矢量运算法则

合集下载

矢量的运算法则和公式

矢量的运算法则和公式

矢量的运算法则和公式在我们的物理世界中,矢量可是个相当重要的角色!就像我们在生活中要遵循各种规则一样,矢量也有它自己的运算法则和公式。

先来说说矢量的加法。

想象一下,你在操场上跑步,先向东跑了 5 米,然后又向北跑了 3 米。

那你最终的位置怎么算呢?这时候就用到矢量加法啦!把这两个位移矢量首尾相连,从起点到终点的矢量就是合矢量。

这就好比你从家出发,先去超市买了零食,又去书店买了书,最后你走的总路程可不是简单地把距离相加,而是要考虑方向的。

再说说矢量的减法。

比如说,有一个力矢量 F1 作用在物体上,然后又有一个力矢量 F2 作用在同一物体上,要想知道 F1 减去 F2 的结果,其实就是 F1 加上(-F2)。

这就像你原本有 10 块钱零花钱,花了 5 块,其实就相当于你的钱数加上了 -5 块。

说到矢量的乘法,就不得不提到点乘和叉乘。

点乘的结果是一个标量,比如一个力矢量 F 和一个位移矢量 s 的点乘,就等于力在位移方向上做的功。

就像你推一个箱子,用的力和箱子移动的距离相乘,就能知道你做了多少功。

叉乘的结果可是个矢量哦!比如磁场中的洛伦兹力 F = qv×B,这个叉乘就决定了力的方向。

记得有一次我在实验室里观察带电粒子在磁场中的运动,那轨迹真是神奇极了!正是因为矢量的叉乘法则,我们才能准确地预测粒子的运动方向。

还有矢量的数乘,这个比较简单,就是给矢量乘以一个常数,矢量的方向不变,大小改变。

就好像你跑步的速度乘以时间,就能得到你跑的路程。

在解决实际问题的时候,这些矢量的运算法则和公式可太有用啦!有一次学校组织户外探险,我们要通过地图和指南针找到目的地。

地图上给出的方向和距离就是矢量,运用矢量的加法,我们就能准确算出从当前位置到目的地的路线。

总之,矢量的运算法则和公式就像是我们探索物理世界的秘密武器,让我们能够更清晰地理解和描述各种物理现象。

不管是小小的位移,还是强大的力场,都能在矢量的世界里被准确地计算和表达。

运动矢量的计算方法

运动矢量的计算方法

矢量之间的运算要遵循特殊的法则。

矢量加法一般可用平行四边形法则。

由平行四边形法则可推广至三角形法则、多边形法则或正交分解法等。

矢量减法是矢量加法的逆运算,一个矢量减去另一个矢量,等于加上那个矢量的负矢量。

A-B=A+(-B)。

矢量的乘法。

矢量和标量的乘积仍为矢量。

矢量和矢量的乘积,可以构成新的标量,矢量间这样的乘积叫标积;也可构成新的矢量,矢量间这样的乘积叫矢积。

例如,物理学中,功、功率等的计算是采用两个矢量的标积。

W=F·S,P=F·v,物理学中,力矩、洛仑兹力等的计算是采用两个矢量的矢积。

M=r×F,F=qv×B。

矢量的定义和加减法运算法则

矢量的定义和加减法运算法则
冒=4+4+4
A=AaA=Ad y yy z zz
矢量表示为:冒=4A + Ayay + "
在直角坐标系下的矢量表示:
矢量:冒=4,+4句+AZ(:I z
+模的计算:1冒1= M+A; + A;
令单位矢量:
a=
A Ax .
4八 &八
a* + 0,
+
a
Z
Ml Ml Ml J Ml
=cos a a + cos pay + cosEz
第1章电磁学的数学基= 础
矢量分析
—,矢量的定义和表示
矢量的基_=|— 本运算'- 法则
h
F

三,矢量微分元:线11 = 元,面元,体元
111 标量场的梯度
五,矢量场的散度 六■矢量场的旋度
—■矢量的定义和表示
1. 标量:只有大小,没有方向的物理量。 如:温度T、长度L等
2. 矢量:不仅有大小,而且有方向的物理量。
例: 已知^点和因点对于原点的位置矢量为刁和方,
求:通过4点和3点的直线方程。 解:
在通过力点和3点的直线上,任取
一 点G对于原点的位置矢量为c, 则:
c — a = k (b — 1)
c = (1 — k)a + kb 其中:k为任意实数。
小结:
、矢量的定义和表示 、矢量的加减法运算法则
如:重力电场强度E、磁场强度可 等
3-矢量表示
—个矢量可以表示成矢量的模与单位矢量的乘积。 矢量 表示为: A=\A\a
其中:| A |为矢量的模,表示该矢量的大小。 a为单位矢量,表示矢量的方向,其大小为1。

矢量运算法则

矢量运算法则

【上一页】【下一页】【返回目录】
3、矢量
普通物理中的物理量大致分为两类:标量和矢量
标量:只有大小(一个数和一个单位)的量,例如:质量、长度、时间、密度、能量、温度等。

矢量:既有大小又有方向的量,并有一定的运算规则,例如:位移、速度、加速度、角速度、力矩、电场强度等。

矢量的表示方法
1)、几何表示:有指向的线段
2)、解析表示:大小
3)、张量表示:按照一阶张量的变换规律变换
两个矢量相等必须是大小相等,方向一致
长度为一个单位的矢量称为单位矢量。

矢量结合法则
1) 矢量加法:遵从平行四边形定则(请点击小方块查看演示过程)
(flash 一)
交换律:
结合律:
2) 矢量的数乘
结合律:
分配律:
3) 矢量的分解
在一个平面内,若存在两个不共线的矢量0000则平面内的任一矢量可以分解为:
常用称为正交分解
三维空间中应有3个不共面的矢量.
4) 标量积(点积、内积)
两个矢量的点积为一标量。

交换律:
分配律:
5) 矢量积(叉积、外积)
是一个轴矢量
大小:平行四边形面积方向:右手螺旋
(图一)
右手螺旋定则(移动鼠标到flash上查看效果)
(flash 二)
矢积的性质:
矢量的混合积结果为平行六面体的体积
【上一页】【下一页】【返回目录】。

矢量点乘矢量

矢量点乘矢量

矢量点乘矢量
矢量是一种既有大小又有方向的量,又称为向量。

矢量点乘和叉乘运算法则:点乘,也叫向量的内积、数量积。

运算法则为向量a乘向量
b=allbcos。

叉乘,也叫向量的外积、向量积。

运算法则为向量c=向量a 乘向量b=absin。

1、点乘,也叫向量的内积、数量积。

顾名思义,求下来的结果是一个数。

向量a乘向量b=abcos。

在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。

2、叉乘,也叫向量的外积、向量积。

顾名思义,求下来的结果是一个向量,记这个向量为c。

向量c=向量a乘向量b=absin,向量c的方向与ab所在的平面垂直,且方向要用“右手法则”判断用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向。

因此向量的外积不遵守乘法交换率,因为向量a乘向量b=向量b乘向量a在物理学中,已知力与力臂求力矩,就是向量的外积,良即叉乘。

矢量乘法运算法则

矢量乘法运算法则

1.2矢量的乘法运算1. 标量与矢量的乘积2. 矢量与矢量乘积(1) 标量积(点积)(2) 矢量积(叉积)3. 矢量三重积1. 标量与矢量的乘积0ˆ||00k kA k A ak k >⎧⎫⎪⎪==⎨⎬⎪⎪<⎩⎭方向不变,大小为|k |倍方向相反,大小为|k |倍A(0)kA k >(0)kA k <图示:计算:ˆˆˆx x y y z zkA kA a kA a kA a =++2. 矢量与矢量乘积(1) 标量积(点积):||||cos A B A B θ⋅=⋅θBA两矢量的点积含义:一矢量在另一矢量方向上的投影与另一矢量模的乘积,其结果是一标量。

推论1:满足交换律推论2:满足分配律推论3:当两个非零矢量点积为零,则这两个矢量必正交。

A B B A⋅=⋅()A B C A B A C⋅+=⋅+⋅•在直角坐标系中,已知三个坐标轴是相互正交的,即ˆˆˆˆˆˆ1,1,1ˆˆˆˆˆˆ0,0,0x x y y z z x y x z y z aa aa aa aa aa aa ⋅=⋅=⋅=⋅=⋅=⋅=有两矢量点积:ˆˆˆˆˆˆ()()x x y y z z x x y y z z A B A aA a A aB a B a B a ⋅=++⋅++zz y y x x B A B A B A ++=•结论: 两矢量点积等于对应分量的乘积之和。

(2) 矢量积(叉积):ˆ||||sin n A B A B aθ⨯=⋅BAˆn aθ含义:两矢量叉积,结果得一新矢量,其大小为这两个矢量组成的平行四边形的面积,方向为该面的法线方向,且三者符合右手螺旋法则。

推论1:不服从交换律,A B B A A B B A⨯≠⨯⨯=-⨯()A B C A B A C⨯+=⨯+⨯推论2:服从分配律推论3:不服从结合律()()A B C A B C⨯⨯≠⨯⨯推论4:当两个非零矢量叉积为零,则这两个矢量必平行。

在直角坐标系中,两矢量的叉积运算如下:ˆˆˆx y z xy z x y zaa a A B A A A B B B ⨯=ˆˆˆˆˆˆ()()x x y y z z x x y y z z A B A aA a A aB a B a B a ⨯=++⨯++ˆˆˆ()()()y z z y x z x x z y x y y x z A B A B aA B A B a A B A B a =-+-+-两矢量的叉积又可表示为:xyz o例21234ˆˆˆˆˆˆ2,32ˆˆˆˆˆˆ23,325x y z x y z x y z x y z r aa a r a a a r aa a r a a a =-+=+-=-+-=++求:4123r ar br cr =++中的标量a 、b 、c 。

矢量的概念与运算法则

矢量的概念与运算法则矢量是物理学中一个重要的概念,它不仅在物理学中有着广泛的应用,也在其他学科中扮演着重要的角色。

矢量是指既有大小又有方向的物理量,它可以用箭头来表示,箭头的长度表示矢量的大小,箭头的方向表示矢量的方向。

在本文中,我们将介绍矢量的概念以及它的运算法则。

首先,让我们来了解一下矢量的概念。

矢量可以分为位移矢量、速度矢量、加速度矢量等等。

位移矢量表示物体从一个位置到另一个位置的位移,速度矢量表示物体在单位时间内所走过的位移,加速度矢量表示物体在单位时间内速度的变化。

矢量的大小可以通过数值来表示,比如位移矢量的大小可以用米来表示,速度矢量的大小可以用米每秒来表示。

矢量的方向可以用角度或者方向余弦来表示,比如位移矢量的方向可以用角度来表示,速度矢量的方向可以用方向余弦来表示。

接下来,我们将介绍矢量的运算法则。

矢量的运算包括矢量的加法、减法、乘法和除法。

矢量的加法是指将两个矢量相加得到一个新的矢量。

矢量的减法是指将一个矢量减去另一个矢量得到一个新的矢量。

矢量的乘法是指将一个矢量与一个标量相乘得到一个新的矢量。

矢量的除法是指将一个矢量除以一个标量得到一个新的矢量。

在进行矢量的加法和减法时,我们需要考虑矢量的大小和方向。

如果两个矢量的方向相同,那么它们的大小相加或相减即可得到新的矢量的大小。

如果两个矢量的方向相反,那么它们的大小相加或相减后再取相反数即可得到新的矢量的大小。

如果两个矢量的方向不同,那么我们可以将它们分解为水平和垂直方向上的分量,然后分别进行相加或相减,最后再合成为一个新的矢量。

矢量的乘法可以分为数量积和矢量积两种。

数量积是指将两个矢量相乘得到一个标量。

数量积的结果是两个矢量的大小相乘再乘以它们的夹角的余弦值。

矢量积是指将两个矢量相乘得到一个新的矢量。

矢量积的结果是两个矢量的大小相乘再乘以它们的夹角的正弦值,并且新的矢量垂直于原来的两个矢量所在的平面。

最后,让我们来看一个具体的例子来理解矢量的概念和运算法则。

矢量叉乘运算法则

矢量叉乘运算法则矢量叉乘运算是向量运算中的一种重要操作,它在物理学、工程学、计算机图形学等领域都有着广泛的应用。

矢量叉乘运算法则是描述矢量叉乘运算规律的数学原理,它能够帮助我们理解和应用矢量叉乘运算,从而解决实际问题。

1. 矢量叉乘的定义。

矢量叉乘是指两个向量之间进行的一种运算,其结果是一个新的向量。

设有两个三维向量a和b,它们的叉乘结果记作a×b,其计算公式为:a×b = |a| |b| sinθ n。

其中,|a|和|b|分别表示向量a和b的模长,θ表示a和b之间的夹角,n表示垂直于a和b所在平面的单位向量。

这个公式表明,矢量叉乘的结果是一个垂直于a和b所在平面的新向量,其大小由|a|、|b|和夹角θ共同决定。

2. 矢量叉乘的性质。

矢量叉乘具有一些重要的性质,这些性质对于理解和应用矢量叉乘运算法则非常重要。

(1)反交换律。

矢量叉乘满足反交换律,即a×b = -b×a。

这意味着矢量叉乘的结果与操作顺序无关,只与操作的两个向量有关。

(2)线性性质。

矢量叉乘具有线性性质,即对于任意实数k,有(a + b)×c = a×c + b×c和(k a)×b = k (a×b)。

这意味着矢量叉乘可以按照线性运算进行组合。

(3)零叉乘。

当两个向量a和b共线时,它们的叉乘结果为零向量,即a×b = 0。

这表明共线的向量之间不存在叉乘关系。

3. 矢量叉乘的几何意义。

矢量叉乘的几何意义是非常重要的,它能够帮助我们直观地理解矢量叉乘的运算规律。

(1)方向。

矢量叉乘的结果是一个垂直于a和b所在平面的新向量,其方向由右手定则确定。

即将右手的四指指向向量a,然后由a转向向量b,那么大拇指的方向就是叉乘结果的方向。

(2)大小。

矢量叉乘的大小由|a|、|b|和夹角θ共同决定,它的大小等于以|a|和|b|为两条边的平行四边形的面积。

三个向量连续叉乘如何计算,大学物理矢量叉乘运算公式二

三个向量连续叉乘如何计算,大学物理矢量叉乘运算公式二矢量叉乘法则?矢量当中的运算要遵守特殊的法则。

矢量加法大多数情况下可用平行四边形法则。

由平行四边形法则可推广至三角形法则、多边形法则或正交分解法等。

矢量减法是矢量加法的逆运算,一个矢量减去另一个矢量,等于加上那个矢量的负矢量。

a-b=a+(-b)。

矢量的乘法。

矢量和标量的乘积仍为矢量。

矢量和矢量的乘积,可以构成新的标量,矢量间这样的乘积叫标积;也可以构成新的矢量,矢量间这样的乘积叫矢积1、矢量的叉乘是向量积;2、矢量的叉乘的运算结果是一个向量而不是一个标量。

并且两个向量的叉积与这两个向量和垂直;3、叉积的长度|a×b|可以解释成这两个叉乘向量a,b共起点时,所构成平行四边形的面积。

向量叉乘公式是什么?向量积,数学中又称外积、叉积,物理中称矢积、叉乘是一种在向量空间中向量的二元运算。

与点积不一样,它的运算结果是一个向量而不是一个标量。

并且两个向量的叉积与这两个向量和垂直。

其应用也十分广泛,一般应用于物理学光学和电脑图形学中。

两个向量a和b的叉积写作a×b。

模长:(在这里θ表示两向量当中的夹角(共起点的前提下)(0°≤θ≤180°),它位于这两个矢量所定义的平面上。

)方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵循右手定则。

(一个简单的确定满足“右手定则”的结果向量的方向的方式是这样的:若坐标系是满足右手定则的,当右手的四指从a以不能超出180度的转角转向b时,竖起的大拇指指向是c的方向。

)向量积|c|=|a×b|=|a||b|sina,b即c的长度在数值上等于以a,b,夹角为θ组成的平行四边形的面积。

而c的方向垂直于a与b所决定的平面,c的指向按右手定则从a转向b来确定。

*运算结果c是一个伪向量。

这是因为在不一样的坐标系中c 可能不一样。

期望我能帮你解疑释惑。

叉乘,也叫向量的外积、向量积。

矢量运算法则


03
矢量减法
矢量减法的几何意义
• 矢量减法的几何意义 • 矢量减法表示两个矢量的头和尾相连,然后去掉第一个矢量的 尾巴 • 矢量减法的模等于两个矢量模的差 • 矢量减法的方向等于两个矢量方向的差
矢量减法的计算方法与性质
矢量减法的计算方法
• 矢量减法可以通过对应分量的相减得到 • 矢量减法的计算公式为:A - B = (A1 - B1, A2 - B2, ..., An - Bn)
矢量的方向
• 矢量的方向可以用矢量的单位向量表示 • 矢量的单位向量是矢量除以其模的结果
02
矢量加法
矢量加法的几何意义
• 矢量加法的几何意义 • 矢量加法表示两个矢量的头和尾相连 • 矢量加法的模等于两个矢量模的和 • 矢量加法的方向等于两个矢量方向的合成
矢量加法的计算方法与性质
矢量加法的计算方法
矢量减法的性质
• 矢量减法满足交换律:A - B = B - A • 矢量减法满足结合律:(A - B) - C = A - (B + C)
矢量减法的应用实例 • 矢 量 减 法 的 应 用 实 例 • 计算两个力的差力:F = F1 - F2 • 计算两个速度的差速度:v = v1 - v2
04
矢量运算在计算机图形学中的 应用
• 矢量运算在计算机图形学中的应用 • 计算物体的运动轨迹:s = v0t + 0.5at^2 • 计算光照和阴影:L = I * (N · L) / (N · V) • 计算物体的表面法向量:N = (A × B) / |A × B|
CREATE TOGETHER
矢量叉积的几何意义
• 矢量叉积表示两个矢量的模和角度的乘积 • 矢量叉积的结果等于两个矢量模的乘积乘以它们夹角的 余弦
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:先后轮换次序。
推论:三个非零矢量共面的条件。
vvv A(BC) 0
v vv
h BC v
A

v C
v B
在直角坐标系中:
vvv
aˆx aˆy aˆz
A (B C) ( Axaˆx Ayaˆy Azaˆz ) Bx By Bz
v v v Ax Ay Az A (B C) Bx By Bz
•面元:
v dS1

h2h3du2du3aˆu1
v dS2 h1h3du1du3aˆu2
v dS3 h1h2du1du2aˆu3
•体元: dV h1h2h3du1du2du3
电磁场与电磁波
四、标量场的梯度
1. 标量场的等值面 以温度场为例:
第1章 矢量分析
等温面
热源
可以看出:标量场的函数是单值函数,各等值面是互不 相交的。
2.矢量:不仅有大小,而且有方向的物理量。
如:力
v F
、速度
vv
、电场
v E

vv 矢量表示为: A | A| aˆ
其中:|
A|
为矢量的模,表示该矢量的大小。
aˆ 为单位矢量,表示矢量的方向,其大小为1。
所以:一个矢量就表示成矢量的模与单位矢量的乘积。
电磁场与电磁波
第1章 矢量分析
例1:在直角坐标系中, x 方向的大小为 6 的矢量如何表示?
两矢量的叉积又可表示为:
v v aˆx aˆy aˆz A B Ax Ay Az
Bx By Bz
电磁场与电磁波
第1章 矢量分析
(3)三重积:
三个矢量相乘有以下几种形式:
v vv (A B)C
矢量,标量与矢量相乘。
vvv A (B C)
标量,标量三重积。
v vv A (B C)
即:
h1 h2 h3 1
b. 在柱坐标系中,坐标变量为(r,, z), 其中 为角度,
其对应的线元 rdav ,可见拉梅系数为:
h1 1, h2 r, h3 1
c. 在球坐标系中,坐标变量为 (R,,) ,其中, 均为
角度,其拉梅系数为:
h1 1, h2 R, h3 R sin
dRavR

Rd av

Rsindav
面元:
v dSR

R2
sin d davR
v dS

R sin dRdav
v dS

RdRd av
体元:
dV R2 sin dRd d
电磁场与电磁波
第1章 矢量分析
注意:
a. 在直角坐标系中,x,y,z 均为长度量,其拉梅系数均为1,
电磁场与电磁波
第1章 矢量分析
2. 标量场的梯度 标量场的场函数为 (x, y, z,t)
a.方向导数: d 空间变化率,称为方向导数。
dl
d
dn 为最大的方向导数。
P1
dnv
P2
v
dl
P 0
0 d
b.梯度
定义:标量场中某点梯度的大小为该点最大的方向导数,
其方向为该点所在等值面的法线方向。
电磁场与电磁波
第1章 矢量分析
3.乘法:
(1)标量与矢量的乘积:
vv kA k | A | aˆ
k 0 方向不变,大小为|k|倍

k

0


k

0
方向相反,大小为|k|倍

(2)矢量与矢量乘积分两种定义
a. 标量积(点积): vv v v A B | A| | B | cos
Cx Cy Cz
Cx Cy Cz
b.矢量三重积:
v v v vv v vv v A(BC) B(AC) C(A B)
电磁场与电磁波
第1章 矢量分析
例2:设 rv1 2aˆx aˆy aˆz , rv2 aˆx 3aˆy 2aˆz rv3 2aˆx aˆy 3aˆz , rv4 3aˆx 2aˆy 5aˆz
线元:
v dl

dravr

rdav

dzavz
面元:
v
dSvr dSv
dSz



rddzavr drdzav rddravz
体元: dV rdrddz
电磁场与电磁波
第1章 矢量分析
3. 球坐标系 在球坐标系中,坐标变量为 (R,,) ,如图,做一微分体元。
线元:
v dl

电磁场与电磁波
第1章 矢量分析
正交曲线坐标系:
在正交曲线坐标系中,其坐标变量 (u1,u2,u3)不一定都是 长度,其线元必然有一个修正系数,这些修正系数称为拉梅
系数,若已知其拉梅系数 h1, h2, h3,就可正确写出其线元、
面元和体元。
v •线元: dl h1du1aˆu1 h2du2aˆu2 h3du3aˆu3
求: rv4 arv1 brv2 crv3 中的标量 a、b、c。
解: 3aˆx 2aˆy 5aˆz a(2aˆx aˆy aˆz ) b(aˆx 3aˆy 2aˆz ) c(2aˆx aˆy 3aˆz ) (2a b 2c)aˆx (a 3b c)aˆy (a 2b 3c)aˆz
6aˆx
y
图示法:
6aˆx
x
力的图示法:
v
F
v
FN
v
Ff
vv v F FN Ff
v G
电磁场与电磁波
第1章 矢量分析
二、矢量的运算法则
1.加法: 矢量加法是矢量的几何和,服从平行四边形规则。
v
v
B
C
v vv C AB

v C
v B
v A
v A
a.满足交换律:
vv vv AB B A
逆矢量:Bv 和
v (B)
的模相等,方向相反,互为逆矢量。
v
vv
D
v
A
AD
v
v
v
B
B
B
v
v C
Bv v v
v
ABC 0
A
推论:
任意多个矢量首尾相连组成闭合多边形,其矢量和必为零。
在直角坐标系中两矢量的减法运算:
vv A B (Ax Bx )aˆx (Ay By )aˆy (Az Bz ) aˆz
解:已知
vv A B
所得矢量垂直于
v A
、Bv
ห้องสมุดไป่ตู้所在平面。
vv
aˆn

Av Bv A B
v v aˆx aˆy aˆz A B 2 6 3 15aˆx 10aˆy 30aˆz
4 3 1
vv | A B | 152 (10)2 302 35
aˆn


1 7
| A|
| A|
| A|
在直角坐标系中三个矢量加法运算:
vvv A B C (Ax Bx Cx )aˆx (Ay By Cy )aˆy (Az Bz Cz ) aˆz
电磁场与电磁波
第1章 矢量分析
2.减法:换成加法运算
v vvv v
D A B A (B)
单位矢量: v


|
Av A
|

Avx | A|
aˆx

Avy | A|
aˆ y

Avz |A
|
aˆz
cos aˆx cos aˆy cos aˆz 方向角与方向余弦: , ,
z
v Az
v A

v
v Ax
o


Ay
y
x
cos Ax , cos Ay , cos Az
数学表达式:
grad

d
dn
aˆn
电磁场与电磁波
第1章 矢量分析
d
计算:

d

dn
dl dn dl
d cos
dn

d
dn
b.满足结合律:
(
v A

v B)

v (C

v D)

v (A
v C)

v (B

v D)
电磁场与电磁波
第1章 矢量分析
在直角坐标系下的矢量表示: 三个方向的单位矢量用 aˆx , aˆy , aˆz 表示。
z
v Az
v A
根据矢量加法运算:
vv v v A Ax Ay Az
vo
Ax
Ax Bx Ay By Az Bz •结论: 两矢量点积等于对应分量的乘积之和。
电磁场与电磁波
第1章 矢量分析
b.矢量积(叉积):
aˆc
vv v v
B
A B | A | | B | sin aˆc

•含义:
A
两矢量叉积,结果得一新矢量,其大小为这两个矢量
组成的平行四边形的面积,方向为该面的法线方向,且三
(3aˆx

2aˆ y

6aˆz )
电磁场与电磁波
第1章 矢量分析
例4:
已知A点和B点对于原点的位置矢量为
av

v b

求:通过A点和B点的直线方程。
解:在通过A点和B点的直线方程上,
相关文档
最新文档