一个不等于零的整式, 分式的值不变。
分式的加法和减法运算

分式的加法和减法运算分式是数学中常见的表示形式,它由两个数的比值构成,其中一个数称为分子,另一个数称为分母。
在分式的运算中,我们需要掌握分式的加法和减法运算规则。
下面将详细介绍分式的加法和减法运算。
一、分式加法运算两个分式的加法运算规则如下:1. 分母相同的情况下,直接将分子相加,分母保持不变。
例如,计算1/3 + 2/3 = 3/3,即分子相加得到3,分母保持不变。
2. 分母不同的情况下,需要进行通分操作,即找到它们的最小公倍数作为新的分母,然后将分子按照对应关系乘上对应的倍数,最后将新的分子相加得到结果。
例如,计算1/4 + 2/3,首先找到4和3的最小公倍数为12,然后将1/4乘以3/3得到3/12,将2/3乘以4/4得到8/12,最后3/12 + 8/12 = 11/12。
在分式加法运算中,需要注意分子相加,而分母保持不变或找到最小公倍数进行通分操作。
二、分式减法运算两个分式的减法运算规则如下:1. 分母相同的情况下,直接将分子相减,分母保持不变。
例如,计算5/6 - 2/6 = 3/6,即分子相减得到3,分母保持不变。
2. 分母不同的情况下,需要进行通分操作,即找到它们的最小公倍数作为新的分母,然后将分子按照对应关系乘上对应的倍数,最后将新的分子相减得到结果。
例如,计算3/5 - 1/3,首先找到5和3的最小公倍数为15,然后将3/5乘以3/3得到9/15,将1/3乘以5/5得到5/15,最后9/15 - 5/15 =4/15。
在分式减法运算中,需要注意分子相减,而分母保持不变或找到最小公倍数进行通分操作。
综上所述,分式的加法和减法运算需要根据分母是否相同来进行不同的处理。
如果分母相同,直接将分子相加或相减;如果分母不同,需要进行通分操作,然后将分子相加或相减。
掌握了分式的加法和减法运算规则,我们就可以灵活运用分式进行数学计算,解决实际问题。
通过以上对分式的加法和减法运算规则的解释,相信您已经掌握了相关知识,并能够熟练进行分式的加减运算。
分式平方计算方法

分式平方计算方法分式平方计算方法在数学中有着广泛的应用,它指的是将一个分式进行平方运算。
分式平方不仅可以用于简化复杂的数学问题,还能帮助我们更好地理解数学概念。
下面将详细介绍分式平方的计算方法及相关实用技巧。
一、分式平方的定义和意义分式平方是指将一个分式(分子与分母都是代数式的形式)进行平方运算。
例如,对于分式:(a+b)/(c+d),其分式平方为:[(a+b)/(c+d)]^2。
分式平方的意义在于,它将原分式中的加法、减法、乘法、除法等运算转化为乘法运算,从而便于我们进行进一步的计算。
二、分式平方的计算方法1.分子平方:将分子进行平方运算,即(a+b)^2 = a^2 + 2ab + b^2。
2.分母平方:将分母进行平方运算,即(c+d)^2 = c^2 + 2cd + d^2。
3.分子与分母的乘积:计算分子与分母的乘积,即(a+b)(c+d) = ac + ad + bc + bd。
4.代入分式平方公式:将分子平方、分母平方和分子与分母的乘积代入分式平方公式,即[(a+b)/(c+d)]^2 = (a^2 + 2ab + b^2) / (c^2 + 2cd +d^2)。
三、实例演示与计算例子:求分式平方(3x+2)/(x+1)。
1.分子平方:3x^2 + 12x + 4。
2.分母平方:x^2 + 2x + 1。
3.分子与分母的乘积:3x(x+1) + 2(x+1) = 3x^2 + 5x + 2。
4.代入分式平方公式:[(3x+2)/(x+1)]^2 = (3x^2 + 12x + 4) / (x^2 + 2x + 1)。
四、注意事项与实用技巧1.在进行分式平方计算时,务必确保分母不为零,以免出现错误。
2.分式平方计算过程中,可以先进行分子、分母的平方,再进行相除运算,以提高计算效率。
3.当分式较为复杂时,可以通过分式平方简化问题,便于进一步分析和解题。
通过以上介绍,相信大家对分式平方的计算方法有了更加清晰的认识。
21.3分式的运算:2.分式的加减法

首页 上页 下页 返回
跟进练习
x 1 x2 1.( + ) x 2 2 x x +1 x+ y x+z 2. ( x y )( z y ) ( y x)( y z )
3 1 应该怎样计算? 如 + 应该怎样计算? a 4a
首页 上页 下页 返回
想一想
探索异分母分式的 加减法的法则
请你先完成下 1 2 3 + 1、计算: 计算: 面的计算! 2a 3a 4a 2、与异分母分数的加减法类似,异 与异分母分数的加减法类似, 分母分式相加减,需要先通分, 分母分式相加减,需要先通分,变为 同分母的分式, 同分母的分式,然后再加减 。
4 xy (6) x y + . x y
首页 上页 下页 返回
跟进练习
12 2 (2) 2 + m 9 3 m
2
a b (3)a + b +1 a b ba x+2 x 1 4 x (4)( 2 2 )÷ 2 x 2x x 4x + 4 x 2x
2
a +b a b 2ab (5)( 2 )÷ 2 a b a + b (a b)(a + b)
首页 上页 下页 返回
延伸与拓展
链接一: 链接一:甲、乙两地相距s千米,汽车从甲地到 乙两地相距s千米, 乙地按v千米/时的速度行驶,若按(v+a)千米/ (v+a)千米 乙地按v千米/时的速度行驶,若按(v+a)千米/ 时的速度行驶,可提前多少小时到达? 时的速度行驶,可提前多少小时到达?
mn 3 n = ,则 的值等于( ) 链接二: 的值等于( 链接二:若 n 4 m
金塔县金塔镇中学数学教师
分式及其运算

分式及其运算
一、分式的概念
分式是用一个数除以另一个非零数所得的商。
分式由分子和分母两部分组成,用斜线"/"或水平线"—"隔开,如3/5或3—5。
其中,分子是被除数,分母是除数。
二、分式的基本运算
1. 分式的加减法
- 同分母分式的加减法:只需将分子相加或相减,分母保持不变。
- 异分母分式的加减法:先通分,使分母相同,再将分子相加或相减。
2. 分式的乘法
- 分式相乘时,分子相乘,分母相乘。
3. 分式的除法
- 分式除法可以通过乘以另一个分式的倒数来实现。
4. 分式的化简
- 分子和分母都除以它们的最大公因数,可以化简分式。
三、分式的应用
分式在日常生活和学习中有广泛的应用,例如:
1. 计算比例和百分比
2. 表示概率
3. 解决实际问题(如分配任务、计算利息等)
通过掌握分式的运算规则和应用技巧,我们可以更好地理解和处理涉及分数的各种情况。
分式的乘除运算讲解

分式的乘除运算讲解1.引言1.1 概述分式是数学中重要且常见的概念,在解决实际问题中具有广泛的应用。
分式的乘除运算是我们在求解分式相关问题时必须掌握和应用的基础运算。
分式的乘法运算是指将两个分式相乘,得到一个新的分式。
而分式的除法运算则是将一个分式除以另一个分式,同样得到一个新的分式。
在实际生活中,我们经常遇到需要对分式进行乘除运算的情况,比如在购物中打折优惠、计算比例和比率等等。
为了正确进行分式的乘除运算,我们需要先了解分式的定义与性质。
分式可以看作是分子和分母之间带有分数线的数学表达式。
在分式中,分子表示分数的分子部分,而分母表示分数的分母部分。
分式的分子和分母都可以是整数、变量、或两者的组合。
在乘法运算中,我们将两个分式相乘,只需将它们的分子相乘,分母相乘,得到的积即为乘法结果的分子与分母。
而在除法运算中,我们将一个分式除以另一个分式,需要将被除数的分子与除数的分母相乘,被除数的分母与除数的分子相乘,从而得到商的分子与分母。
通过了解分式乘除运算的步骤和性质,我们可以更加灵活地对分式进行运算,解决实际问题中的各种分式运算题目。
分式的乘除运算不仅是数学中重要的基础知识,也是我们日常生活中的实际运用。
掌握了分式的乘除运算,我们能够更好地理解和应用数学知识,提高数学解题的能力和运算的准确性。
综上所述,本文将详细介绍分式的乘除运算的定义、性质以及运算步骤,并总结其应用与拓展。
通过学习与掌握分式的乘除运算,我们可以在数学解题中更加得心应手,为日常生活中的计算和问题解决提供帮助。
1.2 文章结构本文将按照以下结构进行分析和讲解分式的乘除运算。
2. 正文2.1 分式的乘法运算2.1.1 定义与性质2.1.2 乘法运算的步骤2.2 分式的除法运算2.2.1 定义与性质2.2.2 除法运算的步骤3. 结论3.1 总结分式的乘除运算在本章节中,我们通过详细解释分式的乘法与除法运算,掌握了其定义、性质以及实际操作步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支
持。
分式的加减法(一)
教学目的:会通分,利用法则正确进行分式的加减运算;掌握运算顺序,进行分式的四则混合运算.
教学重点:通分,异分母的分式加减法.
教学难点:分式的四则混合运算.
教学过程:
讲解新课.
一.基本知识
1.分式的加减法
法则如下:
同分母的分式相加减,把分子相加减,分母不变;异分母的分子相加减,先将异分母的分式通过能份化为同分母的分式。
(1)把几个异分母的分式分别化为与原来分式相等的同分母的分式叫通分。
(2)通分的依据是分式的基本性质,通分的关键是确定最简公分母。
(3)通分时,最简公分母由下面的方法确定:
①最简公分母的系数,取各分母系数的最小公倍数;
②最简公分母的字母,取各分母所有字母的最高次幂的积;
(4)如果分母是多项式,则首先对多项式进行因式分解。
文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支
持。
3.分式的混合运算
运算顺序,先乘方,再乘除,最后加减,有括号的先算括号,若是同级混合运算,按从左到右的顺序进行。
二.例题精选
1.通分
例1通分 (1)
331xy ,y x 221,y x 391; (2)2)(1b a +,b a +-2,223b a -; (3)412-x ,10352-++x x x ,14
5722---x x x x . 2.同分母分式的加减
例2 计算题
222y x y x -+-223y x x y ---2243y
x y x --. 例3计算题
22y x x --22x y y -.
3.异分母分式的加减
例4 计算题
2441x x +--42-x x +4
21+x 例5.计算题
文档从互联网中收集,已重新修正排版,word 格式支持编辑,如有帮助欢迎下载支
持。
11
23
----x x x x . 例6 计算题
例7 计算题。