催化裂化汽油加氢脱硫技术及工艺流程分析

合集下载

催化裂化汽油加氢脱硫技术及工艺流程分析

催化裂化汽油加氢脱硫技术及工艺流程分析

催化裂化汽油加氢脱硫技术及工艺流程分析摘要:经济与社会不断发展、进步,人们生活水平不断提升,我国机动车数量也在快速攀升,与此同时,由机动车尾气排放对环境造成的污染也越来越明显,因此对催化裂化汽油加氢脱硫技术进行研究极具现实意义。

基于此,文章对汽油燃烧排放的硫化物种类及其危害进行了阐述,分析了催化加氢脱硫(HDS)反应原理,并对催化裂化汽油加氢脱硫技术及其工艺流程进行可分析,以期能够为提升汽油脱硫处理质量提供有效参考。

关键词:催化裂化;汽油;加氢脱硫;应用低硫含量是当前世界车用汽油应用发展的主要趋势之一。

对于我国的车用汽油而言,其四分之三以上是催化裂化汽油,也称为FCC汽油。

然而,FCC汽油具备烯烃、硫含量较高,安定性不高的缺陷,对车用汽油指标造成不良影响,此类汽车用油的污染物排放标准难以达到国际先进标准,甚至与国内最新的机动车污染物排放指标相去甚远。

虽说汽油中硫化物含量值不是最高,但是其产生的危害却极大。

一方面,硫化物燃烧生成物主要是SOx的形式,也是引发酸雨的主要因素,而且SOx排放过大也会刺激NO,、CO这些有毒有害气体的生产与排放。

另一方面,硫化物还会使汽油燃烧时还会导致汽车尾气转化器催化剂失效,NO、SOx、CO等有害气体的排放量进一步增加,降低城市空气质量。

除此之外,硫化物也会对金属设备产生一定程度腐蚀危害,影响汽油泵等相关部件的使用寿命,提高了事故概率。

一、催化加氢脱硫(HDS)反应原理分析HDS反应原理,主要是利用在石油中加氢使得含硫化合物氢解形成相应的烃合物与H2S,进而脱去石油中的硫原子,其过程中C—S键的断裂与相应断裂物的饱和是最为基本的化学反应。

例如噻吩和苯并噻吩的HDS过程通常包含了加氢与裂解两途径。

通过加氢使噻吩环双键饱和接着开环脱硫形成烷烃,再通过裂解反应使开环脱硫形成丁二烯,丁二烯在氢环境中饱和。

噻吩经过加氢脱硫处理后主要产生丁二烯、丁烯,丁烷、C2、C3产物则少得多。

汽油加氢处理工艺流程

汽油加氢处理工艺流程

汽油加氢处理工艺流程是一种利用氢气对汽油进行加氢反应的工艺,以提高汽油的质量和性能。

汽油加氢处理主要是通过加氢裂化、加氢脱硫、加氢脱氮和加氢脱芳等工艺来提高汽油的辛烷值、减少硫、氮等杂质的含量,提高汽油的清洁度和燃烧效率。

汽油加氢处理工艺流程通常包括以下几个主要步骤:1. 精制汽油原料的准备:首先需要将原油经过初步的精制处理得到催化裂化汽油或者石化汽油。

这些原料汽油包含大量的不饱和烃、硫、氮和芳烃等杂质,需要通过加氢处理来改善其性能。

2. 加氢裂化:将精制汽油原料与氢气混合,并通过加热至一定温度、压力下进行加氢处理,使得其中的不饱和烃(烯烃、芳烃)和饱和烃发生加氢反应,生成高辛烷值、低芳烃含量的汽油。

加氢裂化是汽油加氢处理的核心步骤。

3. 加氢脱硫:经过加氢裂化处理后的汽油还含有一定量的硫化物,需要进行加氢脱硫处理。

加氢脱硫过程中,硫化物与氢气在催化剂的作用下发生反应,生成硫化氢并得到脱硫汽油。

4. 加氢脱氮:加氢处理后的汽油可能还含有一定量的氮杂质,影响汽油的清洁度和燃烧效率。

因此,需要进行加氢脱氮处理,将氮杂质也去除。

5. 加氢脱芳:芳烃是汽油中的一种重要成分,但过多的芳烃含量会影响汽油的清洁度和辛烷值。

因此,需要通过加氢反应将部分芳烃转化成饱和烃或环烷烃,以提高汽油的品质。

6. 分离和提纯:经过加氢处理后的汽油通过冷却、分离等步骤,将其中产生的硫化氢、氨和其它杂质分离,最终得到高质量、清洁的汽油产品。

7. 催化剂再生:加氢处理中用到的催化剂随着时间的延长会受到积碳、中毒等影响,影响催化剂的活性和寿命。

因此,需要对催化剂进行再生处理,以恢复催化剂的活性和延长使用寿命。

总的来说,汽油加氢处理工艺流程是一种重要的汽油炼制技术,可以有效提高汽油的品质和性能,满足现代汽车对清洁高效燃料的需求。

在石油加工行业中有着广泛的应用和良好的市场前景。

催化汽油加氢脱硫技术

催化汽油加氢脱硫技术

1前言120×104t/a 催化汽油加氢脱硫装置为中国石油锦西石化公司汽油质量升级工程项目的一部分,2007年初通过初步设计,同年5月破土动工,2008年6月1日装置一次开车成功,生产出合格汽油产品。

该项目为中国石油首次引进法国Axens 公司的Prime-G +技术在国内催化汽油加氢脱硫装置中实施应用。

该技术方案主要以催化汽油为原料,生产满足京Ⅳ排放标准的汽油,完成了汽油质量升级的目标。

2008年锦西石化公司主要供奥运会期间北京地区用油,供油量在100×104t 左右,经济效益和社会效益显著。

2Prime-G +汽油加氢技术2.1国内汽油加氢脱硫技术国内汽油加氢技术主要有两家:石油化工科学研究院(RIPP)的RSDS 工艺和抚顺石油化工研究院(FRIPP)的OCT-M 工艺。

与国外技术相比,RSDS 和OCT-M 工艺技术虽然在反应压力、体积空速、氢油比、化学氢耗等方面基本相当,但工艺流程和汽油辛烷值损失存在一定的区别。

国内两家技术都是将催化裂化汽油馏分切割为轻、重两部分,对重馏分进行加氢脱硫。

两家技术的缺点是RON 损失大(理论上损失1.0~2.0个单位),同时需要碱液抽提脱硫醇或者无碱脱臭。

2.2Prime-G +汽油加氢技术Axens 公司的Prime-G +是在Prime-G 的基础上发展起来的采用固定床双催化剂的加氢脱硫技术。

该技术能够在保证脱硫的同时,尽量减少烯烃的饱和。

其工艺流程包括:全馏分选择性加氢(SHU)及分馏,重汽油选择性加氢脱硫(HDS)。

在全馏分加氢过程中,发生以下反应:二烯烃的加氢、反式烯烃异构为顺式烯烃、轻硫醇及轻硫化物与烯烃发生硫醚化反应转化成较重的硫化物。

在SHU 过程中,硫醇、轻硫化物和二烯烃含量降低,但总硫含量并不降低,仅把轻硫化物转化成重硫化物,无H 2S 生成,烯烃不被饱和,所以产品辛烷值不损失。

SHU 后,经分馏可以生产低硫和无硫醇的轻石脑油,硫醚化生成的重质硫化物在分馏的时候留在重质汽油中[1]。

催化裂化汽油加氢脱硫(DSO)技术开发及工业试验

催化裂化汽油加氢脱硫(DSO)技术开发及工业试验

均损失 O7个单 位, . 配合炼油厂其它汽油调合组分可直接调合硫含量小于 5 gg的满足国Ⅳ标 准 0P /
的清洁汽油 。
关键词:催化裂化 汽油 加氢脱硫 辛烷值
1 前

含 量 高 的 特 点 , 国石 油 石 油 化 工 研 究 院 也相 继 中 开 发 了 催化 裂 化 汽 油 加 氢 脱 硫 技 术 ( O) 2 0 DS , 0 8 年 DS O技术 在 中 国石 油玉 门炼 油厂 3 0k/ 汽 油 2 t a 加 氢 工 业试 验 装 置 上 成功 工业 化 , 配合 炼 油 厂 其 它 汽 油 调 合 组 分 可 直 接 调 合 硫 含 量 小 于 5 gg 0P /
国内 汽油加 氢技 术 主要 有 :中 国石 化 RP IP开
发 的 R DS技 术[、 I S 5 R DOS技 术[, RIP开 发 的 ] 6F P ]
脱 硫 的同时 烯 烃 大量 饱 和 , 导致 辛烷 值 损 失较 大 。
收槁 日期 :2 1—30 ;修改稿收到 日期:2 1.8 1 。 0 00 —5 0 00 —9 作者 简介 :兰玲, 中国石油集团公司高级技术专家 , 女, 中国石 油石化院清洁燃料室负责人 , 长期从事汽柴油加 氢技术研究工 作, 开发的汽柴油加氢技 术已在国内 2 O多家炼油厂推广使用。 53 —
催化 裂 化 汽 油 ; 我 国 汽 油构 成 以 催化 裂 化 汽 油 而
的 满 足 国 Ⅳ标 准 的 清 洁汽 油 , 企 业 清洁 汽 油 产 为 品 质量升 级提 供 了强有 力 的技术 支撑 。 本 文 主 要 介 绍 催 化 裂 化 汽 油 加 氢 脱 硫 技 术
( O) 点 及其 在 玉 门炼 油 厂汽 油加 氢 装 置上 工 DS 特

工艺方法——石油催化裂化烟气脱硫技术

工艺方法——石油催化裂化烟气脱硫技术

工艺方法——石油催化裂化烟气脱硫技术工艺简介一、加氢预处理技术加氢预处理技术在实际应用期间可以有效的对石油原材料进行处理,减少原材料中的硫氧化物,只有这样才能去除其中的硫氧化物、重金属等。

加氢预处理技术不仅仅可以对原材料中的有害物质进行处理,同时还可以在一定程度上提升轻质产品的回收率与质量,改善催化裂化装置产品的质量,满足现代石油催化企业的发展需求,从而促进我国石油炼化企业快速发展。

二、使用硫转移助剂技术硫转移助剂技术在实际使用过程中可以有效的降低石油材料中的有SO2密度,只有这样才能保证硫转移工作可以顺利进行下去,从而减少有害物质的排放,保护自然生态环境。

比如说,该技术在实际使用过程中可以有效的降低烟气中的SO2,并在催化剂的质量中添加2%-4%的硫转移剂,从而提升硫转移效率,将转移数量控制在40%-60%。

另外,硫转移助剂技术在实际施工过程中的主要工作原理就是通过再生器进行烟气排放,并将烟气中的SO2氧化成SO3,形成对应的硫酸盐,等到硫酸盐形成一定反应之后通过F2S的形式进行排放,只有这样才能减少其中的有害物质,改变烟气成分,从而保护自然生态环境。

三、催化再生烟气脱硫技术一般来说,催化原料硫含量在0.5%-1.5%之间,这对自然生态环境的发展来说造成很大的影响。

要想从根本上解决这一问题就可以通过吸附法的形式硫含量吸附,并选择一些可再生能力较强的固定吸附剂进行吸附,只有这样才能降低其中的硫含量,从而减少有害物质的排放。

这种催化再生烟气脱硫技术在实际使用过程中的投资成本较低,运营费用较小,可以有效的清除烟气中的硫氮化物,满足炼油企业日常生产、发展时的需求。

四、EDV烟气脱硫技术EDV烟气脱硫技术主要由氧化镁制浆系统、烟气洗涤系统、废水处理系统组成,当烟气进入到对应的喷射系统中,烟气就会通急冷区降温的形式进行处理,等到温度恢复正常之后,烟气中有害物质就会自动去除。

最后,再通过洗涤系统进行烟气过滤,做好烟气与液滴的分离工作。

催化裂化工艺流程

催化裂化工艺流程

催化裂化工艺流程
催化裂化是一种重要的石化工艺,用于将重质石油馏分转化为高辛烷值的汽油和其他有用的化学品。

下面是催化裂化工艺流程的概述。

1. 预处理
在催化裂化反应之前,原油需要经过预处理,以去除其中的硫、氮和杂质等不利于反应的成分。

预处理过程包括脱盐、脱水、脱硫、脱氮和脱芳烃等步骤。

2. 反应器
催化裂化反应器是催化裂化工艺中的核心部件。

在反应器中,原油通过加热和压力增加的方式,经过催化剂床层进行裂化反应。

催化剂通常采用酸性固体催化剂,如硅铝酸盐、氧化铝等。

3. 分离器
反应器出口的混合物主要由裂化产物和未反应的原油组成。

分离器用于将这些组分分离出来。

分离器通常包括闪蒸器、冷凝器和分馏塔等。

其中,分馏塔用于将混合物分离成不同的馏分,如汽油、柴油、液化气等。

4. 产品处理
裂化产物需要进一步加工处理,以满足市场需求。

处理过程包括脱硫、脱氮、脱蜡、加氢、重整等步骤。

总的来说,催化裂化是一种复杂的工艺流程,需要各种设备和催化剂的协同作用,以实现高效、稳定和可控的反应。

长周期稳定运转的催化裂化汽油选择性加氢脱硫技术

长周期稳定运转的催化裂化汽油选择性加氢脱硫技术
化 汽油 的加工 手段 之一 l 3 ] 。
汽油 的组 成 提 出 了更 严 格 的 限制 , 以 降 低 汽 车 尾
气 中有 害物质 的排放 。 目前 世 界 上 汽 油 质 量 标 准

汽油 质量 的进 一 步 升级 对 装 置 运转 的稳 定 性
般 可分 为 美 、 欧、 日三 大 体 系 , 代 表 着 世 界 汽 油
( 1 .中 国 石 化 石 油 化 工 科 学 研 究 院 ,北 京 1 0 0 0 8 3 ;2 .中 国石 化 上 海 石 油化 工股 份 有 限公 司 ; 3 .中 国 石化 青 岛 石 油 化 工 有 限 责 任 公 司 )

要: 确 立 了第 二 代催 化 裂 化 汽 油 选 择 性 加 氢 脱 硫 ( R S D Ⅱ) 的工艺技术 路线 , 并 提 出工 业 装 置 长 周 期
以长周期 稳定 运转 。 为 了 进 一 步 满 足 汽 油 质 量 升 级 的需 要 , 为炼
始要 求汽 油硫 质量 分数 小 于 3 O u g / a , 欧盟于 2 0 0 5 年 1月 开始 执行 欧 Ⅳ汽车排 放标 准 , 规定 汽 油 中硫 质量 分数 小 于 5 O u g / g 。从 2 0 0 9年 开始 欧 盟 要求 所 售 汽油 硫质 量 分数 小 于 1 0 g / g 。 日本 从 2 0 0 8 年开 始要 求车 用 汽油 硫 质 量分 数 低 于 1 0 u g / g E 2 ] 。 我 国的汽 油 标 准 正 逐 步 与 国 际 接 轨 , 中国 汽 油 标 准 GB 1 7 9 3 O 一2 O O 6要 求从 2 0 0 9年 1 2月 3 1日开 始, 汽 油硫 质 量 分 数 小 于 1 5 0 g / g 。上 海 和 广 州 分 别从 2 0 0 9年 l O月和 2 0 1 0年 8月 开始 实施 上海 市 地方 标 准 ( 沪 Ⅳ标 准 ) 和广州市地方标准 ( 粤 Ⅳ 标准) , 要求汽油硫质量分 数小于 5 0 g / g 。北 京

石油加氢处理—加氢处理工艺流程

石油加氢处理—加氢处理工艺流程
催化剂为磺化酞菁钴
2RSSR (油相) + 4NaOH (水相)
一、汽油加氢处理

脱去酸性杂质
提 塔
的轻汽油馏分
空 气 催 化 剂
脱硫醇汽油
过剩空气


二硫化物

分离罐
40~65 oC操作 碱液泵
碱液抽提工艺流程
一、汽油加氢处理工艺流程
3. 选择性脱二烯烃
危害:二烯烃较活泼,易反应生
课程:石油炼制运行与操控 知识点:加氢处理工艺流程(一)
一、汽油加氢处理工艺流程
轻馏分汽油
预碱洗
碱液抽提
全馏分 FCC汽油
分馏
碱液再生
循环氢脱 硫化氢
固定床氧 化脱硫醇
重馏分汽油
选择性 脱二烯
固定床选择 性加氢脱硫
高分
催化裂化汽油选择性加氢脱硫工艺原则流程图
全馏分脱硫 精制汽油
一、汽油加氢处理工艺流程
重汽油
一、汽油加氢处理工艺流程
2. 碱液抽提
目的:对轻汽油进行脱硫醇处理(硫醇具有氧化性和腐蚀性) 碱液抽提原理:硫醇具有一定的酸性,可与NaOH发生酸碱反应
RSH (油相) + NaOH (水相)
NaSR (水相) + H2O
氧化再生原理:硫醇钠在催化剂的作用下被氧化成二硫化物
4NaSR (水相) + O2 + 2H2O 催化剂
二、柴油加氢处理工艺流程
软化水
原料油 新氢
污水
蒸汽
三、渣油加氢处理工艺流程
渣油加氢处理条件更
苛刻
流程包括三部分:加
氢反应系统,加氢生 成油分离系统,循环 氢系统
齐鲁石化VRDS装置流程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

催化裂化汽油加氢脱硫技术及工艺流程分析
发表时间:2019-12-30T13:27:29.667Z 来源:《科学与技术》2019年 15期作者:陈飞宇[导读] 经济与社会不断发展、进步,人们生活水平不断提升,摘要:经济与社会不断发展、进步,人们生活水平不断提升,我国机动车数量也在快速攀升,与此同时,由机动车尾气排放对环境造成的污染也越来越明显,因此对催化裂化汽油加氢脱硫技术进行研究极具现实意义。

基于此,文章对汽油燃烧排放的硫化物种类及其危害进行了阐述,分析了催化加氢脱硫(HDS)反应原理,并对催化裂化汽油加氢脱硫技术及其工艺流程进行可分析,以期能够为提升汽油脱硫处
理质量提供有效参考。

关键词:催化裂化;汽油;加氢脱硫;应用低硫含量是当前世界车用汽油应用发展的主要趋势之一。

对于我国的车用汽油而言,其四分之三以上是催化裂化汽油,也称为FCC汽油。

然而,FCC汽油具备烯烃、硫含量较高,安定性不高的缺陷,对车用汽油指标造成不良影响,此类汽车用油的污染物排放标准难以达到国际先进标准,甚至与国内最新的机动车污染物排放指标相去甚远。

虽说汽油中硫化物含量值不是最高,但是其产生的危害却极大。

一方面,硫化物燃烧生成物主要是SOx的形式,也是引发酸雨的主要因素,而且SOx排放过大也会刺激NO,、CO这些有毒有害气体的生产与排放。

另一方面,硫化物还会使汽油燃烧时还会导致汽车尾气转化器催化剂失效,NO、SOx、CO等有害气体的排放量进一步增加,降低城市空气质量。

除此之外,硫化物也会对金属设备产生一定程度腐蚀危害,影响汽油泵等相关部件的使用寿命,提高了事故概率。

一、催化加氢脱硫(HDS)反应原理分析 HDS反应原理,主要是利用在石油中加氢使得含硫化合物氢解形成相应的烃合物与H2S,进而脱去石油中的硫原子,其过程中C—S键的断裂与相应断裂物的饱和是最为基本的化学反应。

例如噻吩和苯并噻吩的HDS过程通常包含了加氢与裂解两途径。

通过加氢使噻吩环双键饱和接着开环脱硫形成烷烃,再通过裂解反应使开环脱硫形成丁二烯,丁二烯在氢环境中饱和。

噻吩经过加氢脱硫处理后主要产生丁二烯、丁烯,丁烷、C2、C3产物则少得多。

硫化物主要以非杂环与杂环两种类型存在于原油中。

非杂环类硫化物以硫醇、硫醚等结构为主,具备较高的反应活性,加氢脱除较为容易。

而噻吩、甲基、苯基等杂环类硫化物具备与芳烃相似的稳定结构,所以去除较为困难。

二、催化裂化汽油加氢脱硫技术工艺流程分析催化裂化汽油加氢脱硫处理,要求其过程能够最大限度地完成脱硫工作,并将汽油辛烷值损失控制在最低范围。

此外,催化裂化汽油加氢脱硫处理流程还应满足一下要求:①装置要能够实现长周期运转,且单周期要和催化裂化装置检修周期相同;②装置选择应经济、适用,有效降低加氢脱硫成本;③基于确保反应质量的前提制定工艺流程;④使工艺流程和国I、国IV标准要求最大限度地保持一致;⑤采取有效技术方法提高工艺流程可行性与可衔接性;⑥确保技术在产品中的应用稳定与高质量,并具备一定灵活性。

将催化裂化汽油的烯烃集中在轻馏分中,汽油中的硫则集中在重馏分中。

结合烯烃与硫在催化裂化汽油中分布特点,有选择地展开预加氢反应,混氢原料油经过催化剂作用把二烯烃转化成单烯烃,如此便可避免在后续加氢脱硫反应器发生结焦问题。

其中一些轻含硫物与轻疏醇会在硫醚化反应中转化为重含硫化合物,同时还催生了烯烃异构化反应使得辛烷值得到了一定程度的增加。

催化裂化汽油分馏,应把预加氢催化裂化汽油划分出重汽油与轻汽油。

对于重汽油处理环节借助催化剂作用脱硫与烯烃饱和反应,同时实现了将重汽油以分馏比例调和。

三、常见的FCC汽油脱硫技术现阶段,在汽油脱硫处理方面应用较为成熟,较为广泛的脱硫技术无疑是催化加氢脱硫工艺,许多发达国家的FCC汽油处理采用了这一技术。

HDS技术主要分为了传统型与选择性型HDS技术。

前者应用虽然能够使汽油硫含量有效减少,然而在脱硫过程中国烯烃饱和率也会大幅提升,使得汽油辛烷值出现较大损失。

而后者应用的最大优势能够在满足汽油脱硫要求的同时烯烃饱和率不至于过高,辛烷值损失较少,因此具备较好的应用发展前景。

现阶段应用较为成熟选择性HDS技术主要下面几种工艺: (一)SCANFining技术这一技术应用始于美国,使用的RT-225催化剂。

核心工艺在于把全馏分催化轻汽油分为低硫高烯烃、硫和烯烃含量中等、高硫低烯烃3个组分的催化重汽油,进而针对性的选择合适脱硫技术生成调和油,达到92%~95%的汽油脱硫率,并且将抗爆指数损失控制在可2个单位以下。

(二)ISAL技术这一技术由美国UOP公司与委内瑞拉石油研究及技术中心联合开发,运用了常规固定床工艺,与最新型的沸石催化剂,可解决现阶段炼化企业面临的大部分共性难题,不但有效减少了汽油硫与烯烃含量,而且确保辛烷值不会减小。

这一技术主要是通过调整催化剂大小、表面积、孔容孔径、酸度等对反应烃链长度进行有效控制,避免了辛烷值出现损失。

ISAL技术可应用与含硫在30μg/g清洁汽油生产,并且操作周期大于2年。

(三)Prime-G和Prime-G+技术该技术由法国石油研究院最先开发,关键点在于对FCC汽油选择性加氢脱硫处理时采用双催化剂工艺,脱硫率较高,甚至实现汽油硫含量小于10μg/g,并且工艺应用条件相对缓和,烯烃饱和率也比较小,不会出现芳烃饱和及裂化反应现象,有着98%以上的脱硫率,耗氢较少且辛烷值损失低。

(四)OCTGAIN技术该技术由Mobil公司开发,具备较高的FCC汽油脱硫处理效率,并且产物辛烷值的可控性较高。

在脱硫方面采用了固定床催化工艺,脱硫率大于95%,然而会发生5%~10%的汽油损失率。

(五)CDTECH技术这一脱硫工艺应用了两个催化蒸馏塔,采用两段式反应。

第一阶段是在催化蒸馏加氢脱己烷塔中的反应,在催化剂作用下,轻汽油馏分中二烯烃与硫醇发生反应,得到高沸点产物进入重馏分,从塔顶形成的C5、C6馏分中硫醇含量控制在1μg/g以下,并对剩余的二烯烃进行选择加氢。

第二阶段应用CDHDS技术,将催化汽油中C7以上组分的硫去掉,总脱硫率达高于95%,辛烷值损失可控制在1.0以下。

(六)RIDOS技术
该技术由中石化石油化工科学研究院开发,先把FCC汽油原料在70~100℃之间按照轻、重两部分进行切割,轻汽油馏分经过碱洗处理后将硫醇、氮脱除,重汽油馏分、氢气则与加氢精制催化剂混合接触,实现脱硫、脱氮,以及与烯烃饱和反应效果,得到的产物和辛烷值恢复催化剂反应分流得到轻烃与汽油馏分,氢气可重复利用。

最后把脱硫重馏分与加氢精制轻馏分混合,进而获得调和产品。

四、结束语
综述可知,研究与分析催化裂化汽油加氢脱硫技术的应用,可以有效提升催化裂化汽油脱硫率,有效控制烯烃饱和,减少降低辛烷值损失,在提升汽油利用效率的同时改善城市生活环境,带来较大的经济与社会效益。

参考文献:
[1]赵航,曹祖斌,韩冬云,庞庆聪,宫建远.催化裂化汽油加氢脱硫降烯烃技术[J].当代化工,2015(05):1090-1093.
[2]习远兵,张登前,褚阳,高晓东.催化裂化汽油全馏分选择性加氢脱硫技术的开发[J].石油炼制与化工,2016(47):1-4.
[3]方柳亚,王国清,石国芳,瞿东蕙,沈喜洲.汽油脱硫的技术现状及发展趋势[J].武汉工程大学报,2016(38):218-225.。

相关文档
最新文档