18立方米卧式储油罐设计说明书

合集下载

卧式钢制储罐工程设计说明书

卧式钢制储罐工程设计说明书

卧式钢制储罐工程设计说明书第一章绪论1.1设计任务针对化工厂中的储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图,并编写设计说明书。

1.2设计思想综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。

在设计过程中综合考虑了经济性,实用性,安全可靠性。

各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计。

1.3设计特点容器的设计一般由筒体、封头、法兰、支座、接口管等组成。

常、低压化工设备通用零部件大都有标准,设计时可直接选用。

本设计书主要介绍了液罐的的筒体、封头的设计计算,低压通用零部件的选用。

各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理地进行设计第二章 储罐简介2.1储罐的用途用于储存液体或气体的钢制密封容器即为钢制储罐,钢制储罐工程是石油、化工、粮油、食品、消防、交通、冶金、国防等行业必不可少的、重要的基础设施,我们的经济生活中总是离不开大大小小的钢制储罐,钢制储罐在国民经济发展中所起的重要作用是无可替代的。

钢制储罐是储存各种液体(或气体)原料及成品的专用设备,对许多企业来讲没有储罐就无法正常生产,特别是国家战略物资储备均离不开各种容量和类型的储罐。

我国的储油设施多以地上储罐为主,且以金属结构居多,故本网站将着重介绍在国内普遍使用的拱顶储罐、内浮顶储罐以及卧式储罐的一些基础知识。

2.2储罐的分类由于储存介质的不同,储罐的形式也是多种多样的。

按位置分类:可分为地上储罐、地下储罐、半地下储罐、海上储罐、海底储罐等。

按油品分类:可分为原油储罐、燃油储罐、润滑油罐、食用油罐、消防水罐等。

按用途分类:可分为生产油罐、存储油罐等。

按形式分类:可分为立式储罐、卧式储罐等。

按结构分类:可分为固定顶储罐、浮顶储罐、球形储罐等。

按大小分类: 3100m 以上为大型储罐,多为立式储罐; 3100m 以下的为小型储罐,多为卧式储罐。

课程设计说明书(储油罐)

课程设计说明书(储油罐)

1.前言油罐是石油化工企业储存原料和产品的重要设备。

油罐能否安全运行直接会影响到与其有关装置的安全及稳定生产。

油罐一旦发生腐蚀损坏,就会影响产品质量、降低企业的经济效益;甚至造成重大的经济损失和严重的环境污染及酿成火灾和人员丧亡事故。

因此,油罐的防腐问题已引起人们的高度重视,国内一些老炼厂已对换顶后的油罐作了内防腐处理,以防止油罐再度腐蚀损坏。

但从实用、有效、经济的原则出发,从设计开始就考虑油罐的内外防腐,将是最经济合理的举措。

地面立式储油罐存储的物质大多为腐蚀性较强的液体,如原油、污水等化学介质。

是石油、化工等行业必不可少的重要设备。

且油罐与地面接触,土壤中的腐蚀介质会影响到油罐底部。

因其特殊的使用环境,在使用过程中存在着一定的使用年限(大多数储油罐使用年限不超过五年)。

如果防腐措施好的话使用年限会适当的延长,而更换储油罐是一项较为复杂的工作,因此为了更好的提高储油罐的使用寿命,就需要通过加强防腐的措施来提高储油罐的使用年限。

通过调查研究发现,储油罐的腐蚀情况通常发生在储油罐的底板内表面和壁板内的下半段。

同时,储油罐产生腐蚀的主要原因为点腐蚀和细菌腐蚀两种,这两种腐蚀都是极具破坏力的,因此,储油罐的防腐措施也是一项相对困难的工作【1】。

2 油罐结构及性能分析2.1设计参数1)结构尺寸参数:300m3地面立式油罐(直径18.6m,罐壁高11.8m,油罐总高度13.6m);2)工作寿命:8年;3)工作环境参数:土壤电阻率20Ωm;4)保护电位:-0.85V 相对于Cu/CuSO4电极2.3 失效形式及失效原因1)外壁腐蚀一般而言,储油罐的外壁长时间受到阳光的照射,光照时间越长,腐蚀越为严重,一般储油罐外壁为保温棉覆盖,外部用铁皮包裹,外壁周围环境干燥,不易遭受腐蚀,罐顶外壁,由于长期受到阳光照射、大风、雨雪等侵蚀,造成罐顶防腐层老化脱落,暴漏出内部钢板,造成罐顶生锈腐蚀。

【2】2)罐顶腐蚀在一般的储油罐中,油料不会太满,也就是说储油罐的顶部与油料的表面是不会直接接触到的,但油料产生的氧化与其他的变质气体均会对罐顶形成一定的腐蚀,它的严重程度非常高。

卧式储罐设计

卧式储罐设计

安徽工程大学课程设计说明书题目名称:卧式储罐设计专业班级:食品122班学生姓名:***指导教师:***完成日期: 2015-09-24目录摘要 (3)第一章绪论 (4)1.1设计任务: (4)1.2设计思想: (4)1.3设计特点: (4)第二章材料及结构的选择与论证 (5)2.1材料选择 (5)2.2结构选择与论证 (5)2.2.1 封头的选择 (5)2.2.2容器支座的选择 (5)2.3法兰型式 (6)2.4液面计的选择 (6)第三章结构设计 (7)3.1壁厚的确定 (7)3.2封头厚度设计 (7)3.2.1计算封头厚度 (7)3.2.2水压试验及强度校核 (8)3.3储罐零部件的选取 (8)3.3.1储罐支座 (8)3.3.2 罐体质量 (8)3.3.3封头质量 (9)3.3.4液氨质量 (9)3.3.5附件质量 (9)第四章接管的选取 (10)4.1液氨进料管 (10)4.2平衡口管 (10)4.3液位指示口管 (10)4.4放空口管 (10)4.5液体进口管 (11)4.6液体出口管 (11)第五章压力计选择 (12)符号说明 (13)总结 (14)摘要本说明书为《1.2m3液氨储罐设计说明书》。

扼要介绍了卧式储罐的特点及在工业中的广泛应用,详细的阐述了卧式储罐的结构及强度设计计算及制造、检修和维护。

本文采用分析设计方法,综合考虑环境条件、液体性质等因素并参考相关标准,按工艺设计、设备结构设计、设备强度计算的设计顺序,分别对储罐的筒体、封头、鞍座、接管进行设计,然后采用1SW6-1998对其进行强度校核,最后形成合理的设计方案。

设计结果满足用户要求,安全性与经济性及环保要求均合格。

关键词:压力容器、卧式储罐、结构设计、强度校核、开孔补强第一章绪论1.1 设计任务:针对化工厂中常见的液氨储罐,完成主体设备的工艺设计和附属设备的选型设计,绘制总装配图,并便携设计说明书。

1.2设计思想:综合运用所学的机械基础课程知识,本着认真负责的态度,对储罐进行设计。

18立方米卧式储油罐设计说明书

18立方米卧式储油罐设计说明书

一设计产品概要:1.1产品概要金属油罐是采用钢板材料焊成的容器。

普通金属油罐采用的板材是一种代号叫A3F的平炉沸腾钢;寒冷地区采用的是A3平炉镇静钢;对于超过10000m3的大容积油罐采用的是高强度的低合金钢。

常见的金属油罐形状,一般是立式圆柱形、卧式圆柱形、球形等几种。

立式圆柱形油罐根据顶的结构又可分为桁架顶罐、无力矩顶罐、梁柱式顶罐、拱顶式罐、套顶罐和浮顶罐等,其中最常用的是拱顶罐和浮顶罐。

拱顶罐结构比较简单,常用来储存原料油、成品油和芳烃产品。

浮顶罐又分内浮顶罐和外浮顶罐两种,罐内有钢浮顶浮在油面上,随着油面升降。

浮顶不仅降低了油品的消耗,而且减少了发生火灾的危险性和对大气的污染。

尤其是内浮顶罐,蒸发损耗较小,可以减少空气对油品的氧化,保证储存油品的质量,对消防比较有利。

前内浮顶罐在国内外被广泛用于储存易挥发的轻质油品,是一种被推广应用的储油罐。

卧式圆柱形油罐应用也极为广泛。

由于它具有承受较高的正压和负压的能力,有利于减少油品的蒸发损耗,也减少了发生火灾的危险性。

它可在机械,一成批制造,然后运往工地安装,便于搬运和拆迁,机动性较好。

缺点是容量一般较小,用的数量多,占地面积大。

它适用于小型分配油库、农村油库、城市加油站、部队野战油库或企业附属油库。

在大型油库中也用来作为附属油罐使用,如放空罐和计量罐等。

球形油罐具有耐压、节约材料等特点,多用于石油液化气系统,也用做压力较高的溶剂储罐。

1.2设计特点:容器的设计一般由筒体,封头,法兰,支座,接口管及人孔等组成。

常低压化工设备通用零件大都有标准,设计时可直接选用。

本设计书主要介绍了卧式储罐的筒体,封头的设计计算,低压通用零件的选用。

各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理的进行设计。

1.3设计参数:产品主体尺寸:Ф2800×8×3200 mm工作压力:常压主体材质:Q235-A设计温度:0~350℃设计寿命:15年焊接接头系数:0.85腐蚀裕量:1.5 mm水压试验压力:盛水试漏装量系数:0.98操作介质:燃料油二产品结构分析:2.1 材料的选择[5]:选择Q235-A碳钢钢板作为筒体焊接材料,是因为它具有适当的强度和塑性,工艺性能良好,价格低廉,因而被广泛用来制造一般的中低压容器。

卧式储罐说明书0903312-15

卧式储罐说明书0903312-15

过程设备课程设计说明书回流卧式储罐设计学院机电工程学院专业过程装备与控制工程姓名刘锡波学号0903312-15指导教师朱振华李晶过程设备设计课程设计任务书一、设计题目:回流卧式储罐二、技术特性指标设计压力:0.83MPa 工作压力:0.45MPa设计温度:58℃操作温度:40℃安全阀开启压力:0.6MPa 液压实验(卧式):0.99MPa气密性实验:0.79MPa 介质名称及特性(毒性,易燃):、设备净重:923Kg 其中不锈钢中0.48Kg 充水后总重量:3423Kg 腐蚀裕量:2mm 焊缝系数:1全容积:8.5 装料系数:0.9三、设计内容1、回流罐的强度计算及校核2、选择合适的零部件材料3、焊接结构选择及设计4、安全阀和主要零部件的选型5、绘制装配图和主要零部件图四、设计说明书要求1、字数不少于5000字。

2、内容包括:设计参数的确定、结构分析、材料选择、强度计算及校核、焊接结构设计、标准零部件的选型、制造工艺及制造过程中的检验、设计体会、参考书目等。

3、设计说明书(封面自行设计,全班统一;计算机打印),要求有设计题目、班级、学生姓名、指导教师姓名、设计时间。

(全班统一)4、设计说明书用A4纸横订成册,封面和任务书在前。

目录过程设备设计课程设计任务书................................................................................................ I I 目录............................................................................................................................................ I I 第一章绪论. (1)1.1设计目的及意义 (1)1.2液化石油气储罐分类 (1)1.3 卧式储罐设计特点 (1)1.4 液化石油气特点 (1)1.5设计思想 (2)1.6设计特点 (2)1.7设计要求和参数选择 (2)第二章回流卧式储罐结构设计 (3)2.1材料及结构选择 (3)2.1.1材料选择 (3)2.1.2 结构选择与认证 (3)2.1.2.1 封头的选择 (3)2.1.2.2 人孔的选择 (3)2.1.2.3 法兰的选择 (3)2.1.2.4液面计的选择 (4)2.1.2.5 鞍座的选择 (4)2.2主要元件材料的确定 (5)2.3 圆筒厚度的设计 (5)2.4 封头厚度计算 (6)2.5 筒体与封头的结构设计 (6)第三章容器主元件的设计 (8)3.1人孔的选择 (8)3.2接管、法兰、垫片和螺栓(柱) (8)3.2.1接管 (9)3.2.2 法兰 (9)3.2.3垫片 (10)3.2.4螺栓(螺柱)的选择 (11)3.3鞍座选型和结构设计 (11)3.3.1鞍座选型 (11)3.3.2鞍座的安装位置 (12)第四章 开孔补强设计 (14)4.1补强设计方法判别 (14)4.2有效补强范围 (14)4.2.1有效宽度B (14)4.2.2外侧有效高度 (15)4.2.3内侧有效高度 (15)4.3有效补强面积 (15)4.4补强圈面积 (15)第五章 强度计算 (16)5.1水压试验应力校核 (16)5.2圆筒轴向弯矩计算 (16)5.2.1圆筒中间截面上的轴向弯矩 (16)5.2.2鞍座平面上的轴向弯矩 (16)5.3圆筒轴向应力计算及校核 (17)5.3.1圆筒中间截面上由压力及轴向弯矩引起的轴向应力 (17)5.3.2由压力及轴向弯矩引起的轴向应力计算及校核 (18)5.3.3圆筒轴向应力校核 (18)5.4切向剪应力的计算及校核 (18)5.4.1圆筒切向剪应力的计算 (18)5.4.2圆筒被封头加强(2a R A ≤)时,其最大剪应力h τ (19)5.4.3切向剪应力的校核 (19)5.5圆筒周向应力的计算和校核 (19)5.5.1在横截面的最低点处: (20)5.5.2在鞍座边角处 (20)5.5.3鞍座垫板边缘处圆筒中的周向应力 (20)5.5.4周向应力校核 (20)第六章 焊接结构设计 (21)6.1焊接接头形式 (21)6.2坡口形式 (22)6.3压力容器焊接接头分类 (22)第七章 总结 (23)参考文献 (24)第一章绪论1.1设计目的及意义液化石油气作为一种化工基本原料和新型燃料,已愈来愈受到人们的重视。

卧式油罐计算书

卧式油罐计算书

《机械设计基础》课程设计题目所在院(系)专业班级学号学生姓名指导教师完成时间此页为任务书,请同学将任务书放入目录1 设计总说明 ..................................................................................... 错误!未定义书签。

1.1 ................................................................................................. 错误!未定义书签。

1.2………………………………………………………………………………………………………...2 计算说明书........................................................................................................... 错误!未定义书签。

2.1设计原始数据 ......................................................................... 错误!未定义书签。

2.2 油罐尺寸确定......................................................................... 错误!未定义书签。

2.3油罐罐壁的设计计算 ............................................................. 错误!未定义书签。

2.3.1 油罐罐壁钢板的尺寸和排板确定...................................... 错误!未定义书签。

2.3.2 罐壁各层钢板厚度的计算.................................................. 错误!未定义书签。

15m3卧式油罐图课程设计说明书

目录第一部分课程设计任务书 (1)第二部分第一章绪论 (2)第一节金属油罐设计的基本知识 (2)1.1金属油罐的发展趋势 (2)1.2对金属油罐的基本要求 (2)第二节金属油罐的分类 (3)2.1地上钢油罐 (4)2.2地下油罐 (4)第三节课题意义 (5)第二章设计说明 (6)第一节设计基础 (6)1.1适用范围 (6)1.2设计、制造遵循的主要规范 (6)1.315 M3卧式油罐加工基本参数和尺寸: (6)第二节设计安全 (6)2.1设计遵循参照的主要规范 (6)2.2设计范围 (7)防雷电与防静电措施 (7)防火措施 (7)第三节油罐接管 (8)第三章设计计算 (9)第一节设计的基本参数 (9)第二节壳体壁厚计算 (9)2.1 筒体壁厚计算 (9)封头壁厚计算 (9)2.2鞍座的选择计算 (10)罐体重Q1 (10)封头重Q2 (10)汽油重Q3 (10)附件重Q4 (10)2.3鞍座作用下筒体应力计算 (10)筒体轴向弯矩计算 (11)筒体轴向应力计算 (11)2.4 筒体周向应力计算 (13)参考文献 (15)第一部分课程设计任务书题目15m3卧式油罐图学生姓名刘金荣学号200904020327 专业班级储运0903设计内容与要求一、原始数据1.适用范围及设计条件油罐用于储存工业或民用设施中常用的燃料油。

(1)设计压力常压(2)设计温度-19℃≤t≤200℃(3)设计寿命 15年(4)焊接接头系数 0.85(5)水压试验压力盛水试漏(6)腐蚀裕量 1.5mm(7)装量系数 0.9(8)介质燃料油2.设计基本参数和尺寸15m3卧式油罐的基本参数尺寸见表一。

表一:15m3卧式油罐基本参数和尺寸公称容积(m3)筒体主要尺寸封头壁厚(mm)壳体材料设备金属总质量(kg)直径×长度×壁厚15 1800×5900×6 6 20R 2345二、设计要求1.了解卧式油罐的基本结构和局部构件;2.根据给定油罐大小,查阅相关标准确定相应构件的规格尺寸;3.学会使用AUTOCAD制图。

化工设计贮罐设计说明书

化工设计贮罐设计说明书化工设计贮罐设计说明书一.设计背景本设计说明书旨在详细描述化工贮罐的设计流程,确保贮罐的安全性、稳定性和可靠性。

贮罐主要用于存储化工原料,必须符合相关法律法规和标准要求。

二.设计要求1. 贮罐材质:选用耐腐蚀性能良好的材质,如不锈钢、玻璃钢等;2. 贮罐容量:根据工艺需要和储物量确定合适的容量;3. 贮罐结构:根据贮存物性,选用合适的结构形式;4. 贮罐密封性:确保贮罐具有良好的密封性,避免溢漏或挥发;5. 贮罐防腐蚀:在贮罐内外表面进行防腐蚀处理,延长使用寿命;6. 贮罐安全措施:考虑贮罐在启动、运行和停止过程中的安全性,设置必要的防护装置;7. 贮罐搅拌:确保贮罐内物料充分混合,选用适当的搅拌装置。

三.贮罐设计流程1. 方案设计:- 根据贮存物性质和工艺要求,确定贮罐材质、容量和结构形式;- 确定贮罐的安装位置和固定方式;2. 结构设计:- 根据贮罐容量和压力要求,设计合适的罐体壁厚和支撑结构;- 考虑贮罐在运行过程中受到的外力和温度变化,进行结构强度及稳定性校核;3. 密封设计:- 设计贮罐的密封结构,确保密封性能符合要求;- 考虑贮罐内外压力差和温度变化对密封性能的影响;4. 防腐设计:- 设计合理的防腐蚀措施,包括内外表面的防腐处理和防腐涂层的选择;- 考虑贮罐在贮存不同物质时可能带来的腐蚀问题;5. 安全设备设计:- 设计合适的安全阀、液位计、温度计等安全设备,确保贮罐的安全性;- 考虑贮罐内物料的性质和压力要求,确定合适的安全设备参数;6. 搅拌设计:- 根据贮存物料的特性,选用适当的搅拌方式和设备,确保贮罐内物料充分混合。

附件:1. 工艺流程图2. 材料选择表3. 结构设计图纸4. 防腐蚀方案5. 安全设备参数表6. 搅拌设备选型表法律名词及注释:1. 《化学品安全技术规范》:指中国制定的化学品生产、储存、运输和使用的安全技术规范。

2. 《化学品管理条例》:指中国制定的化学品管理的法律法规。

卧式油罐的结构设计

卧式油罐的结构设计摘要:本文论述了油库使用的储油罐的设计过程,主要从容器直径的选取和厚度的计算开始,对封头进行计算,开孔及管口的法兰和接管配置进行设计,在设计的基础上,确定正确的设计压力、适当的储存量、合适的材料、合理的结构以及相应的制造技术要求,以确保储罐的安全性和经济性。

关键词:储油罐设计配置机构合理卧式油罐是用以储存原油、植物油,化工溶剂、水或其他石油产品的长形容器。

卧式油罐是由端盖及卧式圆形或椭圆形罐壁和鞍座所构成,通常用各类油库保存成品油或原油。

一、容器直径的选取和厚度的计算容器结构设计首先要选取容器直径,容器的直径按钢制压力容器的工程直径系列选取。

除非用户有要求,一般取长径比为2~5,很多情况下取2~3就可以了。

本台20m3石油储罐卧式储罐要求容器的几何容积为20m3 。

我们先设定直径,再根据此直径和容积求出筒体长度,验算其长径比。

设定的直径应符合封头的规格。

我们设定直径为2200mm,查标准GB/T 25198-2010《压力容器用封头》附录C,得知此规格的封头容积为 1.5459m3,得筒体容积为20-1.5459x2=16.9082m3。

得到:筒体长度为4450.2mm .长径比为4450.2/2200=2.023。

比较理想,则我们确定本例石油储罐储罐的内直径为2200mm,筒体长度圆整为4450mm。

有了容器直径,即可计算圆筒的厚度。

首先,设计温度下圆筒的计算厚度按照GB150.3-2011《压力容器第3部分:设计》公式3-1(p94)[2]计算(公示的适用范围为Pc≤0.4[σ]tφ,本例中0.4[σ]tφ=0.4x189x1=75.6>Pc=1.77所以,参数满足公式的适用范围。

计算容器筒体的计算厚度:计算出厚度为10.35mm。

碳钢和低碳钢制容器壳体加工成形后,满足不包括腐蚀裕量的最小厚度不小于3mm,因此计算厚度为10.35mm,其名义厚度为计算厚度与腐蚀裕量之和,再向上圆整到钢板的商品厚度。

压力容器卧式储罐设计说明

目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1液化石油气贮罐的分类 (1)1.2液化石油气特点 (1)1.3卧式液化石油气贮罐设计的特点 (1)第二章设计参数的选择 (2)2.1设计题目 (2)2.2设计数据 (2)2.3设计压力、温度 (2)2.4主要元件材料的选择 (3)第三章设备的结构设计 (3)3.1圆筒、封头厚度的设计 (4)3.2筒体和封头的结构设计 (4)3.3鞍座选型和结构设计 (5)3.4接管,法兰,垫片和螺栓的选择 (6)3.5 人孔的选择 (9)3.6安全阀的设计 (10)第四章设计强度的校核 (12)4.1水压试验应力校核 (12)4.2筒体轴向弯矩计算 (13)4.3筒体轴向应力计算及校核 (13)4.4筒体和封头中的切向剪应力计算与校核 (14)4.5封头中附加拉伸应力 (14)4.6筒体的周向应力计算与校核 (14)4.7鞍座应力计算与校核 (15)第五章开孔补强设计 (18)5.1 补强设计方法判别 (18)5.2有效补强围 (18)5.3 有效补强面积 (18)5.4.补强面积 (19)第六章储罐的焊接设计 (19)6.1焊接的基本要求 (20)6.2焊接的工艺设计 (20)设计小结 (23)致 (24)参考文献 (25)摘要本次设计的卧式储罐其介质为液化石油气。

液化石油气是一种化工基本原料和新型燃料,已愈来愈受到人们的重视。

在化工生产方面,液化石油气经过分离得到乙烯、丙烯、丁烯、丁二烯等,用来生产合塑料、合成橡胶、合成纤维及生产医药、炸药、染料等产品。

液化石油气是由碳氢化合物所组成,主要成分为丙烷、丁烷以及其他烷系或烯类等。

丙烷加丁烷百分比的综合超过60%,低于这个比例就不能称为液化石油气。

液化石油气具有易燃易爆的特点,液化石油气储罐属于具有较大危险的储存容器。

针对液化石油气储罐的危险特性,结合本专业《过程设备与压力容器设计》所学的知识,在设计上充分考虑液化石油气储罐各项参数,确保液化石油气储罐能安全运行,对化工行业具有重要的现实意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一设计产品概要:1.1产品概要金属油罐是采用钢板材料焊成的容器。

普通金属油罐采用的板材是一种代号叫A3F的平炉沸腾钢;寒冷地区采用的是A3平炉镇静钢;对于超过10000m3的大容积油罐采用的是高强度的低合金钢。

常见的金属油罐形状,一般是立式圆柱形、卧式圆柱形、球形等几种。

立式圆柱形油罐根据顶的结构又可分为桁架顶罐、无力矩顶罐、梁柱式顶罐、拱顶式罐、套顶罐和浮顶罐等,其中最常用的是拱顶罐和浮顶罐。

拱顶罐结构比较简单,常用来储存原料油、成品油和芳烃产品。

浮顶罐又分内浮顶罐和外浮顶罐两种,罐内有钢浮顶浮在油面上,随着油面升降。

浮顶不仅降低了油品的消耗,而且减少了发生火灾的危险性和对大气的污染。

尤其是内浮顶罐,蒸发损耗较小,可以减少空气对油品的氧化,保证储存油品的质量,对消防比较有利。

前内浮顶罐在国内外被广泛用于储存易挥发的轻质油品,是一种被推广应用的储油罐。

卧式圆柱形油罐应用也极为广泛。

由于它具有承受较高的正压和负压的能力,有利于减少油品的蒸发损耗,也减少了发生火灾的危险性。

它可在机械,一成批制造,然后运往工地安装,便于搬运和拆迁,机动性较好。

缺点是容量一般较小,用的数量多,占地面积大。

它适用于小型分配油库、农村油库、城市加油站、部队野战油库或企业附属油库。

在大型油库中也用来作为附属油罐使用,如放空罐和计量罐等。

球形油罐具有耐压、节约材料等特点,多用于石油液化气系统,也用做压力较高的溶剂储罐。

1.2设计特点:容器的设计一般由筒体,封头,法兰,支座,接口管及人孔等组成。

常低压化工设备通用零件大都有标准,设计时可直接选用。

本设计书主要介绍了卧式储罐的筒体,封头的设计计算,低压通用零件的选用。

各项设计参数都正确参考了行业使用标准或国家标准,这样让设计有章可循,并考虑到结构方面的要求,合理的进行设计。

1.3设计参数:产品主体尺寸:Ф2800×8×3200 mm工作压力:常压主体材质:Q235-A设计温度:0~350℃设计寿命:15年焊接接头系数:0.85腐蚀裕量:1.5 mm水压试验压力:盛水试漏装量系数:0.98操作介质:燃料油二产品结构分析:2.1 材料的选择[5]:选择Q235-A碳钢钢板作为筒体焊接材料,是因为它具有适当的强度和塑性,工艺性能良好,价格低廉,因而被广泛用来制造一般的中低压容器。

优质中碳钢的强度较高、韧性较好,但是焊接性能较差,不宜作接管用钢,由于接管要求焊接性能较好且塑性较好,故选择10号优质低碳钢的普通无缝钢管制作各型号接管。

2.2 力学分析[1]2.2.1 厚度计算钢板厚度δ=8 mm,则其厚度负偏差C1=0.8 mm,腐蚀裕量C2=1.5 mm,则其厚度附加量C = C1+ C2+=2.3 mm根据其设计数据可得计算厚度δ=PD i=2.1 mm2[σ]t∅−P[σ]t为Q235-A钢板在最高设计温度下的许用应力值为77Mpa。

则设计厚度δd=δ+ C2=4.6 mm名义厚度δn= δd+ C1=6 mm有效厚度δe=δn−C=3.7 mm2.2.2 筒体与封头水压试验强度校核σt=P T(D i+δe)≤0.9σs2δe∅式中P T=1.23P=0.125 Mpa,D i为筒体公称直径2800 mm,σs为Q235-A钢板的屈服强度为235 Mpa。

则有σt=0.125×(2800+3.7)=55.7 Mpa2×3.7×0.85又有0.9σs=211.5Mpa所以水压试验满足强度要求。

2.2.3 筒体与封头应力校核(Q235-A的密度为7860kg/m3)筒体质量m1=ρV1=π·2.8×(0.9×2+0.8)×8×10−3×7860 kg 封头质量m2=ρV2=0.03926×7860kg=308.9 kg 附件质量m3=32.7 kg则油罐总质量约为m=1779.5 kg负荷Q=mg 2=1779.5×9.82=8719.55 N ≈8.72 KN则每个支座承受约4.36 KN 的负荷,均分载荷就为q=2F L‘=2Q L+4h i 3=2.84 KN/m则圆筒中间处的轴向弯矩·mm 1026.21]4341)(21[462a 122N L A L h L h R FLM i i ⨯=-+-+=筒体上半部分受压缩,下半部受拉伸支座处的圆筒横截面上的轴向弯矩·mm 1024.1]341211[6222N L h AL h R L A FA M i i a ⨯=+-+---= 最高点处的圆筒轴向应力MPa Rm M PR ee m 39.18π22211=-=δδσ 最低点处的圆筒轴向应力MPa Rm M PR ee m 34.19π22212=+=δδσ 最高点处支座的圆筒轴向应力(包角=120°,K 1=1,K 2=1)MPa Rm K M PR ee m 81.18π22123=-=δδσ最低点处支座的圆筒轴向应力MPa Rm K M PR ee m 92.18π22224=+=δδσ 又有{σ1,σ2,σ3,σ4}max=19.34 Mpa[σ]T =77 Mpa{σ1,σ2,σ3,σ4}max ≤[σ]T2.3 产品图(产品零件图见图纸,坡口形式及参数见焊接工艺卡)三 工艺流程[2]:3.1 筒体加工工艺过程检验:材料应符合国家标准要求的质量证书↓划线:号料、划线、筒体由三节组成↓切割下料:按划线尺寸切割下料↓刨边:按图样要求刨各筒节坡口↓成形:卷边成形↓焊接:焊缝和试板组对,出去坡口及其两侧的铁锈、油污等;按焊接工艺组焊纵缝和试板↓检验:纵焊缝外观合格,按JB4730-94标准进行局部射线探伤,达到Ⅱ级合格要求;试板符合要求↓校形:校圆:E≤2.8 mm(E为棱角度)↓焊接:按焊接工艺组对环焊缝↓检验:环焊缝外观合格,按JB4730-94标准进行局部射线探伤,达到Ⅱ级合格要求3.2 封头加工工艺过程检验:原材料应符合国家标准要求的质量证书↓划线:号料、划线、封头由整块钢板作胚料↓切割下料:按划线尺寸切割下料↓冲压成形:借助于冲压模具在水压机上完成成形(压制前先清除表面杂质和氧化皮)↓二次划线:号料、划线,划出封头余量↓封头余量切割:用氧气切割割去加工余量,同时加工出坡口↓热处理:热处理消去成形时的残余内应力↓检验:外观检验,尺寸检验,合格后才与筒体相装配四焊接工艺制定及论证[6]:4.1TIG焊[3]薄板对接焊时,可采用填丝焊,当板厚为6~12 mm时,应选用V型坡口。

TIG焊对材料的表面质量要求比较高,因此,焊前必须严格清理工件和焊丝表面的油垢、污物及氧化皮等。

8 mm的Q235-A钢板在常压下不需预热便可进行焊接。

焊接时,直流正接时焊缝较窄、熔深大,钨极不过热、损耗小,而直流反接时钨极损耗快、寿命短,电弧稳定性较差,一般很少使用。

TIG焊用于根部层焊接时多选用2~2.5 mm的焊丝,焊接薄工件时钨极的直径略大于焊丝直径,则取钨极直径为3 mm。

根据经验,电流一般为钨极直径的30~55倍,当钨极直径小于或接近3 mm时,从计算值中减去5~10A。

电弧电压主要由弧长决定,弧长增加,电弧电压增大,焊缝宽度增加,熔深减小,但弧长太大易引起未焊透及咬边且保护效果也不好。

电弧太短,不易操作,既看不清熔池,又容易引起短路,加大钨极烧损,容易夹钨。

通常使弧长近似等于钨极直径,电弧电压在10~20V之间。

查阅资料可知,当钨极直径取3 mm时,速度选择范围为160~200 mm/min,即10~12 m/h。

4.2 CO2气体保护焊[4]当被焊工件板厚在2~12 mm之间时,焊丝直径可取1.0~1.4 mm。

焊接时通常采用直流焊接电源,最常用直流反接性,此时电弧最稳定,熔滴由射滴过渡转变为射流过度,飞溅较小。

实践经验表明,常被应用的CO2短路过渡的短弧焊接法,常以电流200~250A为限,可以进行全位置焊缝焊接。

此时最佳电弧电压为21~25V,常用的焊接速度范围为20~60 m/h。

选用H08Mn2SiA作为焊丝,其中S、P杂质比普通的焊丝要低,焊接性能较好,也能防止CO2电弧的强氧化性使金属熔池金属氧化。

4.3 热处理压力容器的焊后消除应力热处理(PWHT)是保证压力容器内在质量的重要技术之一。

其目的在于:消除焊接残余应力、冷变形应力和组装的拘束应力,软化淬硬区,改善组织,减少氢含量,尤其对合金钢,可以改善力学性能及耐蚀性,还可以稳定构件的几何尺寸。

我国的《压力容器安全技术监察规程》明确规定:对于高压容器、中压反应器和储存容器、盛装混合液化石油气的卧式储罐、移动式压力容器等采用炉内整体热处理。

①装炉时炉内温度不得高于400℃;②升温速度应是可控的,且不得超过200℃/h,最小可为50℃/h。

升温期间,加热区间任意长度为5000 mm内温差不应大于120℃。

③保温期间,最高与最低温度之差不宜大于65℃。

④降温速度不得超过260℃/h,最小可为50℃/h。

⑤出炉时的炉温不得高于400℃,北方地区在冬季,可适当降低出炉温度。

出炉后应在静止的空气中冷却。

Q235-A钢经电弧焊焊后热处理的温度为600~640℃,最短保温时间为25min。

对于总装环焊缝只能采用环带加热局部热护理。

局部热处理的加热温度和保温时间与进炉热处理相同。

保温环带宽度从环缝的最大宽度边缘算起,每侧应不小于两倍筒体壁厚。

加热带以外的的壳体延伸段应采用保温材料包覆起来,以控制纵向温度梯度。

距保温温度环带边缘3倍壁厚处(外侧),壳壁的温度不宜低于环带边缘处实际温度的一半,封头则应进行应力解除热处理。

五心得体会:这次课程设计的任务是储油罐的设计,设计之前首先要对储油罐的加工流程有一个系统的大概了解,包括材料的的选择,材料的加工,焊接分析、焊接过程及探伤检验都涉及到我们学过的专业知识,是对我们学过的这些知识的一个整体的的应用。

在查阅资料的过程中,了解到我们平时在书本中学到的知识非常的有限,比如说图纸构画方面,要注意尺寸标注基准线的选择问题,焊接工艺卡制作时所需查阅的参数及这些参数的选择原因,还有对产品设计后的一个整体的分析和强度校核过程,这些都是我们应该学习及运用的,从而让我们能更上一个台阶,更灵活的运用它们。

总之,这次在的课程设计过程中,经过老师的指点和与同学的讨论后,最终制定出了一套设计方案,收获到了设计压力容器以及压力容器制造方面的知识,能在以后的学习生活中得到更多的用处。

参考文献:[1] 洪德晓等.压力容器设计与实用数据速查.北京:化学工业出版社.2008.[2] 刘湘秋.常用压力容器手册.北京:机械工业出版社.2004.[3] 于增瑞.钨极氩弧焊实用技术.北京:化学工业出版社.2004.气体保护焊.辽宁科学技术出版社.2007.[4] 梁文广等.CO2[5] 张子荣.简明焊接材料选用材料第3版.北京:机械工业出版社.2011.[6] 王国璋.压力容器焊接使用手册.北京:中国石化出版社.2013.。

相关文档
最新文档