初一数学下册第八章

合集下载

最新人教版七年级数学下册 第八章 《消元——解二元一次方程组》教案

最新人教版七年级数学下册 第八章 《消元——解二元一次方程组》教案

《消元——解二元一次方程组》教案2江西师大附中荣齐辉教学设计说明:本课以贴近学生生活实际的问题为情境,引导学生分别列二元一次方程组和一元一次方程解决问题,通过观察、对比,发现二元一次方程组和一元一次方程的联系,思考如何将二元一次方程组转化为一元一次方程,实现消元,渗透化归的数学思想.通过丰富的例题和问题,使学生熟练掌握二元一次方程组的解法,并能运用二元一次方程组解决一些实际问题,体会方程思想.(1)教材分析二元一次方程组是在《一元一次方程》的基础之上学习的,它是解决含有两个未知数的问题的有力工具,同时,二元一次方程组也是解决后续一些问题的基础,其解法将为解决这些问题提供运算的工具,如用待定系数法求一次函数解析式,在平面直角坐标系中求两条直线的交点等.解二元一次方程组就是要通过代入法和加减法把“二元”化归为“一元”,这也是解三元(多元)一次方程组的基本思路,是通法.(2)学情分析学生的知识技能基础:学生已学过一元一次方程的解法,经历过由具体问题抽象出一元一次方程的过程,具备了学习二元一次方程的基本技能.学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多观察、对比、发现的学习程,具有了一定的发现式学习的经验和数学思考,具备了一定的合作与交流的能力.教学目标1.用代入法、加减法解二元一次方程组.2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.3.会用二元一次方程组解决实际问题.4.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程解决实际问题的意识和能力.教学重点、难点重点:会用代入法和加减法解简单的二元一次方程组,会用二元一次方程组解决简单的实际问题,体会消元思想和方程思想.难点:理解“二元”向“一元”的转化,掌握代入法和加减法解二元一次方程组的一般步骤.课时设计四课时.教学策略本节课主要通过创设问题情境,引导学生观察迁移、采用发现法、探究法、练习法为辅的教学方法.教学过程一、创设问题情境,引入课题问题1 篮球联赛中每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队10场比赛中得到16分,那么这个队胜、负场数应分别是多少?你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:设胜x 场,负y 场.根据题意,得⎩⎨⎧=+=+16210y x y x ,教师引出本节课内容:这是我们在引言中探讨的问题,我们在上节课列出了方程组,并通过列表找公共解的方法得到了这个方程组的解⎩⎨⎧==46y x ,显然这样的方法需要一个个尝试,有些麻烦,不好操作,所以我们这节课就来探究如何解二元一次方程组.教师追问(1):这个实际问题能用一元一次方程求解吗?师生活动:学生回答:设胜x 场,则负)10(x -场.根据题意,得16)10(2=-+x x . 教师追问(2):对比方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个方把二元一次方程组转化为一元一次方程,先求出一个未知数,再求出另一个未知数.教师总结:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想程.【设计意图】用引言中的问题引入本节课内容,先列二元一次方程组,再列一元一次方程,对比方程和方程组,发现方程组的解法.二、探究新知问题2 对于二元一次方程组10 216 x y x y ⎧+=⎨+=⎩①②你能写出求x 的过程吗? 师生活动:学生回答:由①,得x y -=10.③把③代入②,得16)10(2=-+x x .解得6=x【设计意图】通过解具体的方程明确消元的过程.教师追问:把③代入①可以吗?师生活动:学生把③代入①,观察结果.【设计意图】由于方程③是由方程①得到的,它只能代入方程②,不能代入方程①,让学生实际操作,得到恒等式,更好地认识这一点.问题3 怎样求y 的值?师生活动:学生回答:把6=x 代入③,得4=y .教师追问(1):代入①或②可不可以?哪种方法更简便?师生活动:学生回答:代入③更简便.教师追问(2):你能写出这个方程组的解,并给出问题的答案吗?师生活动:学生回答:这个方程组的解是⎩⎨⎧==46y x ,这个队胜6场,负4场. 【设计意图】让学生考虑求另一个未知数的过程,并思考如何让优化解法.问题4 你能总结出上述解法的基本步骤吗?其中,哪一步是最关键的步骤?师生活动:教师引导学生总结:变、代、求、写,学生回答:“代入”是最关键的步骤,教师总结:这种方法叫做代入消元法,简称代入法.【设计意图】使学生明确代入法解二元一次方程组的基本步骤,并明确关键步骤是“代入”,将二元一次方程组转化为一元一次方程.问题5 是否有办法得到关于y 的一元一次方程?师生活动:学生具体操作.【设计意图】 让学生尝试不同的代入消元方法,并为后面学生选择简单的代入方法作铺垫.三、应用新知例 用代入法解方程组⎩⎨⎧=-=-14833y x y x师生活动:学生写出用代入法解这个方程组的过程,教师巡视,个别点拨.【设计意图】使学生熟悉代入法解二元一次方程组的步骤,巩固新知.四、加深认识练习 用代入法解下列二元一次方程组:(1)⎩⎨⎧=+=+15253t s t s (2)⎩⎨⎧=-=+33651643y x y x 师生活动:学生写出代入法解这些方程组的过程.【设计意图】本题需要先分析方程组的结构特征,再选择适当的解法,通过此练习,使学生熟练掌握用代入法解二元一次方程组.五、学以致用例 根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g ),两种产品的销售数量(按瓶计算)的比为 ,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?师生活动:教师引导学生列出二元一次方程组,学生写出解这个方程组的过程. 教师追问:上述解方程组的过程能用一个框图表示出来吗?师生活动:教师与学生一起尝试用下列框图表示解方程组的过程:【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用代入5:2法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识.并通过框图形式形象地表示代入法解二元一次方程组的过程,使学生加深理解.六、再探新知问题4 前面我们用代入法求出了方程组10 216 x y x y ⎧+=⎨+=⎩①② 的解,这个方程组的两个方程中,y 的系数有什么关系?你能利用这种关系发现新的消元方法吗?师生活动:学生回答:这两个方程中y 的系数相等,②-①可消去未知数y ,得6=x . 把6=x 代入 ①得,4=y所以这个方程组的解为⎩⎨⎧==46y x .教师追问:①-②也能消去未知数y ,求得x 吗?师生活动:学生具体操作,发现求得的解跟上面相同.【设计意图】让学生发现除代入法以外的其它消元方法:通过两个方程相减实现消元.问题5 联系上面的解法,想一想怎样解方程组⎩⎨⎧=-=+.81015,8.2103y x y x 师生活动:学生回答:由于这两个方程中y 的系数相反,将两个方程相加,可消去未知数y ,求得x ,进而求得y .教师总结:当两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.【设计意图】让学生再次发现新的消元方法:通过两方程相加实现消元,并总结出加减消元法.七、应用新知例 用加减法解方程组⎩⎨⎧=-=+33651643y x y x问题6 上述方程组能直接通过加减消元吗?为什么?师生活动:学生回答:不能,因为同一未知数的系数既不相等也不相反.教师追问:那该怎样变形才能实现消元?师生活动:可以在方程两边同时乘适当的数,使同一未知数的系数相等或相反,再通过将两个方程相加或相减,实现消元.【设计意图】让学生掌握加减消元法的基本步骤,加深对加减法的认识.八、巩固提高练习 用加减法解下列方程组:(1)⎩⎨⎧-=-=+12392y x y x (2)⎩⎨⎧=+=+15432525y x y x 【设计意图】让学生熟练掌握加减消元法解二元一次方程组的步骤,巩固提高.九、学以致用例 2台大收割机和5台小收割机工作2小时收割小麦3.6公顷;3台大收割机和2台小收割机工作5小时收割小麦8公顷.1台大收割机和1台小收割机工作1小时各收割小麦多少公顷?【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用加减法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识,同时加深和巩固对加减法解二元一次方程组的认识.十、归纳总结回顾本节课的学习过程,并回答以下问题:(1)代入法和加减法解二元一次方程组有哪些步骤?(2)解二元一次方程组的基本思路是什么?(3)在探究解法的过程中用到了什么思想方法?你还有哪些收获?【设计意图】让学生总结本节课的主要内容,提炼思想方法.十一、布置作业课本习题教学反思1.应用意识贯穿始终:从问题的提出,到最后的练习,多出环节以实际问题为背景,为解决问题的需要而学习,最后回归到用新知识解决实际问题,既解决了为什么要学习二元一次方程组的解法的问题,同时,由于目标明确具体,学生探究时容易把握方向,在一定程度上分解了难点,提高了学生学习的兴趣.2.循序渐进原则的运用:学生对消元思想的理解很难一步到位,所以采用结合具体问题逐步渗透、感悟,然后提炼升华的方式学习,类似地,对二元一次方程组的解法,经历了从特殊到一般,从简单到复杂的循环上升过程,学生对数学思想的理解随之加深.。

人教版七年级下册数学第八章二元一次方程组应用题——方案问题

人教版七年级下册数学第八章二元一次方程组应用题——方案问题

人教版七年级下册数学第八章二元一次方程组应用题——方案问题1.为预防新冠肺炎病毒,市面上95KN等防护型口罩出现热销.已知3个A型口罩和2个B型口罩共需31元;6个A型口罩和5个B型口罩共需70元.(1)求一个A型口罩和一个B型口罩的售价各是多少元?(2)小红打算用160元(全部用完)购买A型,B型两种口罩(要求两种型号的口罩均购买),正好赶上药店对口罩价格进行调整,其中A型口罩售价上涨40%,B型口罩按原价出售,则小红有多少种不同的购买方案?请设计出来.2.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品,两种奖品的单价.共需120元,购买5个A奖品和4个B奖品共需210元.求A B3.某文具店销售甲、乙两种钢笔,甲钢笔每支进价6元,乙钢笔每支进价14元,该文具店同时进购甲、乙两种钢笔共50支,恰好用去540元.求该文具店购进了甲、乙两种钢笔各多少支?4.某商店订购了A,B两种商品,A商品18元/千克,B商品20元/千克,若B商品的数量比A商品的2倍少10千克,购进两种商品共用了1540元,求两种商品各多少千克.5.甲类票480元/张,乙类票280元/张,某球迷协会组织50名球迷去现场为辽宁男篮加油助威,买门票共花20000元,请问该协会甲、乙两类门票各买了多少张?6.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A种饮料每瓶需加该添加剂2克,B种饮料每瓶需加该添加剂3克,已知生产共100瓶的A,B两种饮料恰好添加了270克该添加剂,则生产A、B两种饮料各多少瓶?7.小亮家装修,需购进甲、乙两种地砖共100块,共花费5600元,已知甲种地砖单价是80元/块,乙种地砖的单价是40元/块,问甲、乙两种地砖各购进了多少块?8.某工厂第一季度生产甲、乙两种机器共450台,改进技术后,计划第二季度生产这两种机器520台,其中甲种机器增产10%,乙种机器增产20%,该厂第二季度计划生产甲、乙机器各多少台?9.有大、小两种货车,2辆大车与3辆小车一次可以运货15.5吨;5辆大车与6辆小车一次可以运货35吨.求3辆大车与5辆小车一次可以运货多少吨?10.寿阳某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元,购买一个足球、一个篮球各需多少元?11.已知用3辆A型车和2辆B型车一次可运货19吨;用2辆A型车和3辆B型车一次可运货21吨.(每辆车每次都满载货物)(1)求1辆A型车和1辆B型车载满货物一次分别可以运多少吨?(2)某货物中心现有49吨货物,计划同时租用A型车和B型车若干辆,一次运完,且恰好每辆车都载满货物,请问有哪几种不同的租车方法.12.为了更好地保护环境,治污公司决定购买若干台污水处理设备.现有A、B两种型号的设备,已知购买1台A型号设备比购买1台B型号设备多2万元,购买2台A 型号设备比购买3台B型号设备少6万元.求A、B两种型号设备的单价.13.“利海”通讯器材商场,计划用60000元从厂家购进若干部新型手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买.14.为备战体育中考,学校新购买一批排球和实心球,在某体育用品商店,若购买10个排球和20个实心球需用960元,若购买20个排球和10个实心球需用1380元.(1)排球、实心球的单价各是多少元?(2)寒假期间,该店开展了促销活动,所有商品一律九折销售.则购买20个排球和20个实心球实际共需要花费多少元?15.小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.16.在抗击新型冠状肺炎期间,我市某企业向湖北武汉捐赠了价值26万元的甲、乙两种仪器共30套.已知甲种仪器每套8000元,乙种仪器每套10000元,问甲、乙两种仪器各捐赠了多少套?17.疫情期间,学校为了学生在班级将生活垃圾和废弃口罩分类丢弃,准备购买A,B 两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需270元,购买2个A型垃圾箱比购买3个B型垃圾箱少用80元.求每个A型垃圾箱和B型垃圾箱各多少元?学校购买A型垃圾桶8个,B型垃圾桶16个,共花费多少元?18.(列二元一次方程组解应用题)某公司共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供300名员工就餐;同时开放1个大餐厅,1个小餐厅,可供170名员工就餐.(1)请问1个大餐厅、1个小餐厅分别可供多少名员工就餐;(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全体450名员工就餐?请说明理由.19.某储运公司现有货物35吨,要全部运往灾区支援灾区重建工作.计划要同时租用A B、两种型号的货车,一次运送完全部货物,且每辆车均为满载.已知在货车满载的情况下,2辆A型货车和3辆B型货车一次共运货18吨;3辆A型货车和2辆B型货车一次共运货17吨.根据以下信息回答下列问题:(1)一辆A型车和一辆B型车各能满载货物多少吨?、两种型号的货车各几辆?请(2)按计划完成本次货物运送,储运公司要同时租用A B求出所有的租车方案.20.某家具商先准备购进A,B两种家具,已知100件A型家具和150件B型家具需要35000元,150件A型家具和100件B型家具需要37500元.(1)求A,B两种家具每件各多少元;(2)家具商现准备了8500元全部用于购进这两种家具,他有几种方案可供选择?请你帮他设计出所有的购买方案.。

人教版七年级数学下册第八章 二元一次方程组知识点整理汇总及题型分类练习

人教版七年级数学下册第八章 二元一次方程组知识点整理汇总及题型分类练习

=x的方程组直接写出它的解.两者的行程差=开始时两者相距的路程; ;; (1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率; 打几折就是按标价的十分之几或百分之几十销售。

(例如八折就是按标价的十分之八即五分之四或者百分之八十) 4.储蓄问题: ①利息=本金×利率×期数 ②本息和=本金+利息=本金+本金×利率×期数=本金× (1+利率×期数) ③利息税=利息×利息税率=本金×利率×期数×利息税率。

④税后利息=利息× (1-利息税率) 。

 5.配套问题: 解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例。

 6.增长率问题: 解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量; 原量×(1-减少率)=减少后的量. 7.和差倍分问题: 解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量. 8.数字问题: 解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。

如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字 9.优化方案问题: 在解决问题时,常常需合理安排。

需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案。

 经典例题透析类型一:列二元一次方程组解决——行程问题 例:甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?举一反三: 【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米? 【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

七年级数学下册第八章二元一次方程组基础知识手册(带答案)

七年级数学下册第八章二元一次方程组基础知识手册(带答案)

七年级数学下册第八章二元一次方程组基础知识手册单选题1、幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x与y的和是()A.9B.10C.11D.12答案:D分析:根据题意设出相应未知数,然后列出等式化简求值即可.解:设如图表所示:根据题意可得:x+6+20=22+z+y,整理得:x-y=-4+z,x+22+n=20+z+n,20+y+m=x+z+m,整理得:x=-2+z,y=2z-22,∴x-y=-2+z-(2z-22)=-4+z,解得:z=12,∴x +y=3z -24=12故选:D .小提示:题目主要考查方程的应用及有理数加法的应用,理解题意,列出相应方程等式然后化简求值是解题关键.2、《九章算术》中记载.“今有人共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”其大意是:“现有一些人共同买一个物品,每人出8钱,还盈余3钱;每人出7钱,还差4钱,问人数、物品价格各是多少?”设人数为x 人,物品的价格为y 钱,根据题意,可列方程组为( )A .{y =8x −3y =7x +4B .{x =8y +3x =7y −4C .{y =8x +3y =7x −4D .{x =8y −3x =7y +4答案:A分析:根据“每人出8元,还盈余3元;每人出7元,则还差4元”,即可得出关于x ,y 的二元一次方程组,此题得解.解:设人数为x 人,物品的价格为y 钱,依题意,得{y =8x −3y =7x +4. 故选:A .小提示:本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.3、解方程组{2x +3y =5①x −2y =−1②时,经过下列步骤,能消去末知数y 的是( ) A .①×2−②×3B .①×3−②×2C .①×3+②×2D .①×2+②×3答案:D分析:由消去未知数y ,可得方程组中y 的未知数系数化为绝对值相等,符号相反,①×2+②×3可消去y . 解:∵消去未知数y ,解方程组{2x +3y =5①x −2y =−1②中y 的未知数系数化为绝对值相等,符号相反,∴①×2+②×3可消去y .故选:D小提示:本题考查二元一次方程组加减消元法,关键是化某一未知数系数化为绝对值相等,系数相同用减法,系数相反用加法.4、《算法统宗》中有一道题为“隔沟计算”,其原文是:甲乙隔沟放牧,二人暗里参详,甲云得乙九只羊,多你一倍之上;乙说得甲九只羊,二家之数相当,两人闲坐恼心肠,画地算了半晌.这个题目的意思是:甲、乙两个牧人隔着山沟放羊,两人都在暗思对方有多少只羊,甲对乙说:“我若得你9只羊,我的羊多你一倍.”乙对甲说:“我若得你9只羊,我们两家的羊数就一样多.”设甲有x 只羊,乙有y 只羊,根据题意列出二元一次方程组为( )A .{x −9=2(y +9),y +9=x −9.B .{x +9=2(y −9),y +9=x −9.C .{x +9=2y,y +9=x.D .{x −9=2y,y +9=x −9.答案:B分析:根据“我若得你9只羊,我的羊多你一倍.”和“我若得你9只羊,我们两家的羊数就一样多.”为等量关系,列出方程即可求解.解:由题意得:{x +9=2(y −9)y +9=x −9, 故选:B .小提示:本题考查了二元一次方程组的应用,找准等量关系,根据等量关系列出方程组是解题的关键.5、甲乙两辆小车同时从A 地开出,甲车比乙车每小时快10km ,结果甲车行驶了40分钟到达了B 地,而乙车比甲车晚5分钟到达B 地,设甲车和乙车的速度分别为x km/h ,y km/h ,则下列方程组正确的是( )A .{40x =45y y −x =10B .{4060x =4560y x −y =10C .{40x =35y x −y =10D .{4060x =3560y y −x =10答案:B分析:根据甲车比乙车每小时快10km ,得x-y =10,根据甲车行驶了40分钟到达了B 地,而乙车比甲车晚5分钟到达B 地,得4060x =4560y ,由此得到方程组.解:设甲车和乙车的速度分别为x km/h,y km/h,根据甲车比乙车每小时快10km,得x-y=10,根据甲车行驶了40分钟到达了B地,而乙车比甲车晚5分钟到达B地,得4060x=4560y,故选:B.小提示:此题考查了二元一次方程组的实际应用,正确理解题意是列得方程组的关键.6、一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大9,则这样的两位数共有()A.5个B.6个C.7个D.8个答案:D分析:设原来的两位数为10a+b,则新两位数为10b+a,根据新两位数比原两位数大9,列出方程,找出符合题意的解即可.解:设原来的两位数为10a+b,根据题意得:10a+b+9=10b+a,解得:b=a+1,因为可取1到8个数,所以这两位数共有8个,它们分别,12,23,34,45,56,67,78,89,都是个位数字比十位数字大1的两位数.故选:D.小提示:本题考查了二元一次方程的应用,解题的关键是弄清题意,找合适的等量关系,列出方程,再求解,弄清两位数的表示是:10×十位上的数+个位上的数,注意不要漏数.7、已知{m+2n=−42m+n=9,则代数式m−n的值是()A.-5B.5C.13D.1答案:C分析:两式相减即可得出答案.解:{m+2n=−4①2m+n=9②将②-①,得m−n=13故选C.小提示:本题考查了二元一次方程的特殊解法,找到两式与m −n 的关系是解题的关键.8、春节将至,某超市准备用价格分别是36元/kg 和20元/kg 的两种糖果混合成100kg 的什锦糖出售,混合后什锦糖的价格是28元/kg .若设需要36元/kg 的糖果x kg ,20元/kg 的糖果y kg ,则下列方程组中能刻画这一问题中数量关系的是( )A .{x +y =10036x +20y =28B .{x +y =10036x +20y =28×100C .{x +y =10028x +28y =100×(36+20) D .{x +y =10020x +36y =28×100 答案:B分析:由题意得等量关系:两种糖果混合成100kg 的什锦糖;36元/kg 的糖果x kg 的费用+20元/kg 的糖果y kg 的费用=100kg×28,即可得出方程组.解:设需要36元/kg 的糖果x kg ,20元/kg 的糖果y kg ,由题意得:{x +y =10036x +20y =28×100故选:B .小提示:此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.9、若二元一次方程组{x +y =3,3x −5y =4的解为{x =a,y =b, 则a −b 的值为( ) A .1B .3C .−14D .74答案:D分析:先解方程组求出x −y =74,再将{x =a,y =b, 代入式中,可得解. 解:{x +y =3,①3x −5y =4,② ①+②,得4x −4y =7,所以x −y =74,因为{x =a,y =b,所以x −y =a −b =74.故选D.小提示:本题考查二元一次方程组的解,解题的关键是观察两方程的系数,从而求出a-b的值,本题属于基础题型.10、如图,三个天平的托盘中形状相同的物体质量相等.图①、图②所示的两个天平处于平衡状态,要使第三个天平也保持平衡,可在它的右盘中放置( )A.3个球B.4个球C.5个球D.6个球答案:C分析:题目中的方程实际是说明了两个相等关系:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据第一个天平得到:5x+2y=x+3z;根据第二个天平得到:3x+3y=2y+2z,把这两个式子组成方程组,解这个关于y,z 的方程组即可.解:设球的质量是x,小正方形的质量是y,小正三角形的质量是z.根据题意得到:{5x+2y=x+3z;3x+3y=2y+2z解得:{y=xz=2x;第三图中左边是:x+2y+z=x+2x+2x=5x,因而需在它的右盘中放置5个球.答:需在它的右盘中放置5个球.所以C选项是正确的.小提示:解决本题的关键是借助方程关系进行等量代换,进而求出球的数量. 填空题11、如果{x+2y=32x−3y=4,那么2x+4y−22+6x−9y3=______.答案:6分析:观察方程组,容易发现,可以整体求得2x+4y和6x-9y的值,直接代入即可.解:{x +2y =3①2x −3y =4②①×2得:2x +4y =6,②×3得:6x -9y =12,整体代入可得:2x+4y−22+6x−9y 3=6−22+123=6,所以答案是:6.小提示:本题考查了解二元一次方程组、代数式求值,注意整体代入思想的应用.12、已知x 、y 满足方程组{3x +y =2021x +3y =2022,则x −y =______. 答案:−12##﹣0.5分析:方程组两方程相减得2x -2y =﹣1,两边同除以2得出x ﹣y 即可.解:{3x +y =2021①x +3y =2022② ①-②得,2x -2y =﹣1,两边同除以2得,x -y =−12, 所以答案是:−12小提示:此题考查了二元一次方程组,整体法的应用是求解此题的关键.13、如果x a−2+2y b+1=0是二元一次方程,则a =____,b =_____.答案: 3 0分析:根据二元一次方程的定义可知a −2=1,b +1=1,据此可解出a 、b .解:依题意,得:{a −2=1b +1=1, 解得:{a =3b =0. 所以答案是:3,0.小提示:此题考查的是对二元一次方程的定义理解,根据未知数的次数为1,可以列出方程组求解.14、《张丘建算经》里有一道题:“今有鸡翁一值钱五,鸡母一值钱三,鸡雏三值钱一.凡百钱买鸡百只,问鸡翁、母、雏各几何.”译文:每一只公鸡值五文钱,每一只母鸡值三文钱,每三只小鸡值一文钱.现在用一百文钱买一百只鸡,问这一百只鸡中,公鸡、母鸡、小鸡各有多少只?请你结合你学过的知识,写出一组能够按要求购买的方案:公鸡买______只,母鸡买_______只,小鸡买_______只.答案: 4(答案不唯一) 18(答案不唯一) 78(答案不唯一)分析:设买了x 只公鸡,y 只母鸡,则买了(100−x −y )只小鸡,利用总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y ,(100−x −y )均为自然数,即可求出结论.解:设买了x 只公鸡,y 只母鸡,则买了(100−x −y )只小鸡,依题意得:5x +3y +13(100−x −y )=100,即y =25−74x ,又∵x ,y ,(100−x −y )均为自然数,∴{x =0y =25100−x −y =75 或{x =4y =18100−x −y =78 或{x =8y =11100−x −y =81 或{x =12y =4100−x −y =84 , ∴买的公鸡、母鸡、小鸡各0、25、75只或4、18、78只或8、11、81只或12、4、84只,所以答案是:0、25、75只或4、18、78只或8、11、81只或12、4、84.小提示:本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.15、如图是一个正方体的展开图,正方体相对面的数字或代数式互为相反数,则x 的值为______,y 的值为______.答案: 2 −12##-0.5分析:根据相对面的数字或代数式互为相反数得到方程组{x +4y =02x −1=3,求出x 和y 的值. 解:根据题意得{x +4y =02x −1=3, 解得{x =2y =−12 ,故答案为2,−12 . 小提示:本题考查正方体的展开图以及解二元一次方程组,注意相隔的面是相对的面.解答题16、已知:用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有36吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.答案:(1)1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨,4吨;(2)故共有四种租车方案,分别为:①A 型车0辆,B 型车9辆;②A 型车4辆,B 型车6辆;③A 型车8辆,B 型车3辆;④A 型车12辆,B 型车0辆.分析:(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据“用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)由(1)的结论结合某物流公司现有36吨货物,即可得出3a +4b =36,即b =36−3a 4,由a 、b 均为整数即可得出租车方案.解:(1)设1辆A 型车和1辆B 型车都装满货物一次可分别运货x 吨,y 吨,根据题意得:{2x +y =10x +2y =11, 解得:{x =3y =4, 答:1辆A 型车和1辆B 型车都装满货物一次可分别运货3吨,4吨;(2)由题意可得:3a +4b =36,∴b =36−3a 4=9−34a , ∵a ,b 均为整数,∴有{a =0b =9、{a =4b =6、{a =8b =3和{a =12b =0四种情况,故共有四种租车方案,分别为:①A 型车0辆,B 型车9辆②A 型车4辆,B 型车6辆;③A 型车8辆,B 型车3辆;④A 型车12辆,B 型车0辆.小提示:本题考查了二元一次方程组的应用以及二元一次方程的应用,解题的关键是:(1)根据等量关系,列出关于x 、y 的二元一次方程组;(2)由(1)的结论结合共运货36吨,找出3a +4b =36.17、重庆某超市有A ,B 两种产品进行销售,购买50件A 产品,30件B 产品,一共花费1450元,如果购买60件A 产品,10件B 产品,则一共花费1350元.(1)请问A 、B 两种产品的单价为多少元?(2)五一即将来临,超市分别针对A 、B 商品进行打折销售.购买A 种商品数量超过20的每件商品打八折销售;购买B 种品数超过30的每件商品打六折销售.小红去超市购买A ,B 两种产品54件,一共花费了640元,请问小红分别购买A 、B 两种产品多少件?答案:(1)A 种产品的单价为20元、B 种产品的单价为15元(2)小红购买A 种产品为22件、B 种产品的32件或小红购买A 种产品为14件、B 种产品的40件分析:(1)设A 种产品的单价为x 元、B 种产品的单价为y 元,由题意列出方程组,解方程组即可;(2)设购买A 种产品为m 件、B 种产品的n 件,由题意列出方程组,解方程组解可.(1)解:设A 种产品的单价为x 元、B 种产品的单价为y 元,由题意得:{50x +30y =145060x +10y =1350, 解得{x =20y =15. 答:A 种产品的单价为20元、B 种产品的单价为15元.(2)解:设购买A 种产品为m 件、B 种产品的n 件,①购买A 种商品数量超过20件,购买B 种品数超过30件,由题意得:{m +n =5420×0.8m +15×0.6n =640 ,解得:{m =22n =32; ②购买A 种商品数量超过20件,购买B 种品数不超过30件,由题意得:{m +n =5420×0.8m +15n =640, 解得:{m =−170n =224, 不合题意舍去,③购买A 种商品数量不超过20件,购买B 种品数超过30件,由题意得:{m +n =5420m +15×0.6n =640, 解得:{m =14n =40, 答:小红购买A 种产品为22件、B 种产品的32件或小红购买A 种产品为14件、B 种产品的40件.小提示:此题考查了二元一次方程组的应用,解答此类应用类题目的关键是仔细审题,得出等量关系,从而转化为方程解题,难度一般,第二问需要分类讨论,注意不要遗漏.18、甲、乙两人同时加工一批零件,前3小时两人共加工126件,后5小时中甲先花了1小时修理工具,之后甲每小时比以前多加工10件,乙由于体力消耗较大,每小时比原来少加工1件,结果在后5小时内,甲比乙多加工了15件,甲、乙两人原来每小时各加工多少件?答案:甲原来每小时加工20件,乙原来每小时加工22件分析:设甲原来每小时加工x 件,乙每小时加工y 件,利用工作总量=工作效率×工作时间,结合“前3小时两人共加工126件,后5小时内,甲比乙多加工了15件”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.解:设甲原来每小时加工x 件,乙每小时加工y 件,依题得:{3x +3y =1264(x +10)−5(y −1)=15, 解方程组得:{x =20y =22, 答:甲原来每小时加工20件,乙原来每小时加工22件.小提示:本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.。

新人教版七年级数学下册)第八章导学案及参考答案

新人教版七年级数学下册)第八章导学案及参考答案

新人教版七年级数学(下册)第八章导学案及参考答案第八章二元一次方程组课题:8.1二元一次方程组【学习目标】:弄懂二元一次方程、二元一次方程组和它的解的含义,并会检验一对数是不是某个二元一次方程组的解;【学习重点】:二元一次方程、二元一次方程组及其解的意义.【学习难点】:弄懂二元一次方程组解的含义.【导学指导】一、温故知新1.含有()个未知数,且未知数的次数为()的方程叫一元一次方程。

方程中“元”是指()“次”是指()2.使一元一次方程()的未知数的值叫一元一次方程的解。

3.写出一个—元一次方程(),并指出它的解是()。

二、自主学习:阅读课本93-94页回答下列问题1.含有()个未知数,且未知数的次数为()的方程叫二元一次方程。

方程中“元”是指()“次”是指()2.使二元一次方程()的未知数的值叫二元一次方程的解。

3.写出一个二元一次方程(),并指出它的解是()。

4.把两个方程合在一起,写成x+y=222x+y=40像这样,把两个二元一次方程合在一起,就组成了一个()5. ( )叫二一次方程组的解。

【课堂练习】1.课本95页1 ;22、x +y =2的正整数解是__________3.若13x y =-⎧⎨=-⎩是方程3x-ay=3的一个解,那么a 的值是__________。

4.下列各式中是二元一次方程是( )(A) 6x-y=7; (B) x 2 =3x+y ; (C)y=5;(D) x 1y=35. 下列不是二元一次方程组的是( )A .141y x x y ⎧+=⎪⎨⎪-=⎩B .43624x y x y +=⎧⎨+=⎩C .44x y x y +=⎧⎨-=⎩D .35251025x y x y +=⎧⎨+=⎩6.方程组327413x y x y +=⎧⎨-=⎩的解是( ) A .13x y =-⎧⎨=⎩ B .31x y =⎧⎨=-⎩ C .31x y =-⎧⎨=-⎩ D .13x y =-⎧⎨=-⎩【要点归纳】本节课你有哪些收获?【拓展训练】1. 349x y +=中,如果2y = 6,那么x = 。

人教版七年级下册数学教案第八章

人教版七年级下册数学教案第八章

人教版七年级下册数学教案第八章第八章二元一次方程组全章教案教材内容本章主要内容包括:二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,三元一次方程组解法举例,二元一次方程组的应用。

教材首先从一个篮球联赛中的问题入手,归纳出二元一次方程组及解的概念,并估算简单的二元一次方程的解。

接着,以消元思想为基础,依次讨论了解二元一次方程组的常用方法——代入法和消元法。

然后,选择了三个具有一定综合性的问题:“牛饲料问题”“种植计划问题”“成本与产出问题”,将贯穿全章的实际问题提高到一个新的高度。

最后,通过举例介绍了三元一次方程组的解法,使消元的思想得到了充分的体现。

教学目标〔知识与技能〕1、了解二元一次方程组及相关概念,能设两个未知数,并列方程组表示实际问题中的两种相关的等量关系;2、掌握二元一次方程组的代入法和消元法,能根据二元一次方程组的具体形式选择适当的解法;3、了解三元一次方程组的解法;4、学会运用二元一次方程组解决实际问题,进一步提高学生分析问题和解决问题的能力。

〔过程与方法〕1、以含有多个未知数的实际问题为背景,经历“分析数量关糸,设未知数,列方程,解方程和检验结果”,体会方程组是刻画现实世界中含有多个未知数的问题的数学模型。

2、在把二元一次方程组转化为x=a,y=b的形式的过程中,体会“消元”的思想。

〔情感、态度与价值观〕通过探究实际问题,进一步认识利用二元一次方程组解决问题的基本过程,体会数学的应用价值,提高分析问题、解决问题的能力。

重点难点二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,利用二元一次方程组解决实际问题是重点;以方程组为工具分析问题、解决含有多个未知数的问题是难点。

课时分配二元一次方程组 1课时消元——二元一次方程组的解法4课时再探实际问题与二元一次方程组3课时*三元一次方程组解法举例 2课时本章小结 2课时二元一次方程组[教学目标]理解二元一次方程、二元一次方程组及它们解的概念,会检验一对数是不是二元一次方程组的解。

人教版数学七年级下册知识重点与单元测-第八章8-2二元一次方程(组)的解法Ⅰ-代入法(能力提升)

人教版数学七年级下册知识重点与单元测-第八章8-2二元一次方程(组)的解法Ⅰ-代入法(能力提升)

第八章二元一次方程(组)8.2 二元一次方程(组)的解法Ⅰ——代入法(能力提升)【要点梳理】知识点一、消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.要点二、代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.要点诠释:(1)代入消元法的关键是先把系数较简单的方程变形为:用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;③若方程组中所有方程里的未知数的系数都不是1或-1,选系数绝对值较小的方程变形比较简便.【典型例题】类型一、用代入法解二元一次方程组例1.用代入法解方程组:237 338x yx y+=⎧⎨-=⎩①②【思路点拨】比较两个方程未知数的系数,发现①中x的系数较小,所以先把方程①中x用y表示出来,代入②,这样会使计算比较简便.【答案与解析】解:由①得732yx-=③将③代入②733382yy-⨯-=,解得13y=.将13y=代入③,得x=3所以原方程组的解为313 xy=⎧⎪⎨=⎪⎩.【总结升华】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.举一反三:【变式】m取什么数值时,方程组的解(1)是正数;(2)当m取什么整数时,方程组的解是正整数?并求它的所有正整数解.【答案】(1)m 是大于-4 的数时,原方程组的解为正数;(2)m=-3,-2,0,.例2.对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为请用同样的方法解方程组:.【思路点拨】仿照已知整体代入法求出方程组的解即可.【答案与解析】解:由①得,2x﹣y=2③,把③代入②得,1+2y=9,解得:y=4,把y=4代入③得,x=3,则方程组的解为【总结升华】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.举一反三:【变式1】解方程组2320, 2352y9.7x yx y--=⎧⎪-+⎨+=⎪⎩【答案】解:232235297x yx yy-=⎧⎪⎨-++=⎪⎩①②将①代入②:2529 7y++=,得 y=4,将y=4代入①:2x-12=2得 x=7,∴原方程组的解是74 xy=⎧⎨=⎩.(2)45:4:3x yx y-=⎧⎨=⎩①②解:由②,设x=4k,y=3k 代入①:4k-4·3k=5 4k-12k=5-8k=558k=-∴542x k==-,1538y k==-,∴原方程组的解为52158 xy⎧=-⎪⎪⎨⎪=-⎪⎩.类型二、方程组解的应用例3.如果方程组的解是方程3x+my=8的一个解,则m=()A.1 B.2 C.3 D.4【思路点拨】求出方程组的解得到x与y的值,代入已知方程即可求出m的值.【答案】B.【解析】解:,由①得y=3-x ③将③代入②得:6x=12,解得:x=2,将x=2代入②得:10﹣y=9,解得:y=1,将x=2,y=1代入3x+my=8中得:6+m=8,解得:m=2.【总结升华】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.例4.已知2564x yax by+=-⎧⎨-=-⎩①②和方程组35168x ybx ay-=⎧⎨+=-⎩③④的解相同,求2011(2)a b+的值.【思路点拨】两个方程组有相同的解,这个解是2x+5y=-6和3x-5y=16的解.由于这两个方程的系数都已知,故可联立在一起,求出x、y的值.再将x、y的值代入ax-by=-4,bx+ay=-8中建立关于a、b的方程组即可求出a、b的值.【答案与解析】解:依题意联立方程组256 3516①x yx y+=-⎧⎨-=⎩③①+③得5x=10,解得x=2.把x=2代入①得:2×2+5y=-6,解得y=-2,所以22 xy=⎧⎨=-⎩,又联立方程组48ax bybx ay-=-⎧⎨+=-⎩,则有224228a ba b+=-⎧⎨-+=-⎩,解得13 ab=⎧⎨=-⎩.所以(2a+b)2011=-1.【总结升华】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.举一反三:【变式】小明和小文解一个二元一次组小明正确解得小文因抄错了c,解得已知小文除抄错了c外没有发生其他错误,求a+b+c的值.【答案】解:把代入cx﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5,把与分别代入ax+by=2,得,解得:,则a+b+c=2+﹣5=3﹣5=﹣2.【巩固练习】一、选择题1.解方程组347910250m n m n -=⎧⎨-+=⎩①②的最好方法是( ).A .由①得743n m +=再代入②B .由②得25109n m +=再代入① C .由①得347m n =+再代入② D .由②得91025m n =-再代入①2. 若二元一次方程式组的解为x=a ,y=b ,则a+b 等于( )A .B .C .D .3.关于x ,y 的方程y kx b =+,k 比b 大1,且当12x =时,12y =-,则k ,b 的值分别是( ).A .13,23- B .2,1 C .-2,1 D .-1,0 4.已知24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩都是方程y =ax+b 的解,则( ).A .125a b ⎧=⎪⎨⎪=⎩B .123a b ⎧=-⎪⎨⎪=⎩C .121a b ⎧=⎪⎨⎪=-⎩D .121a b ⎧=-⎪⎨⎪=-⎩5.如果二元一次方程组4x y a x y a +=⎧⎨-=⎩的解是二元一次方程3x-5y-30=0的一个解,那么a 的值是( ).A .3B .2C .7D .66.一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了3.6小时,求缉毒艇在静水中的速度及水流速度.设在静水中的速度为x 海里/时,水流速度为y 海里/时,则下列方程组中正确的是( ).A .33903.6 3.690x y x y +=⎧⎨+=⎩B .3 3.6903.6390x y y x +=⎧⎨+=⎩C .3()903()90x y x y +=⎧⎨-=⎩D .33903.6 3.690x y x y +=⎧⎨-=⎩二、填空题7.已知51,62x t y t =+=-,用含y 的式子表示x ,其结果是_______.8.若方程组的解为,则点P (a ,b )在第 象限.9.方程组的解是 . 10.若532y x a b +与2244x y a b --是同类项,则x = ________,y = ________.11.已知方程组3524x y ax y -=⎧⎨-=⎩的解也是方程 47135x y x by -=⎧⎨-=⎩的解,则a = _____,b = ____ . 12.关于,x y 的二元一次方程组1353x y m x y m +=-⎧⎨-=+⎩中,m 与方程组的解中的x y 或相等,则m 的值为 .三、解答题13.用代入法解方程组:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩ (2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩14.研究下列方程组的解的个数:(1)21243x y x y -=⎧⎨-=⎩; (2)2123x y x y -=⎧⎨-=⎩; (3)21242x y x y -=⎧⎨-=⎩.你发现了什么规律?15.若方程组的解是,求(a+b)2﹣(a﹣b)(a+b).16.甲、乙两位同学一起解方程组,甲正确地解得,乙仅因抄错了题中的c,解得,求原方程组中a、b、c的值.【答案与解析】一、选择题1. 【答案】C;2.【答案】A.【解析】把x=a,y=b代入方程组得:,将b=15a 代入5a-b=5,解得:,∴a+b=. 3. 【答案】A ;【解析】将12x =时,12y =-代入y kx b =+得1122k b -=+ ①,再由k 比b 大1得1k b -= ②,①②联立解得13k =,23b =-. 4. 【答案】B ;【解析】将24x y =-⎧⎨=⎩和41x y =⎧⎨=⎩分别代入方程y =ax+b 得二元一次方程组:2441a b a b -+=⎧⎨+=⎩,解得1,32a b =-=. 5. 【答案】B ;【解析】由方程组可得,代入方程,即可求得. 6. 【答案】D.二、填空题7. 【答案】151x y =-+;8.【答案】四.【解析】将x=2,y=1代入方程组得:,解得:a=2,b=﹣3, 则P (2,﹣3)在第四象限.9.【答案】;【解析】解:解方程组, 由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y )+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.10.【答案】2, -1;【解析】由同类项的定义得方程组,解之便得答案.11.【答案】3, 1;【解析】由题意得:35471x y x y -=⎧⎨-=⎩,解得21x y =⎧⎨=⎩,代入 2435ax y x by -=⎧⎨-=⎩,得关于a 、b 的方程组22465a b -=⎧⎨-=⎩,解得31a b =⎧⎨=⎩12. 【答案】12-2或; 【解析】解:解关于x,y 的方程组得21x y m =⎧⎨=--⎩,当x m =时,2m =;当y m =时,12m =-. 三、解答题13.【解析】解:(1)0.50.2 1.2,0.30.60.2;y x y x -=⎧⎨-=-⎩①②将②代入①得,0.50.30.6 1.2y y +-=,得94y =, 将94y =代入①得,38x =-, 所以原方程组的解是3894x y ⎧=-⎪⎪⎨⎪=⎪⎩ .(2)3252,2(32)117.x y x x y x +=+⎧⎨+=+⎩①② 把3x+2y 看作整体,直接将①代入②得,2(52)117x x +=+,解得3x =-, 将3x =-代入①得,2y =-所以原方程组的解是32x y =-⎧⎨=-⎩. 14.【解析】解:(1)无解;(2)唯一一组解;(3)无数组解.规律:当两个一次方程对应项系数不成比例时,方程组有唯一一组解,如(2);当两个一次方程对应项系数成比例时,方程组有无数组解,如(3);当两个一次方程对应项系数成比例,但比值不等于两个常数项对应的比时,方程组无解,如(1).15.【答案】解:将代入得,解得:.∵(a+b)2﹣(a+b)(a﹣b)=2b(a+b),∴当a=,b=时,原式=2b(a+b)=2×=6.16.【解析】解:把代入到原方程组中,得可求得c=﹣5,乙仅因抄错了c而求得,但它仍是方程ax+by=2的解,所以把代入到ax+by=2中得2a﹣6b=2,即a﹣3b=1.把a﹣3b=1与a﹣b=2组成一个二元一次方程组,解得.故a=,b=,c=﹣5.。

人教版数学七年级下册(贵州专版)名师教案:第八章二元一次方程组

人教版数学七年级下册(贵州专版)名师教案:第八章二元一次方程组
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二元一次方程组在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
此外,小组讨论和实践活动也是本节课的重要组成部分。我观察到,在小组合作中,学生们能够相互启发,共同解决问题。他们通过讨论和实践,不仅加深了对二元一次方程组的理解,而且提升了合作交流和解决问题的能力。不过,我也发现有些小组在讨论时可能会偏离主题,这时我及时介入,引导他们回到正题上来。
在总结回顾环节,我鼓励学生提出疑问,很高兴看到他们能够勇敢地提问。这说明他们不仅在学习过程中积极思考,而且敢于面对自己的不足。对于学生提出的问题,我尽量用简洁明了的语言解答,希望能够帮助他们进一步巩固知识点。
-解决实际问题,理解方程组解的意义;
4.二元一次方程组的应用案例;
-举例说明方程组在生活中的应用;
-分析案例,培养学生解决实际问题的能力。
二、核心素养目标
1.培养学生逻辑推理与数学抽象能力:通过二元一次方程组的探究,理解数学概念,提高学生逻辑思维和抽象思考的能力;
2.培养学生数学建模与问题解决能力:学会将实际问题转化为二元一次方程组,培养学生运用数学知识解决实际问题的能力;
-对于难点二,教师应引导学生通过分析实际问题的文字描述,提取关键信息,建立方程组。例如,从速度与时间的关系中,提炼出两个未知数,分别是两个物体的速度,然后根据总路程或相遇时间等条件建立方程;
-对于难点三,教师需利用坐标系和图形辅助说明,让学生直观地看到方程组的解在坐标系中的位置,理解解的几何意义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.若 x3 y 2mn
是同类项,则
与 4x2mn y5
m ___-2_____Байду номын сангаас__ . n
3.若 x3m3 2 yn1 5
4
是二元一次方程,则m=___3__,
n=__2__。
4.若 x 1 3y 22 0
1
❖则 x y ____3___.
变式:若 x 2 和 2 y x 2互为相反数,
3.解这个一元一次方程,求得一个未知数的值 ;
4.把所求的这个未知的值代入方程组中较为简 便的一个方程,求出另一个未知数,从而得到方 程的解 .
解三元一次方程组的基本思路与解二元 一次方程组的基本思路一样,即
三元一次方程组 消元 二元一次方程组 消元 一元一次方程
四、知识应用
1.二元一次方程2m+3n=11 ( C ) A.任何一对有理数都是它的解. B.只有两组解. C.只有两组正整数解. D.有负整数解.
(1)

y

z

3
3z x 47
2a b 4 (2) 3a 4b c 2
a 5b c 8
x 17

y
13
z 10
a 1 b 2 c 3
四.应用题:
列方程组解应用题的一般步骤: 1.审 2.设 3.列 4.解 5.答
3.解一元一次方程,求出x的值;
4.再把求出的x的值 代入变形后的方程,求 出y的值.
用加减法解二元一次方程组的步骤:
1.利用等式性质把一个或两个方程的两边都 乘以适当的数,变换两个方程的某一个未知数 的系数,使其绝对值相等;
2.把变换系数后的两个方程的两边分别相加 或相减,消去一个未知数,得一元一次方程;
(1)5x y 3;
(1) y 5x 3
(2)2x 3y 1; (3) x y 1
25
(2) y 2x 1 3
(3) y 10 5x 2
7.选择适当的方法解下列方程组:
3s t 5 (1) 5s 2t 12
2x 5y 3 (2) 4x y 3
则 x y =___3___.
❖5.下列各式,属于二元一次方程的 是__(2_)_,(_4)__
(1)xy 2x y 7;(2)4x 1 x y;(3) 1 y 5; x
(4)x y;(5)6x 2y(6)x y z 1.
❖ 6.把下列方程改写成用含x的代数式 表示y的形式:
s 50

t

2、 5

s
75

t

2 5
例3.甲、乙二人以不变的速度在环形路 上跑步,如果同时同地出发,相向而行,每 隔2分钟相遇一次;如果同向而行,每隔6分 钟相遇一次.已知甲比乙跑得快,甲、乙每 分钟各跑多少圈?
二.图表问题
3. 下表是某一周甲、乙两种股票的收盘价 (股票每天交易结束时的价格)
解:设甲、乙的速度分别为x千米/小时和y千米/小
时依. 题意可得: 4x 4y 36 4y 2x 2(4x 2y)
x 4 解得 y 5
答:甲、乙的速度分别为4千米/小时和5千 米/小时.
例2.某人要在规定的时间内由甲地赶往 乙地,如果他以每小时50千米的速度行 驶,就会迟到24分钟,如果他以每小时75 千米的速度行驶,就会提前24分钟 到达 乙地,求甲、乙两地间的距离.
x 220

y

6
四.销售问题: 标价×折扣=售价 售价-进价=利润
利润率=
利润 进价

售价 进价 进价
例1.已知甲.乙两种商品的标价和 为100元,因市场变化,甲商品打9折, 乙商品提价5﹪,调价后,甲.乙两种 商品的售价和比标价和提高了2﹪, 求甲.乙两种商品的标价各是多少?
五、配套问题

x y z 30 120x : 100y : 200z 3 : 2 : 1
x y z 30 化简 得 x 5z
y 4z
x 15
解之得

y

12
z 3
答 :甲 , 乙 , 丙 3 种零件各应生产15 天 , 12 天 , 3 天 .
星期一 星期二 星期三星期四 星期五星期六

12 12.5 12.9 12.45 12.75 休盘
乙 13.5 13.3 13.9 13.4 13.15 休盘
张师傅在该周内持有若干甲、乙两种股票,若 按照两种股票每天收盘价计算(不计手续费、 税费行等),该人账户中星期二比星期一多获 利200元,星期三比星期二多获利1300元,试 问张师傅持有甲、乙股票各多少股?
三.总量不变问题
1.入世后,国内各汽车企业展开价格大 战,汽车价格大幅下降,有些型号的汽 车供不应求。某汽车生产厂接受了一份 订单,要在规定的日期内生产一批汽车, 如果每天生产35辆,则差10辆完成任务, 如果每天生产40辆,则可提前半天完成 任务,问订单要多少辆汽车,规定日期 是多少天?
35y x 10 40( y 0.5) x
2.二元一次方程的解:使二元一次方程两边 的值相等的两个未知数的值,叫做二元一次 方程的解.
3.二元一次方程组:由两个一次方程组成,共有两个 未知数的方程组,叫做二元一次方程组.
4.二元一次方程组的解:
使二元一次方程组的两个方程左、右两边的 值都相等的两个未知数的值,叫做二元一次方 程组的解. 三、方程组的解法
(选做)某车间每天能生产甲种零件120个,或者 乙种零件100个,或者丙种零件200个,甲,乙, 丙3种零件分别取3个,2个,1个,才能配一套, 要在30天内生产最多的成套产品,问甲,乙,丙3 种零件各应生产多少天?
解 : 设甲种零件生产x 天 , 乙种生产 y 天 , 丙种生产 z 天 .
根据题意
2x 5y 7 (3) 3x 2 y 5
x 2 2( y 1) (4) 2(x 2) ( y 1) 5
s 2

t

1
x 1

y

1
x 1

y

1
x 4

y

2
❖ 8.解下列三元一次方程组:
x 2 y 9
基本思想或思路——消元 常用方法————代入法和加减法
根据方程未知数的系数特征确定 用哪一种解法.
用代入法解二元一次方程组的步骤:
1.求表达式:从方程组中选一个系数比较简 单的方程,将此方程中的一个未知数,如y,用 含x的代数式表示;
2.把这个含x的代数式代入另一个方程中, 消去y,得到一个关于x的一元一次方程;
解:设张师傅持有甲种股票x股,乙种股票y 股,根据题意,得
(12.5 12)x (13.3 13.5) y 200 (12.9 12.5)x (13.9 13.3) y 1300
x 1000 解得 y 1500
答:张师傅持有甲种股票1000股,乙种股票 1500股.
一.行程问题: 1.相遇问题:甲的路程+乙的路程=总的路程
(环形跑道):甲的路程+乙的路程=一圈长 2.追及问题:快者的路程-慢者的路程
=原来相距路程 (环形跑道): 快者的路程-慢者的路程=一圈长 3.顺逆问题:顺速=静速+水(风)速
逆速=静速-水(风)速
例1. A、B两地相距36千米.甲从A地出发步 行到B地,乙从B地出发步行到A地.两人同时 出发,4小时相遇,6小时后 ,甲所余路程为乙 所余路程的2倍,求两人的速度.
第八章 二元一次方程组
实际问题
设未知数,列方程组
数学问题
(二元或三元 一次方程组)
解 代入法
方 程
加减法
组 (消元)
实际问题
检验
的答案
数学问题的解
(二元或三元一次 方程组的解)
二、有关概念
1.二元一次方程:通过化简后,只有两个未 知数,并且两个未知数的次数都是1,系数 都不是0的整式方程,叫做二元一次方程.
相关文档
最新文档