矢量运算法则
矢量的运算法则和公式

矢量的运算法则和公式在我们的物理世界中,矢量可是个相当重要的角色!就像我们在生活中要遵循各种规则一样,矢量也有它自己的运算法则和公式。
先来说说矢量的加法。
想象一下,你在操场上跑步,先向东跑了 5 米,然后又向北跑了 3 米。
那你最终的位置怎么算呢?这时候就用到矢量加法啦!把这两个位移矢量首尾相连,从起点到终点的矢量就是合矢量。
这就好比你从家出发,先去超市买了零食,又去书店买了书,最后你走的总路程可不是简单地把距离相加,而是要考虑方向的。
再说说矢量的减法。
比如说,有一个力矢量 F1 作用在物体上,然后又有一个力矢量 F2 作用在同一物体上,要想知道 F1 减去 F2 的结果,其实就是 F1 加上(-F2)。
这就像你原本有 10 块钱零花钱,花了 5 块,其实就相当于你的钱数加上了 -5 块。
说到矢量的乘法,就不得不提到点乘和叉乘。
点乘的结果是一个标量,比如一个力矢量 F 和一个位移矢量 s 的点乘,就等于力在位移方向上做的功。
就像你推一个箱子,用的力和箱子移动的距离相乘,就能知道你做了多少功。
叉乘的结果可是个矢量哦!比如磁场中的洛伦兹力 F = qv×B,这个叉乘就决定了力的方向。
记得有一次我在实验室里观察带电粒子在磁场中的运动,那轨迹真是神奇极了!正是因为矢量的叉乘法则,我们才能准确地预测粒子的运动方向。
还有矢量的数乘,这个比较简单,就是给矢量乘以一个常数,矢量的方向不变,大小改变。
就好像你跑步的速度乘以时间,就能得到你跑的路程。
在解决实际问题的时候,这些矢量的运算法则和公式可太有用啦!有一次学校组织户外探险,我们要通过地图和指南针找到目的地。
地图上给出的方向和距离就是矢量,运用矢量的加法,我们就能准确算出从当前位置到目的地的路线。
总之,矢量的运算法则和公式就像是我们探索物理世界的秘密武器,让我们能够更清晰地理解和描述各种物理现象。
不管是小小的位移,还是强大的力场,都能在矢量的世界里被准确地计算和表达。
矢量微分 规则 记忆

矢量微分规则记忆
记忆矢量微分规则可以帮助你在矢量微积分中进行计算和推导。
以下是一些常用的矢量微分规则:
1.线性性质:微分运算是线性的,即对于任意矢量场U 和V,
以及标量函数 f,有如下规则:
o d/dt (U + V) = dU/dt + dV/dt
o d/dt (fU) = df/dt U + f dU/dt
2.乘积法则:对于标量函数 f 和矢量场 U,有乘积法则:
o d/dt (fU) = (df/dt) U + f (dU/dt)
3.合成函数法则:对于复合函数,有链式法则(链式规则):
o如果矢量场U 是标量函数g 的函数,而g 又是标量函数 f 的函数,则有 dU/dt = (dg/dt) (df/dg)
4.标量对矢量的偏导数:对于标量函数 f 关于矢量场 U 的偏
导数,可以分别对 U 的每个分量求偏导数:
o(∂f/∂U) = (∂f/∂x) i + (∂f/∂y) j + (∂f/∂z) k
这些规则是矢量微分中常用的规则,可以帮助你进行向量值函数的微分运算。
记忆这些规则并理解其应用场景,可以在解决问题时更加高效和准确。
需要注意的是,矢量微分规则可能会因上下文和具体问题而有所变化和扩展。
因此,在应用时根据具体问题需求灵活运用。
矢量的定义和加减法运算法则

A=AaA=Ad y yy z zz
矢量表示为:冒=4A + Ayay + "
在直角坐标系下的矢量表示:
矢量:冒=4,+4句+AZ(:I z
+模的计算:1冒1= M+A; + A;
令单位矢量:
a=
A Ax .
4八 &八
a* + 0,
+
a
Z
Ml Ml Ml J Ml
=cos a a + cos pay + cosEz
第1章电磁学的数学基= 础
矢量分析
—,矢量的定义和表示
矢量的基_=|— 本运算'- 法则
h
F
—
三,矢量微分元:线11 = 元,面元,体元
111 标量场的梯度
五,矢量场的散度 六■矢量场的旋度
—■矢量的定义和表示
1. 标量:只有大小,没有方向的物理量。 如:温度T、长度L等
2. 矢量:不仅有大小,而且有方向的物理量。
例: 已知^点和因点对于原点的位置矢量为刁和方,
求:通过4点和3点的直线方程。 解:
在通过力点和3点的直线上,任取
一 点G对于原点的位置矢量为c, 则:
c — a = k (b — 1)
c = (1 — k)a + kb 其中:k为任意实数。
小结:
、矢量的定义和表示 、矢量的加减法运算法则
如:重力电场强度E、磁场强度可 等
3-矢量表示
—个矢量可以表示成矢量的模与单位矢量的乘积。 矢量 表示为: A=\A\a
其中:| A |为矢量的模,表示该矢量的大小。 a为单位矢量,表示矢量的方向,其大小为1。
矢量运算法则

推论:三个非零矢量共面的条件。
vvv A(BC) 0
v vv
h BC v
A
v C
v B
在直角坐标系中:
vvv
aˆx aˆy aˆz
A (B C) ( Axaˆx Ayaˆy Azaˆz ) Bx By Bz
v v v Ax Ay Az A (B C) Bx By Bz
•面元:
v dS1
h2h3du2du3aˆu1
v dS2 h1h3du1du3aˆu2
v dS3 h1h2du1du2aˆu3
•体元: dV h1h2h3du1du2du3
电磁场与电磁波
四、标量场的梯度
1. 标量场的等值面 以温度场为例:
第1章 矢量分析
等温面
热源
可以看出:标量场的函数是单值函数,各等值面是互不 相交的。
2.矢量:不仅有大小,而且有方向的物理量。
如:力
v F
、速度
vv
、电场
v E
等
vv 矢量表示为: A | A| aˆ
其中:|
A|
为矢量的模,表示该矢量的大小。
aˆ 为单位矢量,表示矢量的方向,其大小为1。
所以:一个矢量就表示成矢量的模与单位矢量的乘积。
电磁场与电磁波
第1章 矢量分析
例1:在直角坐标系中, x 方向的大小为 6 的矢量如何表示?
两矢量的叉积又可表示为:
v v aˆx aˆy aˆz A B Ax Ay Az
Bx By Bz
电磁场与电磁波
第1章 矢量分析
(3)三重积:
三个矢量相乘有以下几种形式:
矢量的运算

这时 r 是矢量的模,括号中的量是单位矢量。 cosα,cosβ,cosγ也称为该矢量的方向余弦。
矢量与数量相乘时,各分量也相应扩大同样的倍数。
如
F ma maxi may j mazk
9
矢量的乘法
物矢理量学的中 点用 乘到 :的F矢• 量S的 乘FS法c还os有点乘和叉F乘。
sin
j)
其中r是该矢量的模,而括号中的 项是r方向上的单位
矢量。
r0
cos
i sin
j
在已知x及y的情况下
r x2 y2
tg y
x
例1、设矢量
r
(6i
8
j )m
写出该矢量的模和单位矢量,并用图表示该矢量。
6
Y
y r2
y2 y1
0 x2
利用矢量的解析表示法,设两矢量
dt t0
t
当上述极限存在时 r 的导数存在。对直角坐标系来说:
dr
dx
i
dy
j
dz
k
dt dt dt dt
15
如果
r rr0
问这时
d r dt
?
单位矢量表示方向,是可以随时间变化的,所以求导
时要考虑单位矢量的导数。这时:
dr dt
dr dt
r0
试证明矢量合成的平行四边形法则,即两矢量的
合矢量r的大小为:
r
r12 r22 2r1r2 cos
解: r r1 r2
两边对自身点乘
r • r (r1 r2 ) • (r1 r2 )
矢量的概念与运算法则

矢量的概念与运算法则矢量是物理学中一个重要的概念,它不仅在物理学中有着广泛的应用,也在其他学科中扮演着重要的角色。
矢量是指既有大小又有方向的物理量,它可以用箭头来表示,箭头的长度表示矢量的大小,箭头的方向表示矢量的方向。
在本文中,我们将介绍矢量的概念以及它的运算法则。
首先,让我们来了解一下矢量的概念。
矢量可以分为位移矢量、速度矢量、加速度矢量等等。
位移矢量表示物体从一个位置到另一个位置的位移,速度矢量表示物体在单位时间内所走过的位移,加速度矢量表示物体在单位时间内速度的变化。
矢量的大小可以通过数值来表示,比如位移矢量的大小可以用米来表示,速度矢量的大小可以用米每秒来表示。
矢量的方向可以用角度或者方向余弦来表示,比如位移矢量的方向可以用角度来表示,速度矢量的方向可以用方向余弦来表示。
接下来,我们将介绍矢量的运算法则。
矢量的运算包括矢量的加法、减法、乘法和除法。
矢量的加法是指将两个矢量相加得到一个新的矢量。
矢量的减法是指将一个矢量减去另一个矢量得到一个新的矢量。
矢量的乘法是指将一个矢量与一个标量相乘得到一个新的矢量。
矢量的除法是指将一个矢量除以一个标量得到一个新的矢量。
在进行矢量的加法和减法时,我们需要考虑矢量的大小和方向。
如果两个矢量的方向相同,那么它们的大小相加或相减即可得到新的矢量的大小。
如果两个矢量的方向相反,那么它们的大小相加或相减后再取相反数即可得到新的矢量的大小。
如果两个矢量的方向不同,那么我们可以将它们分解为水平和垂直方向上的分量,然后分别进行相加或相减,最后再合成为一个新的矢量。
矢量的乘法可以分为数量积和矢量积两种。
数量积是指将两个矢量相乘得到一个标量。
数量积的结果是两个矢量的大小相乘再乘以它们的夹角的余弦值。
矢量积是指将两个矢量相乘得到一个新的矢量。
矢量积的结果是两个矢量的大小相乘再乘以它们的夹角的正弦值,并且新的矢量垂直于原来的两个矢量所在的平面。
最后,让我们来看一个具体的例子来理解矢量的概念和运算法则。
矢量运算法则

03
矢量减法
矢量减法的几何意义
• 矢量减法的几何意义 • 矢量减法表示两个矢量的头和尾相连,然后去掉第一个矢量的 尾巴 • 矢量减法的模等于两个矢量模的差 • 矢量减法的方向等于两个矢量方向的差
矢量减法的计算方法与性质
矢量减法的计算方法
• 矢量减法可以通过对应分量的相减得到 • 矢量减法的计算公式为:A - B = (A1 - B1, A2 - B2, ..., An - Bn)
矢量的方向
• 矢量的方向可以用矢量的单位向量表示 • 矢量的单位向量是矢量除以其模的结果
02
矢量加法
矢量加法的几何意义
• 矢量加法的几何意义 • 矢量加法表示两个矢量的头和尾相连 • 矢量加法的模等于两个矢量模的和 • 矢量加法的方向等于两个矢量方向的合成
矢量加法的计算方法与性质
矢量加法的计算方法
矢量减法的性质
• 矢量减法满足交换律:A - B = B - A • 矢量减法满足结合律:(A - B) - C = A - (B + C)
矢量减法的应用实例 • 矢 量 减 法 的 应 用 实 例 • 计算两个力的差力:F = F1 - F2 • 计算两个速度的差速度:v = v1 - v2
04
矢量运算在计算机图形学中的 应用
• 矢量运算在计算机图形学中的应用 • 计算物体的运动轨迹:s = v0t + 0.5at^2 • 计算光照和阴影:L = I * (N · L) / (N · V) • 计算物体的表面法向量:N = (A × B) / |A × B|
CREATE TOGETHER
矢量叉积的几何意义
• 矢量叉积表示两个矢量的模和角度的乘积 • 矢量叉积的结果等于两个矢量模的乘积乘以它们夹角的 余弦
矢量的运算法则

z
v Az
v A
根据矢量加法运算:
vv v v A Ax Ay Az
vo
Ax
x
其中:
v
v
v
Ax Axaˆx , Ay Ayaˆy , Az Azaˆz
v Ay
y
v 所以: A Axaˆx Ayaˆy Azaˆz
矢量运算法则
v
矢量: A Axaˆx Ayaˆy Azaˆz
两矢量的叉积又可表示为:
v v aˆx aˆy aˆz A B Ax Ay Az
Bx By Bz
矢量运算法则
(3)三重积:
三个矢量相乘有以下几种形式:
v vv (A B)C
矢量,标量与矢量相乘。
vvv A (B C)
标量,标量三重积。
v vv A (B C)
矢量,矢量三重积。
推论3:当两个非零矢量点积为零,则这两个矢量必正交。
•在直角坐标系中,已知三个坐标轴是相互正交的,即 aˆx aˆy 0, aˆx aˆz 0, aˆy aˆz 0 aˆx aˆx 1, aˆy aˆy 1, aˆz aˆz 1
有两矢量点积:
vv A B (Axaˆx Ayaˆy Azaˆz ) (Bxaˆx Byaˆy Bzaˆz )
矢量运算法则
在直角坐标系中,两矢量的叉积运算如下: z
vv A B (Axaˆx Ayaˆy Azaˆz ) (Bxaˆx Byaˆy Bzaˆz )
o y
x
(AyBz AzBy )aˆx (AzBx AxBz )aˆy (AxBy AyBx )aˆz
Ax Bx Ay By Az Bz •结论: 两矢量点积等于对应分量的乘积之和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁场与电磁波
第1章 矢量分析
推论1:满足交换律
vv vv A B B A
推论2:满足分配律
v v v vv vv A(B C) A B AC
推论3:当两个非零矢量点积为零,则这两个矢量必正交。
•在直角坐标系中,已知三个坐标轴是相互正交的,即 aˆx aˆy 0, aˆx aˆz 0, aˆy aˆz 0 aˆx aˆx 1, aˆy aˆy 1, aˆz aˆz 1
则: 2a b 2c 3 a 3b c 2 a 2b 3c 5
a 2 b 1 c 3
电磁场与电磁波
第1章 矢量分析
例3:
已知
v A 2aˆx 6aˆy 3aˆz
v B 4aˆx 3aˆy aˆz
求:确定垂直于 Av、Bv所在平面的单位矢量。
解:已知
vv A B
所得矢量垂直于
0 d
所以:grad
x
aˆx
y
aˆ y
z
aˆz
梯度也可表示: grad
电磁场与电磁波
第1章 矢量分析
在不同的坐标系中,梯度的计算公式:
在直角坐标系中:
x
aˆx
y
aˆ y
z
aˆz
在柱坐标系中:
r
aˆr
r
aˆ
z
aˆz
在球坐标系中:
R
aˆR
R
aˆ
R sin
aˆ
在任意正交曲线坐标系中:
h1u1
(
v A
v B)
v (C
v D)
v (A
v C)
v (B
v D)
电磁场与电磁波
第1章 矢量分析
在直角坐标系下的矢量表示: 三个方向的单位矢量用 aˆx , aˆy , aˆz 表示。
z
v Az
v A
根据矢量加法运算:
vv v v A Ax Ay Az
vo
Ax
x
其中:
v
v
v
Ax Axaˆx , Ay Ayaˆy , Az Azaˆz
v A
、Bv
所在平面。
vv
aˆn
Av Bv A B
v v aˆx aˆy aˆz A B 2 6 3 15aˆx 10aˆy 30aˆz
4 3 1
vv | A B | 152 (10)2 302 35
aˆn
1 7
(3aˆx
2aˆ y
6aˆz )
电磁场与电磁波
第1章 矢量分析
例4:
已知A点和B点对于原点的位置矢量为
2.减法:换成加法运算
v vvv v
D A B A (B)
逆矢量:Bv 和
v (B)
的模相等,方向相反,互为逆矢量。
v
vv
D
v
A
AD
v
v
v
B
B
B
v
v C
Bv v v
v
ABC 0
A
推论:
任意多个矢量首尾相连组成闭合多边形,其矢量和必为零。
在直角坐标系中两矢量的减法运算:
vv A B (Ax Bx )aˆx (Ay By )aˆy (Az Bz ) aˆz
求: rv4 arv1 brv2 crv3 中的标量 a、b、c。
解: 3aˆx 2aˆy 5aˆz a(2aˆx aˆy aˆz ) b(aˆx 3aˆy 2aˆz ) c(2aˆx aˆy 3aˆz ) (2a b 2c)aˆx (a 3b c)aˆy (a 2b 3c)aˆz
电磁场与电磁波
第1章 矢量分析
注意:
a. 在直角坐标系中,x,y,z 均为长度量,其拉梅系数均为1,
即:
h1 h2 h3 1
b. 在柱坐标系中,坐标变量为(r,, z), 其中 为角度,
其对应的线元 rdav ,可见拉梅系数为:
h1 1, h2 r, h3 1
c. 在球坐标系中,坐标变量为 (R,,) ,其中, 均为
电磁场与电磁波
第1章 矢量分析
3.乘法:
(1)标量与矢量的乘积:
vv kA k | A | aˆ
k 0 方向不变,大小为|k|倍
k
0
k
0
方向相反,大小为|k|倍
(2)矢量与矢量乘积分两种定义
a. 标量积(点积): vv v v A B | A| | B | cos
v B
v
A
两矢量的点积含义: 一矢量在另一矢量方向上的投影与另一矢量模的乘积,
角度,其拉梅系数为:
h1 1, h2 R, h3 R sin
电磁场与电磁波
第1章 矢量分析
正交曲线坐标系:
在正交曲线坐标系中,其坐标变量 (u1,u2,u3)不一定都是 长度,其线元必然有一个修正系数,这些修正系数称为拉梅
系数,若已知其拉梅系数 h1, h2, h3,就可正确写出其线元、
面元和体元。
有两矢量点积:
vv A B (Axaˆx Ayaˆy Azaˆz ) (Bxaˆx Byaˆy Bzaˆz )
Ax Bx Ay By Az Bz •结论: 两矢量点积等于对应分量的乘积之和。
电磁场与电磁波
第1章 矢量分析
b.矢量积(叉积):
aˆc
vv v v
B
A B | A | | B | sin aˆc
2.矢量:不仅有大小,而且有方向的物理量。
如:力
v F
、速度
vv
、电场
v E
等
vv 矢量表示为: A | A| aˆ
其中:|
A|
为矢量的模,表示该矢量的大小。
aˆ 为单位矢量,表示矢量的方向,其大小为1。
所以:一个矢量就表示成矢量的模与单位矢量的乘积。
电磁场与电磁波
第1章 矢量分析
例1:在直角坐标系中, x 方向的大小为 6 的矢量如何表示?
注意:先后轮换次序。
推论:三个非零矢量共面的条件。
vvv A(BC) 0
v vv
h BC v
A
v C
v B
在直角坐标系中:
vvv
aˆx aˆy aˆz
A (B C) ( Axaˆx Ayaˆy Azaˆz ) Bx By Bz
v v v Ax Ay Az A (B C) Bx By Bz
v vv vv v A(BC) (A B)C
推论4:当两个非零矢量叉积为零,则这两个矢量必平行。
电磁场与电磁波
第1章 矢量分析
在直角坐标系中,两矢量的叉积运算如下: z
vv A B (Axaˆx Ayaˆy Azaˆz ) (Bxaˆx Byaˆy Bzaˆz )
o y
x
(AyBz AzBy )aˆx (AzBx AxBz )aˆy (AxBy AyBx )aˆz
第1章 矢量分析
等温面
热源
可以看出:标量场的函数是单值函数,各等值面是互不 相交的。
电磁场与电磁波
第1章 矢量分析
2. 标量场的梯度 标量场的场函数为 (x, y, z,t)
a.方向导数: d 空间变化率,称为方向导数。
dl
d
dn 为最大的方向导数。
P1
dnv
P2
v
dl
P 0
0 d
b.梯度
定义:标量场中某点梯度的大小为该点最大的方向导数,
av
和
v b
,
求:通过A点和B点的直线方程。
解:在通过A点和B点的直线方程上,
任矢取量一为点cvC,,则对于原点的位置
cv
av
v k(b
av)
cv
(1
k)av
v kb
z av A cv C
v b
B y
x
其中:k 为任意实数。
电磁场与电磁波
第1章 矢量分析
三、矢量微分元:线元、面元、体元
例:
vv
F dl ,
aˆu1
h2u2
aˆu 2
h3u3
aˆu3
电磁场与电磁波
第1章 矢量分析
五、矢量场的散度
1. 矢线(场线):
在矢量场中,若一条曲线上每
一点的切线方向与场矢量在该点的
+
-
方向重合,则该曲线称为矢线。
2. 通量:
定义:如果在该矢量场中取一曲面S,
通过该曲面的矢线量称为通量。
Ñ 表达式:
vv
v dS
6aˆx
y
图示法:
6aˆx
x
力的图示法:
v
F
v
FN
v
Ff
vv v F FN Ff
v G
电磁场与电磁波
第1章 矢量分析
二、矢量的运算法则
1.加法: 矢量加法是矢量的几何和,服从平行四边形规则。
v
v
B
C
v vv C AB
v C
v B
v A
v A
a.满足交换律:
vv vv AB B A
b.满足结合律:
S
若曲面为闭合曲面:
vv
v dS
S
电磁场与电磁波
第1章 矢量分析
vv
B dS,
dV
其中:dlv,
v dS
和
dV
称为微分元。
v
v
dS
dl
1. 直角坐标系
在直角坐标系v 中,坐标变量为(x,y,z),如图v,做一微分体元。
线元:dlvx dxaˆx
面元: dSvx dydzaˆx
dly dyaˆy
v v dlz dzaˆz dl dxaˆx dyaˆy dzaˆz