分式运算方法 (2)

合集下载

15.2.1分式的乘除(二)教案

15.2.1分式的乘除(二)教案
教学内容
15.2.1分式的乘除(2)
课标对本节课的教学要求
掌握分式乘除法的法则
熟练地进行分式乘除法的混合运算.
教学目标
1.掌握分式乘除法的法则
2.熟练地进行分式乘除法的混合运算.
3.渗透类比转化的数学思想方法
教学重点
难点
重点:熟练地进行分式乘除法的混合运算.
难点:熟练地进行分式乘除法的混合运算.
教学准备
教学投影仪
教学时间
一课时。
教学过程
第(1)课时
教学环节
教师活动预设
学生活动预设引入
计算:(1)
(2)
学生独立完成,复习旧知
新课讲授
例题讲解
计算(1) (2)
(补充)例.计算
(1)
= (先把除法统一成乘法运算)
= (判断运算的符号)
= (约分到最简分式)
(2)
= (先把除法统一成乘法运算)
= (分子、分母中的多项式分解因式)
=
=
课堂练习:
计算(1) (2)
学生观察思考,并小组讨论
学生独立完成
分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.
作业安排
课堂小结
谈谈你的收获
板书设计
15.2.1分式的乘除(二)
1.例题讲解 2.练习
课后记

分式的乘除法

分式的乘除法

分式的乘除法分式的乘法和除法是数学中非常重要的概念,在许多数学题目和实际应用中都会用到这两种运算。

下面我们将详细介绍分式的乘法和除法,帮助大家更好地掌握这个概念。

一、分式的乘法1. 定义两个分数的乘积是将它们的分子相乘,分母相乘得到的新的分数。

简单来说,两个分数的乘积算法是:分式 A ×分式 B = (A的分子× B的分子) / (A的分母× B的分母)例如:(3/4) × (5/6) = (3×5) / (4×6) = 15 / 24(1/3) × (4/5) = (1×4) / (3×5) = 4 / 152. 乘法的性质①乘法是可交换的:两个分式相乘的结果与两个分式交换位置后相乘的结果相同。

A ×B = B × A②乘法是可结合的:三个或更多个分式相乘的结果不受计算的顺序影响。

(A × B) × C = A × (B × C)③乘法满足分配律:一个分式与多个分式相加的结果等于每个分式与它相乘后再相加的结果。

A × (B + C) = A × B + A × C例如:2/3 × (4/5 + 1/5) = 2/3 × 5/5 = 10/152/3 × 4/5 + 2/3 ×1/5 = 8/15 + 2/15 = 10/15二、分式的除法1. 定义两个分式的除法是将它们的分子相乘,分母相乘后,将前者的结果除以后者的结果所得到的新的分数。

简单来说,分式 A ÷分式 B 算法是:分式 A ÷分式 B = (A的分子× B的分母) / (A的分母× B的分子)例如:(3/4) ÷ (5/6) = (3×6) / (4×5) = 18 / 20(1/3) ÷ (4/5) = (1×5) / (3×4) = 5 / 122. 除法的性质①除法是不可交换的:两个分式相除的结果与两个分式交换位置后相除的结果不相同。

分式教案(2)

分式教案(2)

分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。

本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。

二、教学目标1. 理解分式的概念,掌握分式的基本性质。

2. 学会分式的运算方法,提高运算能力。

3. 学会解分式方程,提高解决问题的能力。

三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。

难点:分式方程的解法。

四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。

学具:教材、练习本、铅笔、橡皮。

五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。

问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。

2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。

3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。

4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。

5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。

6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。

7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。

8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。

9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。

10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。

六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。

分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。

分式的乘除法

分式的乘除法

分式的乘除法分式是数学中的一种表示形式,它由分子与分母组成,分子表示被分割的数量,分母表示分割成的份数。

在分式中,乘法和除法是常见的运算。

本文将介绍分式的乘法和除法的规则和运算方法。

一、分式的乘法分式的乘法是指两个或多个分式相乘的操作。

下面是分式乘法的规则:规则1:分子乘以分子,分母乘以分母。

示例1:(2/3) * (5/7) = (2 * 5) / (3 * 7) = 10/21规则2:任意常数乘以分式,可以将常数作为分子或分母的一部分。

示例2:3 * (4/5) = (3 * 4) / 5 = 12/5规则3:分子和分母都可以进行约分。

示例3:(8/12) * (3/5) = (8/3) * (3/5) = 24/15 = 8/5二、分式的除法分式的除法是指将一个分式除以另一个分式的操作。

下面是分式除法的规则:规则1:除法可以等价为乘法。

示例1:(2/3) ÷ (4/5) = (2/3) * (5/4) = (2 * 5) / (3 * 4) = 10/12 = 5/6规则2:除法的倒数等于分子和分母交换位置后的分式。

示例2:(3/4) ÷ (2/3) = (3/4) * (3/2) = (3 * 3) / (4 * 2) = 9/8规则3:分子和分母都可以进行约分。

示例3:(4/6) ÷ (2/3) = (4/6) * (3/2) = (4 * 3) / (6 * 2) = 12/12 = 1/1 = 1三、分式乘除法的综合运算分式乘除法可以结合使用,需要按照运算的优先级和顺序进行计算。

下面是一个综合运算的示例:示例:(2/3) * (3/4) ÷ (4/5) = (2/3) * (3/4) * (5/4) = (2 * 3 * 5) / (3 * 4 * 4) =30/48 = 5/8四、小结分式的乘法和除法是分式运算中常见的操作,掌握其规则和运算方法对于数学学习和实际计算都非常重要。

分式的四则运算

分式的四则运算

分式的四则运算
(1)同分母分式加减法则:同分母的分式相加减,分母不变,把分
子相加减.
(2)异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.
(3)分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.
(4)分式的除法法则:
①两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.
②除以一个分式,等于乘以这个分式的倒数:
(5)分式方程:分母中含有未知数的方程叫做分式方程.
(6)分式方程的解法:
①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);
②按解整式方程的步骤求出未知数的值;
③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)。

分式的运算法则

分式的运算法则

分式的运算一.通分的方法:1.分式通分的涵义和分数通分的涵义有类似的地方;(1)把异分母分式化为同分母分式; (2)同时必须使化得的分式和原来的分式分别相等;(3)通分的根据是分式的根本性质,且取各分式分母的最简公分母,否那么使运算变得烦琐.2.求最简公分母是通分的关键,其法那么是:(1)取各分母系数的最小公倍数;(2)凡出现的字母(或含字母的式子)为底的幂的因式都要取;(3)一样字母(或含字母的式子)的幂的因式取指数最高的.这样取出的因式的积,就是最简公分母.例1.通分:解:∵8,12,20的最小公倍数为120,字母因式x、y、z的最高次幂分别为x3、y3、z2,所以最简公分母是120x3y3z2.∴.通分过程中,如果字母的系数是负数,一般先把负号提到分式的前面.例2.通分:解:将分母分解因式:a2-b2=(a+b)(a-b);b-a=-(a-b) ∴最简公分母为(a+b)(a-b)2∴[分子,分母同乘以(a-b)]=[分子作整式乘法]∴[分子,分母同乘以(a+b)]=[分子作整式乘法]∴[分子,分母同乘以(a+b)(a-b)]=-[分子作整式乘法]说明: (1)分式的通分必须注意整个分子和整个分母,分母是多项式时,必须先分解因式,分子是多项式时,要把分母所乘的一样式子与这个多项式相乘,而不能只同其中某一项相乘。

二.分式的乘除法:1.同分数乘除法类似,分式乘除法的法那么用式子表示是:4.做分式乘除混合运算时,要注意运算顺序,乘除法是同级运算,要严格按照由左到右的顺序进展运算.切不可打乱这个运算顺序。

例如:a÷b·=a··= 切不可以: a÷b·= a÷1=a例1、计算:〔1〕〔2〕÷(-)解: (1)法(一)分子、分母分别相乘得一个分式再进展约分:=法(二)先约分,再相乘=(2)÷(- )= ·〔- 〕=-说明①分式的除法,只要将除式的分子和分母颠倒位置,就可以转化为乘法来做,并注意符号法那么,一般先确定符号,然后演算. ②根据乘法法那么,应先化成一个分式后再进展约分,如(1)题中的法(一)计算,但在实际演算中,这样的做法就显得繁琐,因此往往在运算过程中,先约分,再相乘,所得的结果是一样的.如(1)题中的法(二)计算.例2.计算: ÷(x+3)·解: ÷(x+3)·=÷(x+3)·(各分子,分母按x降幂排列)= ··〔统一为乘法运算〕=··〔分子,分母因式分解〕=-〔约分〕说明:①整式(x+3)可以写成分式形式: 颠倒除式后为.②上例的右侧说明就是乘除混合运算的步骤。

分式的认识与计算

分式的认识与计算

分式的认识与计算分式是数学中常见的表达形式之一,它由分子和分母组成,分子位于分式的上方,分母位于分式的下方,中间以一条水平线分隔。

本文将从分式的基本概念开始,介绍分式的计算方法以及一些常见的应用场景。

一、基本概念分子和分母:分式的分子表示被除数,分母表示除数。

例如,分式3/4中,3为分子,表示被除数;4为分母,表示除数。

真分数和假分数:当分子小于分母时,分式被称为真分数;当分子大于或等于分母时,分式被称为假分数。

例如,1/2是真分数,3/2是假分数。

带分数:由整数和分数部分组成,整数部分表示整数部分,分数部分表示真分数。

例如,1 1/2是带分数,由整数1和真分数1/2组成。

二、分式的计算方法1. 分式的加减法分式的加减法遵循找到相同的分母,然后将分子进行加减运算的原则。

具体步骤如下:(1)找到相同的分母;(2)将分子进行加减运算;(3)结果的分子作为新分式的分子,分母保持不变。

2. 分式的乘除法分式的乘除法遵循分式乘法和分式除法规则。

具体步骤如下:(1)分式乘法:将分子相乘作为新分式的分子,分母相乘作为新分式的分母;(2)分式除法:将第一个分式的分子与第二个分式的倒数(即分子与分母交换)相乘,作为新分式的分子,将第一个分式的分母与第二个分式的分子相乘,作为新分式的分母。

三、分式的应用场景1. 比例问题分式在比例问题中有着广泛的应用。

例如,若某商品原价为100元,打8折后的售价可表示为100*(1-8/10)。

2. 方程问题分式也常出现在解方程的过程中。

例如,将一个未知数表示为分式形式,然后通过分式的计算方法解方程。

如:2/x = 3/(x+1),可以通过分式的乘法和化简等步骤来求解。

3. 财务问题分式在财务问题中的运用也十分广泛,如货币换算、利率计算、股票涨跌幅计算等。

例如,假设某股票的涨幅为5%,而你持有的股票数量为500股,可以通过分式计算出涨幅所带来的收益。

四、总结分式是数学中常见的表达形式,广泛应用于实际问题的解决中。

分式运算的技巧方法

分式运算的技巧方法

分式运算的技巧方法分式运算是数学中的一种运算方法,主要涉及到分数的加减乘除等运算。

下面给出一些分式运算的技巧方法:一、分式的加减运算:1.确定两个分式的分母是否相同,如果相同,则可以直接将两个分子相加或相减,分母保持不变。

2.如果分母不同,则需要寻找一个公共分母,并通过乘以适当的因数将分子和分母都变换为公共分母的倍数。

最后再将两个分子相加或相减。

二、分式的乘除运算:1.分式的乘法是将两个分式的分子相乘,并将分母相乘,得到的分子和分母再化简为最简形式。

2.分式的除法是将除数的分子和被除数的分母相乘,除数的分母和被除数的分子相乘,再将两个分子相除,两个分母相除,得到的分子和分母再化简为最简形式。

3.对于有多个分式相乘或相除的情况,可以先进行一些分式的合并,再进行乘除运算。

三、分式的化简:1.将分子和分母的最大公因数约分,使得分式变为最简形式。

2.将分子和分母进行因式分解,然后进行约分化简。

3.分式相加或相减时,可以先将分子和分母的最小公倍数作为公共分母,再进行化简运算。

四、分式的整理:1.将分式中的分子和分母按照一定的规律整理成一个分数或者整数。

2.使用括号来整理分子或分母,减少操作的复杂性和错误的发生。

五、化简复杂分式:1.对于复杂的分式,可以先分解分子和分母,再进行化简运算。

2.对于双重分式(一个分子或分母是另一个分式的情况),可以使用变量来进行整理和化简。

3.对于有多个分式相加或相减的情况,可以先将分式按照一定的规律进行合并,再进行化简运算。

六、变量的运算:1.在分式中使用变量进行运算时,可以运用代数的基本运算规则进行计算。

2.在变量的运算中,可以利用代数的性质进行合并和化简,最后得到一个最简形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式运算的技巧
【精练】计算:
【分析】本题中有四个分式相加减,如果采用直接通分化成同分母的分式相加减,公分母比较复杂,其运算难度较大.不过我们注意到若把前两个分式相加,其结果却是非常简单的.因此我们可以采用逐项相加的办法.
【解】=
=
=
【知识大串联】
1.分式的有关概念
设A、B表示两个整式.如果B中含有字母,式子就叫做分式.注意分母B的值不能为零,否则分式没有意义
分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简2、分式的基本性质
(M为不等于零的整式)
3.分式的运算
(分式的运算法则与分数的运算法则类似).
(异分母相加,先通分);
4.零指数
5.负整数指数
注意正整数幂的运算性质
可以推广到整数指数幂,也就是上述等式中的m、 n可以是O或负整数.分式是初中代数的重点内容之一,其运算综合性强,技巧性大,如果方法选取不当,不仅使解题过程复杂化,而且出错率高.下面通过例子来说明分式运算中的种种策略,供同学们学习参考.
1.顺次相加法
例1:计算:
【分析】本题的解法与例1完全一样.
【解】=
=
=
2.整体通分法
【例2】计算:
【分析】本题是一个分式与整式的加减运算.如能把(-a-1)看作一个整体,并提取“-”后在通分会使运算更加简便.通常我们把整式看作分母是1的分式.
【解】==.
3.化简后通分
分析:直接通分,极其繁琐,不过,各个分式并非最简分式,有化简的余地,显然,化简后再通分计算会方便许多.
4.巧用拆项法
例4计算:.
分析:本题的10个分式相加,无法通分,而式子的特点是:每个分式的分母都是两个连续整数的积(若a是整数),联想到,这样可抵消一些项.
解:原式=
=
==
5.分组运算法
例5:计算:
分析:本题项数较多,分母不相同.因此,在进行加减时,可考虑分组.分组的原则是使各组运算后的结果能出现分子为常数、相同或倍数关系,这样才能使运算简便.
解:
=
=
=
=
=
【错题警示】
一、错用分式的基本性质
例1化简
错解:原式
分析:分式的基本性质是“分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变”,而此题分子乘以3,分母乘以2,违反了分式的基本性质.
正解:原式
二、错在颠倒运算顺序
例2计算
错解:原式
分析:乘除是同一级运算,除在前应先做除,上述错解颠倒了运算顺序,致使结果出现错误.
正解:原式
三、错在约分
例1 当为何值时,分式有意义?
[错解]原式.
由得.
∴时,分式有意义.
[解析]上述解法错在约分这一步,由于约去了分子、分母的公因式,扩大了未知数的取值范围,而导致错误.
[正解]由得且.
∴当且,分式有意义.
四、错在以偏概全
例2 为何值时,分式有意义?
[错解]当,得.
∴当,原分式有意义.
[解析]上述解法中只考虑的分母,没有注意整个分母,犯了以偏概全的错误.
[正解] ,得,
由,得.
∴当且时,原分式有意义.
五、错在计算去分母
例3 计算.
[错解]原式
=.
[解析]上述解法把分式通分与解方程混淆了,分式计算是等值代换,不能去分母,. [正解]原式
.
六、错在只考虑分子没有顾及分母
例4 当为何值时,分式的值为零.
[错解]由,得.
∴当或时,原分式的值为零.
[解析]当时,分式的分母,分式无意义,谈不上有值存在,出错的原因是忽视了分母不能为零的条件.
[正解]由由,得.
由,得且.
∴当时,原分式的值为零.
七、错在“且”与“或”的用法
例7 为何值时,分式有意义
错解:要使分式有意义,须满足,即.
由得,或由得.
当或时原分式有意义.
分析:上述解法由得或是错误的.因为与中的一个式子成立并不能保证一定成立,只有与
同时成立,才能保证一定成立.
故本题的正确答案是且.
八、错在忽视特殊情况
例8解关于的方程.
错解:方程两边同时乘以,得,即.
当时,,
当时,原方程无解.
分析:当时,原方程变为取任何值都不能满足这个方程,错解只注意了对的讨论,而忽视了的特殊情况的讨论.
正解:方程两边同时乘以,得,即
当且时,,当或时,原方程无解.。

相关文档
最新文档