山东省威海市2017届高考数学模拟试卷(理科)(4月份)Word版含解析

合集下载

山东省潍坊市2017届高三4月模拟考试数学(理)试题(图片版,无答案)

山东省潍坊市2017届高三4月模拟考试数学(理)试题(图片版,无答案)

2017年高考模拟考试理科数学2017.4本试卷共4页,分第I卷(选择题)和第I I卷(非选择题)两部分.共150分.考试时间120分钟.第I卷(选择题共50分)注意事项:I ■答卷前,考生务必用0. 5毫米黑色签字笔将自己的学校、姓名、准考证号填写在规定的位置上。

2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦T净后,冉选涂艽他谷案标号。

―、选择题:本大题共10小题■每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z, ,za在复平面内对应的点关于实轴对称,若」A.4tB. -4iC.2D. -22.巳知命题足假命题,/>V9是食命题,则下列命题一定是真命题的是A.pB. (,/,) A (->9)C- ? D. ( -i/j) V ( ->9)3.若集合M= |*1^2-*<0(,^=|717 = 0'(0>0,«^1)1^表示实数集,则下列选项错误的是A.M门/V = iWB.M U N = RC. MnC …/V = 0D^r M u N = R4-函数/(*〉=log|c(m(-矛的图象大致是D5. L!•知二次函数/(x) =ax2 -2x+c的值域为[0, + o o ),则一+—的最小值为B.6C.9126.《算学启蒙》是中国元代数学家朱世杰撰写的一部数学启蒙读物,包括面积、体积、比例、开方、髙次力•程等问题.《算学启蒙》中 有关于“松竹并生”的问题:松长五尺,竹长网尺,松口自半,竹日 自倍,松竹何日而长等•如图是源于其思想的一个程序框图,若 输人的a ,6分别为8,2,则输出的n 等于A.4B.5C.67.已知圆 C, :(*+6)2 + (;r -5)2=4,_C 2:U -2)2 + (广1)2 =丨,对,;V 分别为圆 6’,和(:2上的动点f为-轴i 的动点,则iP/v/i + ip/vi 的最小值为A.7B.8C.108. —个儿何体的三视图如图所示,其中俯视图是半径为r 的圆,若该几何体的体积是9W ,则它的表面积是A.27t tB. 3677C.45t tD. 54t t9.某化肥厂用三种原料生产甲、乙两种肥料,生产1吨甲种肥料和生产1吨乙种肥料所需三种原料的吨数如右表所示:已知生产1吨甲种肥料产生的利润为2万元,生 产1吨乙种肥料产生的利润为3万元.现有4种 原料20吨,B 种原料36吨,C 种原料32吨,在此产,则生产甲、乙两种肥料的利润之和的最大值为 一^^ w c r —A. 17万元B.18万元G.19万元D.20万兀2f( x )10.已知函数/(X ) =e ’,若/u ) =/M =/(々)(々 <〜<々),则|的取值»€范围是A. ( -1 ,0)B.( -2,-1)C.(-o c ’O)D .(l ,+oc)D. 13-2r-[WW]第II卷(非选择题共100分)注意事项:将第n 卷答案用0. 5m m 的黑色签宁•笔答在答题卡的相应位置上.二、填空题:本大题共5小题,每小题5分,共25分.11.已知△仙C 中,狀=^2,AC =A,/_BAC =45。

【高考真题】2017年山东省高考数学试卷(理科) 含答案解析

【高考真题】2017年山东省高考数学试卷(理科) 含答案解析

2017年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.1.(5分)设函数y=的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(﹣2,1)D.[﹣2,1)2.(5分)已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.3.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q4.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.65.(5分)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+,已知x i=22.5,y i=160,=4,该班某学生的脚长为24,据此估计其身高为()A.160 B.163 C.166 D.1706.(5分)执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为()A.0,0 B.1,1 C.0,1 D.1,07.(5分)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<8.(5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.9.(5分)在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A.a=2b B.b=2a C.A=2B D.B=2A10.(5分)已知当x∈[0,1]时,函数y=(mx﹣1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞)C.(0,)∪[2,+∞)D.(0,]∪[3,+∞)二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知(1+3x)n的展开式中含有x2的系数是54,则n=.12.(5分)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为.14.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为.15.(5分)若函数e x f(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.三、解答题(共6小题,满分75分)16.(12分)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.17.(12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.19.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成(x n+1的区域的面积T n.20.(13分)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e ≈2.71828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.21.(14分)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程.(Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT 的最大值,并求取得最大值时直线l的斜率.2017年山东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符号题目要求的.1.(5分)设函数y=的定义域为A,函数y=ln(1﹣x)的定义域为B,则A∩B=()A.(1,2) B.(1,2]C.(﹣2,1)D.[﹣2,1)【分析】根据幂函数及对数函数定义域的求法,即可求得A和B,即可求得A∩B.【解答】解:由4﹣x2≥0,解得:﹣2≤x≤2,则函数y=的定义域[﹣2,2],由对数函数的定义域可知:1﹣x>0,解得:x<1,则函数y=ln(1﹣x)的定义域(﹣∞,1),则A∩B=[﹣2,1),故选:D.【点评】本题考查函数定义的求法,交集及其运算,考查计算能力,属于基础题.2.(5分)已知a∈R,i是虚数单位,若z=a+i,z•=4,则a=()A.1或﹣1 B.或﹣C.﹣D.【分析】求得z的共轭复数,根据复数的运算,即可求得a的值.【解答】解:由z=a+i,则z的共轭复数=a﹣i,由z•=(a+i)(a﹣i)=a2+3=4,则a2=1,解得:a=±1,∴a的值为1或﹣1,故选:A.【点评】本题考查共轭复数的求法,复数的乘法运算,考查计算能力,属于基础题.3.(5分)已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】由对数函数的性质可知命题p为真命题,则¬p为假命题,命题q是假命题,则¬q是真命题.因此p∧¬q为真命题.【解答】解:命题p:∀x>0,ln(x+1)>0,则命题p为真命题,则¬p为假命题;取a=﹣1,b=﹣2,a>b,但a2<b2,则命题q是假命题,则¬q是真命题.∴p∧q是假命题,p∧¬q是真命题,¬p∧q是假命题,¬p∧¬q是假命题.故选:B.【点评】本题考查命题真假性的判断,复合命题的真假性,属于基础题.4.(5分)已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.6【分析】画出约束条件表示的平面区域,根据图形找出最优解是由解得的点A的坐标,代入目标函数求出最大值.【解答】解:画出约束条件表示的平面区域,如图所示;由解得A(﹣3,4),此时直线y=﹣x+z在y轴上的截距最大,所以目标函数z=x+2y的最大值为z max=﹣3+2×4=5.故选:C.【点评】本题考查了线性规划的应用问题,是中档题.5.(5分)为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为=x+,已知x i=22.5,y i=160,=4,该班某学生的脚长为24,据此估计其身高为()A.160 B.163 C.166 D.170【分析】由数据求得样本中心点,由回归直线方程必过样本中心点,代入即可求得,将x=24代入回归直线方程即可估计其身高.【解答】解:由线性回归方程为=4x+,则=x i=22.5,=y i=160,则数据的样本中心点(22.5,160),由回归直线方程样本中心点,则=﹣4x=160﹣4×22.5=70,∴回归直线方程为=4x+70,当x=24时,=4×24+70=166,则估计其身高为166,故选:C.【点评】本题考查回归直线方程的求法及回归直线方程的应用,考查计算能力,属于基础题.6.(5分)执行两次如图所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次,第二次输出的a值分别为()A.0,0 B.1,1 C.0,1 D.1,0【分析】根据已知中的程序框图,模拟程序的执行过程,可得答案.【解答】解:当输入的x值为7时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,满足b2>x,故输出a=1;当输入的x值为9时,第一次,不满足b2>x,也不满足x能被b整数,故b=3;第二次,不满足b2>x,满足x能被b整数,故输出a=0;故选:D.【点评】本题考查的知识点是程序框图,难度不大,属于基础题.7.(5分)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<【分析】a>b>0,且ab=1,可取a=2,b=.代入计算即可得出大小关系.【解答】解:∵a>b>0,且ab=1,∴可取a=2,b=.则=4,==,log2(a+b)==∈(1,2),∴<log2(a+b)<a+.故选:B.【点评】本题考查了函数的单调性、不等式的解法与性质,考查了推理能力与计算能力,属于中档题.8.(5分)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()A.B.C.D.【分析】计算出所有情况总数,及满足条件的情况数,代入古典概型概率计算公式,可得答案.【解答】解:从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,共有=36种不同情况,且这些情况是等可能发生的,抽到在2张卡片上的数奇偶性不同的情况有=20种,故抽到在2张卡片上的数奇偶性不同的概率P==,故选:C.【点评】本题考查的知识点是古典概型及其概率计算公式,难度不大,属于基础题.9.(5分)在ABC中,角A,B,C的对边分别为a,b,c,若△ABC为锐角三角形,且满足sinB(1+2cosC)=2sinAcosC+cosAsinC,则下列等式成立的是()A.a=2b B.b=2a C.A=2B D.B=2A【分析】利用两角和与差的三角函数化简等式右侧,然后化简通过正弦定理推出结果即可.【解答】解:在ABC中,角A,B,C的对边分别为a,b,c,满足sinB(1+2cosC)=2sinAcosC+cosAsinC=sinAcosC+sin(A+C)=sinAcosC+sinB,可得:2sinBcosC=sinAcosC,因为△ABC为锐角三角形,所以2sinB=sinA,由正弦定理可得:2b=a.故选:A.【点评】本题考查两角和与差的三角函数,正弦定理的应用,考查计算能力.10.(5分)已知当x∈[0,1]时,函数y=(mx﹣1)2的图象与y=+m的图象有且只有一个交点,则正实数m的取值范围是()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞)C.(0,)∪[2,+∞)D.(0,]∪[3,+∞)【分析】根据题意,由二次函数的性质分析可得:y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,②、当m>1时,有<1,结合图象分析两个函数的单调性与值域,可得m的取值范围,综合可得答案.【解答】解:根据题意,由于m为正数,y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,函数y=+m为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,在区间[0,1]上,y=(mx﹣1)2为减函数,且其值域为[(m﹣1)2,1],函数y=+m为增函数,其值域为[m,1+m],此时两个函数的图象有1个交点,符合题意;②、当m>1时,有<1,y=(mx﹣1)2在区间(0,)为减函数,(,1)为增函数,函数y=+m为增函数,其值域为[m,1+m],若两个函数的图象有1个交点,则有(m﹣1)2≥1+m,解可得m≤0或m≥3,又由m为正数,则m≥3;综合可得:m的取值范围是(0,1]∪[3,+∞);故选:B.【点评】本题考查函数图象的交点问题,涉及函数单调性的应用,关键是确定实数m的分类讨论.二、填空题:本大题共5小题,每小题5分,共25分11.(5分)已知(1+3x)n的展开式中含有x2的系数是54,则n=4.【分析】利用通项公式即可得出.=(3x)r=3r x r.【解答】解:(1+3x)n的展开式中通项公式:T r+1∵含有x2的系数是54,∴r=2.∴=54,可得=6,∴=6,n∈N*.解得n=4.故答案为:4.【点评】本题考查了二项式定理的通项公式,考查了推理能力与计算能力,属于基础题.12.(5分)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【解答】解:【方法一】由题意,设=(1,0),=(0,1),则﹣=(,﹣1),+λ=(1,λ);又夹角为60°,∴(﹣)•(+λ)=﹣λ=2××cos60°,即﹣λ=,解得λ=.【方法二】,是互相垂直的单位向量,∴||=||=1,且•=0;又﹣与+λ的夹角为60°,∴(﹣)•(+λ)=|﹣|×|+λ|×cos60°,即+(﹣1)•﹣λ=××,化简得﹣λ=××,即﹣λ=,解得λ=.故答案为:.【点评】本题考查了单位向量和平面向量数量积的运算问题,是中档题.13.(5分)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为2+.【分析】由三视图可知:长方体长为2,宽为1,高为1,圆柱的底面半径为1,高为1圆柱的,根据长方体及圆柱的体积公式,即可求得几何体的体积.【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2=×π×12×1=,则该几何体的体积V=V1+2V1=2+,故答案为:2+.【点评】本题考查利用三视图求几何体的体积,考查长方体及圆柱的体积公式,考查计算能力,属于基础题.14.(5分)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为y=±x.【分析】把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,利用根与系数的关系、抛物线的定义及其性质即可得出.【解答】解:把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,∴y A+y B=,∵|AF|+|BF|=4|OF|,∴y A+y B+2×=4×,∴=p,∴=.∴该双曲线的渐近线方程为:y=±x.故答案为:y=±x.【点评】本题考查了抛物线与双曲线的标准方程定义及其性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.15.(5分)若函数e x f(x)(e≈2.71828…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中所有具有M性质的函数的序号为①④.①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.【分析】把①②代入e x f(x),变形为指数函数判断;把③④代入e x f(x),求导数判断.【解答】解:对于①,f(x)=2﹣x,则g(x)=e x f(x)=为实数集上的增函数;对于②,f(x)=3﹣x,则g(x)=e x f(x)=为实数集上的减函数;对于③,f(x)=x3,则g(x)=e x f(x)=e x•x3,g′(x)=e x•x3+3e x•x2=e x(x3+3x2)=e x•x2(x+3),当x<﹣3时,g′(x)<0,∴g(x)=e x f(x)在定义域R上先减后增;对于④,f(x)=x2+2,则g(x)=e x f(x)=e x(x2+2),g′(x)=e x(x2+2)+2xe x=e x(x2+2x+2)>0在实数集R上恒成立,∴g(x)=e x f(x)在定义域R上是增函数.∴具有M性质的函数的序号为①④.故答案为:①④.【点评】本题考查函数单调性的性质,训练了利用导数研究函数的单调性,是中档题.三、解答题(共6小题,满分75分)16.(12分)设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.【分析】(Ⅰ)利用三角恒等变换化函数f(x)为正弦型函数,根据f()=0求出ω的值;(Ⅱ)写出f(x)解析式,利用平移法则写出g(x)的解析式,求出x∈[﹣,]时g(x)的最小值.【解答】解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωxcos﹣cosωxsin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y=sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.【点评】本题考查了三角恒等变换与正弦型函数在闭区间上的最值问题,是中档题.17.(12分)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.【分析】(Ⅰ)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°;(Ⅱ)法一、取的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E﹣AG﹣C的大小.法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E﹣AG﹣C的大小.【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BECH为菱形,∴AE=GE=AC=GC=.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM=.在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z2=﹣2,得.∴cos<>=.∴二面角E﹣AG﹣C的大小为60°.【点评】本题考查空间角的求法,考查空间想象能力和思维能力,训练了线面角的求法及利用空间向量求二面角的大小,是中档题.18.(12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(Ⅰ)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(Ⅱ)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.【分析】(1)利用组合数公式计算概率;(2)使用超几何分布的概率公式计算概率,得出分布列,再计算数学期望.【解答】解:(I)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M)==.(II)X的可能取值为:0,1,2,3,4,∴P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==.∴X的分布列为X01234PX的数学期望EX=0×+1×+2×+3×+4×=2.【点评】本题考查了组合数公式与概率计算,超几何分布的分布列与数学期望,属于中档题.19.(12分)已知{x n}是各项均为正数的等比数列,且x1+x2=3,x3﹣x2=2.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P2(x2,2)…P n+1(x n,n+1)得到折线P1P2…P n+1,求由该折线与直线y=0,x=x1,x=x n+1所围成+1的区域的面积T n.【分析】(I)列方程组求出首项和公比即可得出通项公式;(II)从各点向x轴作垂线,求出梯形的面积的通项公式,利用错位相减法求和即可.【解答】解:(I)设数列{x n}的公比为q,则q>0,由题意得,两式相比得:,解得q=2或q=﹣(舍),∴x1=1,∴x n=2n﹣1.(II)过P1,P2,P3,…,P n向x轴作垂线,垂足为Q1,Q2,Q3,…,Q n,记梯形P n P n+1Q n+1Q n的面积为b n,则b n==(2n+1)×2n﹣2,∴T n=3×2﹣1+5×20+7×21+…+(2n+1)×2n﹣2,①∴2T n=3×20+5×21+7×22+…+(2n+1)×2n﹣1,②①﹣②得:﹣T n=+(2+22+…+2n﹣1)﹣(2n+1)×2n﹣1=+﹣(2n+1)×2n﹣1=﹣+(1﹣2n)×2n﹣1.∴T n=.【点评】本题考查了等比数列的性质,错位相减法求和,属于中档题.20.(13分)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e ≈2.71828…是自然对数的底数.(Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程;(Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.【分析】(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,可得f′(π)=2π即为切线的斜率,利用点斜式即可得出切线方程.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx),可得h′(x)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,可得函数u(x)在R上单调递增.由u(0)=0,可得x>0时,u(x)>0;x<0时,u(x)<0.对a分类讨论:a≤0时,0<a<1时,当a=1时,a>1时,利用导数研究函数的单调性极值即可得出.【解答】解:(I)f(π)=π2﹣2.f′(x)=2x﹣2sinx,∴f′(π)=2π.∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣(π2﹣2)=2π(x﹣π).化为:2πx﹣y﹣π2﹣2=0.(II)h(x)=g (x)﹣a f(x)=e x(cosx﹣sinx+2x﹣2)﹣a(x2+2cosx)h′(x)=e x(cosx﹣sinx+2x﹣2)+e x(﹣sinx﹣cosx+2)﹣a(2x﹣2sinx)=2(x﹣sinx)(e x﹣a)=2(x﹣sinx)(e x﹣e lna).令u(x)=x﹣sinx,则u′(x)=1﹣cosx≥0,∴函数u(x)在R上单调递增.∵u(0)=0,∴x>0时,u(x)>0;x<0时,u(x)<0.(1)a≤0时,e x﹣a>0,∴x>0时,h′(x)>0,函数h(x)在(0,+∞)单调递增;x<0时,h′(x)<0,函数h(x)在(﹣∞,0)单调递减.∴x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.(2)a>0时,令h′(x)=2(x﹣sinx)(e x﹣e lna)=0.解得x1=lna,x2=0.①0<a<1时,x∈(﹣∞,lna)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(lna,0)时,e x﹣e lna>0,h′(x)<0,函数h(x)单调递减;x∈(0,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极小值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].②当a=1时,lna=0,x∈R时,h′(x)≥0,∴函数h(x)在R上单调递增.③1<a时,lna>0,x∈(﹣∞,0)时,e x﹣e lna<0,h′(x)>0,函数h(x)单调递增;x∈(0,lna)时,e x﹣e lna<0,h′(x)<0,函数h(x)单调递减;x∈(lna,+∞)时,e x﹣e lna>0,h′(x)>0,函数h(x)单调递增.∴当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos (lna)+2].综上所述:a≤0时,函数h(x)在(0,+∞)单调递增;x<0时,函数h(x)在(﹣∞,0)单调递减.x=0时,函数h(x)取得极小值,h(0)=﹣1﹣2a.0<a<1时,函数h(x)在x∈(﹣∞,lna),(0,+∞)是单调递增;函数h(x)在x∈(lna,0)上单调递减.当x=0时,函数h(x)取得极小值,h(0)=﹣2a ﹣1.当x=lna时,函数h(x)取得极大值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].当a=1时,lna=0,函数h(x)在R上单调递增.a>1时,函数h(x)在(﹣∞,0),(lna,+∞)上单调递增;函数h(x)在(0,lna)上单调递减.当x=0时,函数h(x)取得极大值,h(0)=﹣2a﹣1.当x=lna 时,函数h(x)取得极小值,h(lna)=﹣a[ln2a﹣2lna+sin(lna)+cos(lna)+2].【点评】本题考查了利用导数研究函数的单调性极值、方程的解法、不等式的解法、三角函数求值、分类讨论方法,考查了推理能力与计算能力,属于难题.21.(14分)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(Ⅰ)求椭圆E的方程.(Ⅱ)如图,动直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT 的最大值,并求取得最大值时直线l的斜率.【分析】(Ⅰ)由题意得关于a,b,c的方程组,求解方程组得a,b的值,则椭圆方程可求;(Ⅱ)设A(x1,y1),B(x2,y2),联立直线方程与椭圆方程,利用根与系数的关系求得A,B的横坐标的和与积,由弦长公式求得|AB|,由题意可知圆M的半径r,则r=.由题意设知.得到直线OC 的方程,与椭圆方程联立,求得C点坐标,可得|OC|,由题意可知,sin=.转化为关于k1的函数,换元后利用配方法求得∠SOT的最大值为,取得最大值时直线l的斜率为.【解答】解:(Ⅰ)由题意知,,解得a=,b=1.∴椭圆E的方程为;(Ⅱ)设A(x1,y1),B(x2,y2),联立,得.由题意得△=>0.,.∴|AB|=.由题意可知圆M的半径r为r=.由题意设知,,∴.因此直线OC的方程为.联立,得.因此,|OC|=.由题意可知,sin=.而=.令t=,则t>1,∈(0,1),因此,=≥1.当且仅当,即t=2时等式成立,此时.∴,因此.∴∠SOT的最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率为.【点评】本题考查直线与圆、圆与椭圆位置关系的应用,训练了利用配方法求函数的最值,考查计算能力,是压轴题.。

2017山东高考真题数学理(含解析)

2017山东高考真题数学理(含解析)

2017年普通高等学校招生全国统一考试(山东卷)(理科数学)第一部分(选择题共50分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.已知集合,则AB=()A.B.C.D.2.若复数满足,其中i为虚数为单位,则().A.B.C.D.3.要得到函数的图像,只需要将函数的图像().A.向左平移个单位B.向右平移个单位C.向左平移个单位D向右平移个单位4.已知菱形的边长为,,则().A.B.C.D.5.不等式的解集是()A.B.C.D.6.已知x,y满足约束条件,若的最大值为,则().A.B.C.D.7.在梯形中,,.将梯形绕所在的直线旋转一周而形成的曲面所围成的几何体的体积为()A.B.C.D.8.已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间内的概率为()(附:若随机变量ξ服从正态分布N,则,A.B.C.D.9.一条光纤从点射出,经y轴反射后与圆相切,则反射光线所在直线的斜率为()A.或B..或C.或D.或10.设函数则满足的a取值范围是()A. B.C D.第二部分(非选择题共100分)二、填空题(本大题共6小题,每小题5分,共30分)11.(观察下列各式:;;;;……照此规律,当时,_________.12.若“”是真命题,则实数m的最小值为 .13.执行右边的程序框图,输出的的值为_________14.已知函数的定义域和值域都是,则_________15.平面直角坐标系中,双曲线:(,b>0)的渐近线与抛物线,交于,若的垂心为C2的焦点,则的离心率为__________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程.16.(本小题满分12分)设(Ⅰ)求的单调区间;(Ⅱ)在锐角中,角的对边分别为若求面积的最大值.17.(本题满分12分)如图,在三棱台中,分别为的中点.(Ⅰ)求证:;(Ⅱ)若,求平面与平面所成的角(锐角)的大小.18.(本小题满分12分)设数列的前n项和为.已知(I)求的通项公式;(II)若数列满足,求的前项和.19.(本小题满分12分)若是一个三位正整数,且的个位数字大于十位数字,十位数字大于百位数字,则称为“三位递增数”(如等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被整除,参加者得分;若能被整除,但不能被整除,得分;若能被整除,得分.(I)写出所有个位数字是的“三位递增数”;(II)若甲参加活动,求甲得分的分布列和数学期望.20.(本小题满分13分)平面直角坐标系中,已知椭圆C:的离心率为,左、右焦点分别是F1、F2.以为圆心以为半径的圆与以为圆心为半径的圆相交,且交点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)设椭圆为椭圆上任意一点,过点P的直线交椭圆E于两点,射线交椭圆于点.(i)求的值(ii)求面积的最大值.21.(本小题满分4分)设函数,其中。

2017年高考数学模拟试题(全国新课标卷)含解析(2021年整理)

2017年高考数学模拟试题(全国新课标卷)含解析(2021年整理)

2017年高考数学模拟试题(全国新课标卷)含解析(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017年高考数学模拟试题(全国新课标卷)含解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017年高考数学模拟试题(全国新课标卷)含解析(word版可编辑修改)的全部内容。

2017年高考模拟数学试题(全国新课标卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

共150分.考试时间120分钟.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,复数ii++13= A .i +2 B .i -2 C .2-i D .2--i 2.等边三角形ABC 的边长为1,如果,,,BC a CA b AB c ===那么a b b c c a ⋅-⋅+⋅等于A .32B .32-C .12D .12-3.已知集合}4|4||{2<-∈=x x Z x A ,}8121|{≥⎪⎭⎫⎝⎛∈=+yN y B ,记A card 为集合A 的元素个数,则下列说法不正确...的是 A .5card =A B .3card =B C .2)card(=B A D .5)card(=B A 4.一个体积为12错误!的正三棱柱的三视图如图所示, 则该三棱柱的侧视图的面积为A .6,3B .8C .8错误!D .125.过抛物线24y x =的焦点作直线交抛物线于点()()1122,,,P x y Q x y 两点,若126x x +=,则PQ 中点M 到抛物线准线的距离为A .5B .4C .3D .2 6.下列说法正确的是A .互斥事件一定是对立事件,对立事件不一定是互斥事件B .互斥事件不一定是对立事件,对立事件一定是互斥事件C .事件A 、B 中至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大D .事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小7.如图是秦九韶算法的一个程序框图,则输出的S 为A .1030020(())a x a x a a x +++的值B .3020100(())a x a x a a x +++的值C .0010230(())a x a x a a x +++的值D .2000310(())a x a x a a x +++的值8.若(9x -错误!)n(n ∈N *)的展开式的第3项的二项式系数为36,则其展开式中的常数项为 A .252 B .-252 C .84 D .-84 9.若S 1=错误!错误!d x ,S 2=错误!(ln x +1)d x ,S 3=错误!x d x ,则S 1,S 2,S 3的大小关系为 A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 1<S 3<S 2 D .S 3<S 1<S 210.在平面直角坐标系中,双曲线221124x y -=的右焦点为F ,一条过原点O 且倾斜角为锐角的直线l 与双曲线C 交于A ,B 两点。

2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4 4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.85.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.357.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.168.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+29.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C210.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.1011.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= .14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 .15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.[选修4-4,坐标系与参数方程]22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).(1)若a=﹣1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.[选修4-5:不等式选讲]23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.2017年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0}B.A∪B=R C.A∪B={x|x>1}D.A∩B=∅【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】先分别求出集合A和B,再求出A∩B和A∪B,由此能求出结果.【解答】解:∵集合A={x|x<1},B={x|3x<1}={x|x<0},∴A∩B={x|x<0},故A正确,D错误;A∪B={x|x<1},故B和C都错误.故选:A.【点评】本题考查交集和并集求法及应用,是基础题,解题时要认真审题,注意交集、并集定义的合理运用.2.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.【考点】CF:几何概型.【专题】35:转化思想;4O:定义法;5I:概率与统计.【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2,则黑色部分的面积S=,则对应概率P==,故选:B.【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键.3.(5分)设有下面四个命题p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p 3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.其中的真命题为( )A.p1,p3B.p1,p4C.p2,p3D.p2,p4【考点】2K:命题的真假判断与应用;A1:虚数单位i、复数;A5:复数的运算.【专题】2A:探究型;5L:简易逻辑;5N:数系的扩充和复数.【分析】根据复数的分类,有复数性质,逐一分析给定四个命题的真假,可得答案.【解答】解:若复数z满足∈R,则z∈R,故命题p1为真命题;p2:复数z=i满足z2=﹣1∈R,则z∉R,故命题p2为假命题;p 3:若复数z1=i,z2=2i满足z1z2∈R,但z1≠,故命题p3为假命题;p4:若复数z∈R,则=z∈R,故命题p4为真命题.故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复数的运算,复数的分类,复数的运算性质,难度不大,属于基础题.4.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.8【考点】84:等差数列的通项公式;85:等差数列的前n项和.【专题】11:计算题;34:方程思想;4O:定义法;54:等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.5.(5分)函数f(x)在(﹣∞,+∞)单调递减,且为奇函数.若f(1)=﹣1,则满足﹣1≤f(x﹣2)≤1的x的取值范围是( )A.[﹣2,2]B.[﹣1,1]C.[0,4]D.[1,3]【考点】3P:抽象函数及其应用.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】由已知中函数的单调性及奇偶性,可将不等式﹣1≤f(x﹣2)≤1化为﹣1≤x﹣2≤1,解得答案.【解答】解:∵函数f(x)为奇函数.若f(1)=﹣1,则f(﹣1)=1,又∵函数f(x)在(﹣∞,+∞)单调递减,﹣1≤f(x﹣2)≤1,∴f(1)≤f(x﹣2)≤f(﹣1),∴﹣1≤x﹣2≤1,解得:x∈[1,3],故选:D.【点评】本题考查的知识点是抽象函数及其应用,函数的单调性,函数的奇偶性,难度中档.6.(5分)(1+)(1+x)6展开式中x2的系数为( )A.15B.20C.30D.35【考点】DA:二项式定理.【专题】35:转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.7.(5分)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A.10B.12C.14D.16【考点】L!:由三视图求面积、体积.【专题】11:计算题;31:数形结合;44:数形结合法;5Q:立体几何.【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.【点评】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题. 8.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2【考点】EF:程序框图.【专题】11:计算题;38:对应思想;49:综合法;5K:算法和程序框图.【分析】通过要求A>1000时输出且框图中在“否”时输出确定“”内不能输入“A>1000”,进而通过偶数的特征确定n=n+2.【解答】解:因为要求A>1000时输出,且框图中在“否”时输出,所以“”内不能输入“A>1000”,又要求n为偶数,且n的初始值为0,所以“”中n依次加2可保证其为偶数,所以D选项满足要求,故选:D.【点评】本题考查程序框图,属于基础题,意在让大部分考生得分.9.(5分)已知曲线C1:y=cosx,C2:y=sin(2x+),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题;35:转化思想;57:三角函数的图像与性质.【分析】利用三角函数的伸缩变换以及平移变换转化求解即可.【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x+)=cos(2x+)=sin(2x+)的图象,即曲线C2,故选:D.【点评】本题考查三角函数的图象变换,诱导公式的应用,考查计算能力.10.(5分)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为( )A.16B.14C.12D.10【考点】K8:抛物线的性质.【专题】11:计算题;34:方程思想;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】方法一:根据题意可判断当A与D,B,E关于x轴对称,即直线DE的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,利用焦点弦的弦长公式分别表示出|AB|,|DE|,整理求得答案【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|=•|y1﹣y2|=×=8,∴|AB|+|DE|的最小值为2|DE|=16,方法二:设直线l1的倾斜角为θ,则l2的倾斜角为+θ,根据焦点弦长公式可得|AB|==|DE|===∴|AB|+|DE|=+==,∵0<sin22θ≤1,∴当θ=45°时,|AB|+|DE|的最小,最小为16,故选:A.【点评】本题考查了抛物线的简单性质以及直线和抛物线的位置关系,弦长公式,对于过焦点的弦,能熟练掌握相关的结论,解决问题事半功倍属于中档题. 11.(5分)设x、y、z为正数,且2x=3y=5z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z【考点】72:不等式比较大小.【专题】35:转化思想;51:函数的性质及应用;59:不等式的解法及应用.【分析】x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.可得3y=,2x=,5z=.根据==,>=.即可得出大小关系.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.可得x=,y=,z=.==>1,可得2x>3y,同理可得5z>2x.【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.【点评】本题考查了对数函数的单调性、换底公式、不等式的性质,考查了推理能力与计算能力,属于中档题.12.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( )A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35:转化思想;4R:转化法;54:等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n+1﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n+1﹣1=2n+1﹣n﹣2,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n+1﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1,…,2n﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N>100,∴该款软件的激活码440.故选:A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分.13.(5分)已知向量,的夹角为60°,||=2,||=1,则|+2|= 2 .【考点】9O:平面向量数量积的性质及其运算.【专题】31:数形结合;4O:定义法;5A:平面向量及应用.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.【点评】本题考查了平面向量的数量积的应用问题,解题时应利用数量积求出模长,是基础题.14.(5分)设x,y满足约束条件,则z=3x﹣2y的最小值为 ﹣5 .【考点】7C:简单线性规划.【专题】11:计算题;31:数形结合;35:转化思想;5T:不等式.【分析】由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.(5分)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为 .【考点】KC:双曲线的性质.【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°=,可得:=,即,可得离心率为:e=.故答案为:.【点评】本题考查双曲线的简单性质的应用,点到直线的距离公式以及圆的方程的应用,考查转化思想以及计算能力.16.(5分)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC ,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 4cm3 .【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】法一:由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h=,求出S△ABC=3,V==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.法二:设正三角形的边长为x,则OG=,FG=SG=5﹣,SO=h===,由此能示出三棱锥的体积的最大值.【解答】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG=,∴FG=SG=5﹣,SO=h===,∴三棱锥的体积V===,令b(x)=5x4﹣,则,令b'(x)=0,则4x3﹣=0,解得x=4,∴(cm3).故答案为:4cm3.【点评】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.【考点】HP:正弦定理;HR:余弦定理.【专题】11:计算题;33:函数思想;4R:转化法;56:三角函数的求值;58:解三角形.【分析】(1)根据三角形面积公式和正弦定理可得答案,(2)根据两角余弦公式可得cosA=,即可求出A=,再根据正弦定理可得bc=8,根据余弦定理即可求出b+c,问题得以解决.【解答】解:(1)由三角形的面积公式可得S△ABC=acsinB=,∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.【点评】本题考查了三角形的面积公式和两角和的余弦公式和诱导公式和正弦定理余弦定理,考查了学生的运算能力,属于中档题.18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】15:综合题;31:数形结合;41:向量法;5G:空间角.【分析】(1)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB ⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【点评】本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用空间向量求二面角的平面角,是中档题.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;35:转化思想;4A:数学模型法;5I:概率与统计.【分析】(1)通过P(X=0)可求出P(X≥1)=1﹣P(X=0)=0.0408,利用二项分布的期望公式计算可得结论;(2)(ⅰ)由(1)及知落在(μ﹣3σ,μ+3σ)之外为小概率事件可知该监控生产过程方法合理;(ⅱ)通过样本平均数、样本标准差s估计、可知(﹣3+3)=(9.334,10.606),进而需剔除(﹣3+3)之外的数据9.22,利用公式计算即得结论.【解答】解:(1)由题可知尺寸落在(μ﹣3σ,μ+3σ)之内的概率为0.9974,则落在(μ﹣3σ,μ+3σ)之外的概率为1﹣0.9974=0.0026,因为P(X=0)=×(1﹣0.9974)0×0.997416≈0.9592,所以P(X≥1)=1﹣P(X=0)=0.0408,又因为X~B(16,0.0026),所以E(X)=16×0.0026=0.0416;(2)(ⅰ)如果生产状态正常,一个零件尺寸在(﹣3+3)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(﹣3+3)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种状况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.(ⅱ)由=9.97,s≈0.212,得μ的估计值为=9.97,σ的估计值为=0.212,由样本数据可以看出一个零件的尺寸在(﹣3+3)之外,因此需对当天的生产过程进行检查.剔除(﹣3+3)之外的数据9.22,剩下的数据的平均数为(16×9.97﹣9.22)=10.02,因此μ的估计值为10.02.2=16×0.2122+16×9.972≈1591.134,剔除(﹣3+3)之外的数据9.22,剩下的数据的样本方差为(1591.134﹣9.222﹣15×10.022)≈0.008,因此σ的估计值为≈0.09.【点评】本题考查正态分布,考查二项分布,考查方差、标准差,考查概率的计算,考查运算求解能力,注意解题方法的积累,属于中档题.20.(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.【考点】K3:椭圆的标准方程;KI:圆锥曲线的综合.【专题】14:证明题;35:转化思想;49:综合法;5E:圆锥曲线中的最值与范围问题.【分析】(1)根据椭圆的对称性,得到P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+t,(t≠1),联立,得(1+4k2)x2+8ktx+4t2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).【解答】解:(1)根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.证明:(2)①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴===﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+t,(t≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8ktx+4t2﹣4=0,,x1x2=,则=====﹣1,又t≠1,∴t=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【点评】本题考查椭圆方程的求法,考查椭圆、直线方程、根的判别式、韦达定理、直线方程位置关系等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.21.(12分)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】32:分类讨论;35:转化思想;4R:转化法;53:导数的综合应用.【分析】(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)由(1)可知:当a>0时才有两个零点,根据函数的单调性求得f(x)最小值,由f(x)min<0,g(a)=alna+a﹣1,a>0,求导,由g(a)min=g(e﹣2)=e﹣2lne﹣2+e﹣2﹣1=﹣﹣1,g(1)=0,即可求得a的取值范围.(1)求导,根据导数与函数单调性的关系,分类讨论,即可求得f(x)单调性;(2)分类讨论,根据函数的单调性及函数零点的判断,分别求得函数的零点,即可求得a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1。

2017届高三模拟考试(数学理)(含答案)word版

2017届高三模拟考试(数学理)(含答案)word版

大连市第二十四中学 2017年高三模拟考试卷数 学 试 题(理)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若复数2(23)(1)z x x x i =+-+-为纯虚数,则实数x 的值为( ) A .3B .1C .-3D .1或-32.已知{}n a 为等差数列,若1598a a a π++=,则28cos()a a +的值为( )A .12-B.C .12D3.一个几何体的三视图如图所示,则该几何体的体积为( ) A .41π+ B .413π+C .483π+D .48π+4.双曲线与椭圆2211664x y +=有相同的焦点,它的一条渐近线方 程为y x =-,则双曲线的方程为 ( )A .22160y x -=B .2296x y -=C .2280x y -=D .2224y x -=5.已知A 、B 是直线l 上任意两点,O 是l 外一点,若l 上一点C 满足2c o s c o s O C O A O B θθ=+ ,则246sin sin sin sin θθθθ+++的最大值是( )ABCD6.设O 为坐标原点,点A (1,1),若点(,)B x y 满足222210,12,12,x y x y x y ⎧+--+≥⎪≤≤⎨⎪≤≤⎩则OA OB⋅ 取得最小值时,点B 的个数是 ( )A .1B .2C .3D .无数7.我校某班有3男2女五位同学均获2011年交大、同济、复旦三校的保送资格,那么恰有2男1女三位同学保送交大的概率是 ( )A .881B .281C .24125D .61258.已知函数2()f x x bx =+图象在点(1,(1))A f 处的切线l 与直线320x y -+=平行,记数列1{}()f n 的前n 项和为n S ,则2011S 的值为( )A .20122013B .20112012C .20092010D .201020119.已知函数()f x 对任意x R ∈都有(4)()2(2)f x f x f +-=,若(1)y f x =-的图象关于直线1x =对称,且(1)2,(2011)f f =则=( ) A .2B .3C .-2D .-310.已知正项等比数列{}n a 满足7652a a a =+,若存在两项,m n a a 使得1144,a m n=+则的最小值为( )A .32 B .53C .94D .不存在11.有下列结论:(1)命题2:,0p x R x ∀∈>总成立,则命题2:,0p x R x ⌝∀∈≤总成立。

2017届山东省高考模拟(一)数学试卷及答案 精品

2017年春季高考第一次模拟考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第I 卷(选择题,共60分) 注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在小答题卡上。

2.每小题选出答案后,用铅笔把小答题卡上对应题目的答案标号涂黑,如需改动,用橡皮 擦干净后,再选涂其它答案,不能答在试题卷上。

一、单项选择题(本大题共20个小题,每小题3分,共60分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.满足{1}⊂≠A ⊆{1,2,3,4} 的集合有( )A 、5个B 、6个C 、7个D 、8个 2、若点(,9)a 在函数3x y =的图象上,则tan 6πa 的值为( )A.0B.3. 一元二次不等式220xx -++>的解集是( )A 、{}/12x x x <->或B 、{}/12x x -<<C 、{}/21x x x <->或 D.{}/21x x -<< 4.函数()22lg 12y xx =-+-的定义域是 A.()(),11,-∞-+∞ B.()1,1- C.()(),11,2-∞- D.()()(),11,22,-∞-+∞5、若直线x-y+m=0与圆x 2+y 2=2相切(m >0),则m=( ) A.2 B. -2 C. 2 D. ±26、下列说法正确的是( )A.a>b 是ac 2>bc 2的充要条件 。

B.b 2=ac 是a 、b 、c 成等比数列的充要条件。

C.1sin 2α=是30α=的充要条件。

D. ,m n m α∥⊥则n α⊥7、公差不为零的等差数列}{n a 的前n 项和为n S 。

2017年山东省枣庄十六中高考数学模拟试卷与解析word(理科)(4月份)

2017年山东省枣庄十六中高考数学模拟试卷(理科)(4月份)一、选择题1.(5分)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},集合M真子集的个数为()A.32 B.31 C.16 D.152.(5分)下列说法中正确的是()A.“a>b”是“log 2a>log2b”的充要条件B.若函数y=sin2x的图象向左平移个单位得到的函数图象关于y轴对称C.命题“在△ABC中,,则”的逆否命题为真命题D.若数列{a n}的前n项和为,则数列{a n}是等比数列3.(5分)若复数z=(i为虚数单位),则|z+1|=()A.3 B.2 C.D.4.(5分)执行如图的程序框图,当输入25时,则该程序运行后输出的结果是()A.4 B.5 C.6 D.75.(5分)若一个几何体的三视图如图所示,则这个几何体的外接球的表面积为()A.34πB.C.D.114π6.(5分)等差数列{a n}的前n项和为S n,若公差d>0,(S8﹣S5)(S9﹣S5)<0,则()A.|a 7|>|a8|B.|a7|<|a8|C.|a7|=|a8|D.|a7|=07.(5分)△ABC中,角A,B,C的对边分别为a,b,c,已知,,则S的最大值为()△ABCA.B.C.D.8.(5分)如图,在▱ABCD中,M,N分别为AB,AD上的点,且=,=,连接AC,MN交于P点,若=λ,则λ的值为()A.B.C.D.9.(5分)若变量x,y满足条件,则目标函数z=2x+y的最小值为()A.﹣3 B.﹣2 C.﹣1 D.110.(5分)已知双曲线,双曲线的左、右焦点分别为F1,F2,M是双曲线C2的一条渐近线上的点,且OM⊥MF2,O为坐标原点,若,且双曲线C 1,C2的离心率相同,则双曲线C2的实轴长是()A.32 B.16 C.8 D.4二、填空题11.(4分)已知定义在R上的偶函数f(x)在[0,+∞)上单调递减,且f(1)=0,则不等式f(x﹣2)≤0的解集是.12.(4分)定义在R上的偶函数y=f(x),当x≥0时,f(x)=2x﹣4,则不等式f(x)≤0的解集是.13.(4分)设曲线y=x n+1(n∈N+)在点(1,1)处的切线与x轴的交点的横坐标为x n,则log2015x1+log2015x2+…+log2015x2014的值为.14.(4分)已知函数f(x)=sin x+cos x,f′(x)是f(x)的导函数.若f(x)=2f′(x),则=.15.(4分)在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为.三、解答题16.(12分)已知函数(a>0,a≠1)是奇函数.(1)求实数m的值;(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;(3)当x∈(n,a﹣2)时,函数f(x)的值域是(1,+∞),求实数a与n的值.17.(12分)已知函数f(x)=e x sinx.(1)求函数f(x)的单调区间;(2)如果对于任意的,f(x)≥kx恒成立,求实数k的取值范围;(3)设函数F(x)=f(x)+e x cosx,,过点作函数F(x)的图象的所有切线,令各切点的横坐标按从小到大构成数列{x n},求数列{x n}的所有项之和的值.18.(12分)在△ABC中,内角A、B、C所对的边分别为a、b、c,已知a≠b,cos2A﹣cos2B=sinAcosA﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若c=,siniA=,求△ABC的面积.19.(12分)如图,C是以AB为直径的圆O上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB的中点,记平面AEF与平面ABC 的交线为直线l.(Ⅰ)求证:直线l⊥平面PAC;(Ⅱ)直线l上是否存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余?若存在,求出|AQ|的值;若不存在,请说明理由.20.(12分)已知椭圆C:+=1(0<b<3)的左右焦点分别为E,F,过点F作直线交椭圆C于A,B两点,若且(1)求椭圆C的方程;(2)已知点O为原点,圆D:(x﹣3)2+y2=r2(r>0)与椭圆C交于M,N两点,点P为椭圆C上一动点,若直线PM,PN与x轴分别交于点R,S,求证:|OR|•|OS|为常数.21.(12分)已知函数f(x)=e x﹣x2﹣ax.(1)若曲线y=f(x)在点x=0处的切线斜率为1,求函数f(x)在[0,1]上的最值;(2)令g(x)=f(x)+(x2﹣a2),若x≥0时,g(x)≥0恒成立,求实数a 的取值范围;(3)当a=0且x>0时,证明f(x)﹣ex≥xlnx﹣x2﹣x+1.22.(12分)为了调查每天人们使用手机的时间,我校某课外兴趣小组在天府广场随机采访男性、女性用户各50 名,其中每天玩手机超过6小时的用户列为“手机控”,否则称其为“非手机控”,调查结果如下:(1)根据以上数据,能否有60%的把握认为“手机控”与“性别”有关?(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取5人中“手机控”和“非手机控”的人数;(3)从(2)中抽取的5人中再随机抽取3人,记这3人中“手机控”的人数为X,试求X的分布列与数学期望.参考公式:.参考数据:2017年山东省枣庄十六中高考数学模拟试卷(理科)(4月份)参考答案与试题解析一、选择题1.(5分)(2017•市中区校级模拟)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},集合M真子集的个数为()A.32 B.31 C.16 D.15【解答】解:由题意集合A={1,2,3},B={4,5},a∈A,b∈B,那么:a、b的组合有:(1、4),(1、5),(2、4),(2、5),(3、4),(3、5),∵M={x|x=a+b},∴M={5,6,7,8},集合M中有4个元素,有24﹣1=15个真子集.故选:D.2.(5分)(2017•市中区校级模拟)下列说法中正确的是()A.“a>b”是“log2a>log2b”的充要条件B.若函数y=sin2x的图象向左平移个单位得到的函数图象关于y轴对称C.命题“在△ABC中,,则”的逆否命题为真命题D.若数列{a n}的前n项和为,则数列{a n}是等比数列【解答】解:若a=0,b=﹣1,log2a和log2b无意义,故A错误;若函数y=sin2x的图象向左平移个单位,函数的解析式为y=sin2(x﹣)=sin(2x﹣),图象关于y轴对称,故B正确;在△ABC中,令A=,则sinA=<,此命题是假命题,故其逆否命题为假命题,故C错误;数列{1,2,5}和是8=23,但数列不是等比数列,故D错误;故选:B.3.(5分)(2017•惠州模拟)若复数z=(i为虚数单位),则|z+1|=()A.3 B.2 C.D.【解答】解:=,所以|z+1|=2,故选:B.4.(5分)(2015•延庆县一模)执行如图的程序框图,当输入25时,则该程序运行后输出的结果是()A.4 B.5 C.6 D.7【解答】解:模拟执行程序框图,可得n=25,S=0,i=1S=1,i=2,不满足条件S≥n,S=4,i=3不满足条件S≥n,S=11,i=4不满足条件S≥n,S=26,i=5满足条件S≥n,退出循环,输出i的值为5,故选:B.5.(5分)(2017•市中区校级模拟)若一个几何体的三视图如图所示,则这个几何体的外接球的表面积为()A.34πB.C.D.114π【解答】解:如图,设底面正△BCD外接圆的圆心O 1,其半径;设侧面等腰△ACD外接圆的圆心O2,则在Rt△O2CH中,r2=O2A=O2C=4﹣O2H,由得,所以,则此三棱锥的外接球的表面积为,故选C.6.(5分)(2017•江西一模)等差数列{a n}的前n项和为S n,若公差d>0,(S8﹣S5)(S9﹣S5)<0,则()A.|a7|>|a8|B.|a7|<|a8|C.|a7|=|a8|D.|a7|=0【解答】解:根据题意,等差数列{a n}中,有(S8﹣S5)(S9﹣S5)<0,即(a6+a7+a8)(a6+a7+a8+a9)<0,又由{a n}为等差数列,则有(a6+a7+a8)=3a7,(a6+a7+a8+a9)=2(a7+a8),(a6+a7+a8)(a6+a7+a8+a9)<0⇔a7×(a7+a8)<0,a7与(a7+a8)异号,又由公差d>0,必有a7<0,a8>0,且|a7|<|a8|;故选:B.7.(5分)(2017•市中区校级模拟)△ABC中,角A,B,C的对边分别为a,b,c,已知,,则S △ABC的最大值为()A.B.C.D.【解答】解:由正弦定理知:,即,故,所以,又,由余弦定理得b2=a2+c2﹣2accosB=a2+c2+ac≥3ac,∴,故,故选:D.8.(5分)(2017•市中区校级模拟)如图,在▱ABCD中,M,N分别为AB,AD上的点,且=,=,连接AC,MN交于P点,若=λ,则λ的值为()A.B.C.D.【解答】解:∵=,=,∴=λ=λ(=,∵三点M,N,P共线.∴,则λ=.故选:D.9.(5分)(2017•市中区校级模拟)若变量x,y满足条件,则目标函数z=2x+y的最小值为()A.﹣3 B.﹣2 C.﹣1 D.1【解答】解:变量x,y满足的平面区域如图:目标函数z=2x+y变形为y=﹣2x+z,当此直线经过图中A时z最小,由得到A(﹣1,﹣1),所以z=2×(﹣1)﹣1=﹣3;故选:A.10.(5分)(2017•吉林二模)已知双曲线,双曲线的左、右焦点分别为F1,F2,M是双曲线C2的一条渐近线上的点,且OM⊥MF 2,O为坐标原点,若,且双曲线C1,C2的离心率相同,则双曲线C2的实轴长是()A.32 B.16 C.8 D.4【解答】解:双曲线的离心率为,设F2(c,0),双曲线C2一条渐近线方程为y=x,可得|F2M|==b,即有|OM|==a,由,可得ab=16,即ab=32,又a2+b2=c2,且=,解得a=8,b=4,c=4,即有双曲线的实轴长为16.故选:B.二、填空题11.(4分)(2017•市中区校级模拟)已知定义在R上的偶函数f(x)在[0,+∞)上单调递减,且f(1)=0,则不等式f(x﹣2)≤0的解集是{x|x≥3或x≤1} .【解答】解:∵偶函数f(x)在[0,+∞)上递增,f(1)=0,∴不等式f(x﹣2)≤0等价为f(|x﹣2|)≥f(1),即|x﹣2|≥1,即x﹣2≥1或x﹣2≤﹣1,即x≥3或x≤1,故不等式的解集为{x|x≥3或x≤1},故答案为:{x|x≥3或x≤1}.12.(4分)(2016•长宁区二模)定义在R上的偶函数y=f(x),当x≥0时,f(x)=2x﹣4,则不等式f(x)≤0的解集是[﹣2,2] .【解答】解:当x≥0时,由f(x)=2x﹣4=0得x=2,且当x≥0时,函数f(x)为增函数,∵f(x)是偶函数,∴不等式f(x)≤0等价为f(|x|)≤f(2),即|x|≤2,即﹣2≤x≤2,即不等式的解集为[﹣2,2],故答案为:[﹣2,2].13.(4分)(2017•宝清县一模)设曲线y=x n+1(n∈N+)在点(1,1)处的切线与x轴的交点的横坐标为x n,则log2015x1+log2015x2+…+log2015x2014的值为﹣1.【解答】解:对y=x n+1(n∈N*)求导,得y′=(n+1)x n,令x=1得在点(1,1)处的切线的斜率k=n+1,在点(1,1)处的切线方程为y﹣1=k(x n﹣1)=(n+1)(x n﹣1),不妨设y=0,,则x1•x2•x3…•x n=×…×=,从而log2015x1+log2015x2+…+log2015x2014=log2015(x1•x2…x2014)=.故答案为:﹣1.14.(4分)(2017•市中区校级模拟)已知函数f(x)=sin x+cos x,f′(x)是f(x)的导函数.若f(x)=2f′(x),则=.【解答】解:根据题意,函数f(x)=sin x+cos x,则f′(x)=cosx﹣sinx,又由f(x)=2f′(x),即sin x+cos x=2(cosx﹣sinx),变形可得cosx=3sinx,即tanx=,==,又由tanx=,则===;故答案为:.15.(4分)(2016•山东)在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为.【解答】解:圆(x﹣5)2+y2=9的圆心为(5,0),半径为3.圆心到直线y=kx的距离为,要使直线y=kx与圆(x﹣5)2+y2=9相交,则<3,解得﹣<k<.∴在区间[﹣1,1]上随机取一个数k,使直线y=kx与圆(x﹣5)2+y2=9相交相交的概率为=.故答案为:.三、解答题16.(12分)(2017•枣庄模拟)已知函数(a>0,a≠1)是奇函数.(1)求实数m的值;(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;(3)当x∈(n,a﹣2)时,函数f(x)的值域是(1,+∞),求实数a与n的值.【解答】解:(1)∵函数(a>0,a≠1)是奇函数.∴f(﹣x)+f(x)=0解得m=﹣1.(2)由(1)及题设知:,设,∴当x1>x2>1时,∴t1<t2.当a>1时,log a t1<log a t2,即f(x1)<f(x2).∴当a>1时,f(x)在(1,+∞)上是减函数.同理当0<a<1时,f(x)在(1,+∞)上是增函数.(3)由题设知:函数f(x)的定义域为(1,+∞)∪(﹣∞,﹣1),∴①当n<a﹣2≤﹣1时,有0<a<1.由(1)及(2)题设知:f(x)在为增函数,由其值域为(1,+∞)知(无解);②当1≤n<a﹣2时,有a>3.由(1)及(2)题设知:f(x)在(n,a﹣2)为减函数,由其值域为(1,+∞)知得,n=1.17.(12分)(2017•衡阳二模)已知函数f(x)=e x sinx.(1)求函数f(x)的单调区间;(2)如果对于任意的,f(x)≥kx恒成立,求实数k的取值范围;(3)设函数F(x)=f(x)+e x cosx,,过点作函数F(x)的图象的所有切线,令各切点的横坐标按从小到大构成数列{x n},求数列{x n}的所有项之和的值.【解答】解:(1)∵f'(x)=e x(sinx+cosx)=,∴f(x)的增区间为;减区间为.(2)令g(x)=f(x)﹣kx=e x sinx﹣kx要使f(x)≥kx恒成立,只需当时,g(x)min≥0,∵g'(x)=e x(sinx+cosx)﹣k,令h(x)=e x(sinx+cosx),则h'(x)=2e x cosx≥0对恒成立,∴h(x)在上是增函数,则,①当k≤1时,g'(x)≥0恒成立,g(x)在上为增函数,∴g(x)min=g(0)=0,∴k≤1满足题意;②当时,g'(x)=0在上有实根x0,h(x)在上是增函数,则当x∈[0,x0)时,g'(x)<0,∴g(x0)<g(0)=0不符合题意;③当时,g'(x)≤0恒成立,g(x)在上为减函数,∴g(x)<g(0)=0不符合题意∴k≤1,即k∈(﹣∞,1].(3)∵F(x)=f(x)+e x cosxe x(sinx+cosx)∴F'(x)2e x cosx设切点坐标为,则切线斜率为从而切线方程为=,∴,令y1=tanx,,这两个函数的图象均关于点对称,则它们交点的横坐标也关于对称,从而所作的所有切线的切点的横坐标构成数列{x n}的项也关于成对出现,又在共有1008对,每对和为π;∴S=1008π.18.(12分)(2016•广元一模)在△ABC中,内角A、B、C所对的边分别为a、b、c,已知a≠b,cos2A﹣cos2B=sinAcosA﹣sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若c=,siniA=,求△ABC的面积.【解答】(本题满分为12分)解:(Ⅰ)∵cos2A﹣cos2B=sinAcosA﹣sinBcosB.∴﹣=sin2A﹣sin2B,…2分可得:cos2A﹣cos2B=sin2A﹣sin2B,可得:sin(2A﹣)=sin(2B﹣), (4)分∵△ABC中,a≠b,可得A≠B,∴2A﹣+2B﹣=π,∴A+B=,可得:C=…6分(Ⅱ)由(Ⅰ)可得,A+B=,∵sinA=,可得:A=,B=,…8分∴sin=sin(+)=,…10分∵c=,由正弦定理,可得:a=,…11分=acsinB=…12分∴S△ABC(注:解法较多,酌情给分,直接sin=sin75°=的也给分)19.(12分)(2017•郴州三模)如图,C是以AB为直径的圆O上异于A,B的点,平面PAC⊥平面ABC,PA=PC=AC=2,BC=4,E,F 分别是PC,PB的中点,记平面AEF与平面ABC的交线为直线l.(Ⅰ)求证:直线l⊥平面PAC;(Ⅱ)直线l上是否存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余?若存在,求出|AQ|的值;若不存在,请说明理由.【解答】(Ⅰ)证明:∵E,F分别是PB,PC的中点,∴BC∥EF,又EF⊂平面EFA,BC不包含于平面EFA,∴BC∥面EFA,又BC⊂面ABC,面EFA∩面ABC=l,∴BC∥l,又BC⊥AC,面PAC∩面ABC=AC,面PAC⊥面ABC,∴BC⊥面PAC,∴l⊥面PAC.(2)解:以C为坐标原点,CA为x轴,CB为y轴,过C垂直于面ABC的直线为z轴,建立空间直角坐标系,A(2,0,0),B(0,4,0),P(1,0,),E(),F(),,,设Q(2,y,0),面AEF的法向量为,则,取z=,得,,|cos<>|==,|cos<>|==,依题意,得|cos<>|=|cos<>|,∴y=±1.∴直线l上存在点Q,使直线PQ分别与平面AEF、直线EF所成的角互余,|AQ|=1.20.(12分)(2017•江西一模)已知椭圆C:+=1(0<b<3)的左右焦点分别为E,F,过点F作直线交椭圆C于A,B两点,若且(1)求椭圆C的方程;(2)已知点O为原点,圆D:(x﹣3)2+y2=r2(r>0)与椭圆C交于M,N两点,点P为椭圆C上一动点,若直线PM,PN与x轴分别交于点R,S,求证:|OR|•|OS|为常数.【解答】解:(1)设|BF|=m,则|AF|=2m,|BE|=6﹣m,|AE|=6﹣2m,|AB|=3m.则有(6﹣2m)2+(3m)2=(6﹣m)2,解得m=1,…3(分)∴|AF|=2,|BE|=5,|AE|=4,|AB|=3,∴|AB|2+|AE|2=|BE|2,∴AE⊥AF.于是,在Rt△AEF中,|EF|2=|AE|2+|AF|2=42+22=20,所以|EF|=2,所以b2=9﹣()2=4,椭圆C的方程为.…6(分)证明:(2)由条件可知M、N两点关于x轴对称,设M(x1,y1),P(x0,y0),则N(x1,﹣y1),=1,,所以,.直线PM的方程为,…9(分)令y=0得点R的横坐标,同理可得点S的横坐标.于是=,所以,|OR|•|OS|为常数9.…12(分)21.(12分)(2017•市中区校级模拟)已知函数f(x)=e x﹣x2﹣ax.(1)若曲线y=f(x)在点x=0处的切线斜率为1,求函数f(x)在[0,1]上的最值;(2)令g(x)=f(x)+(x2﹣a2),若x≥0时,g(x)≥0恒成立,求实数a 的取值范围;(3)当a=0且x>0时,证明f(x)﹣ex≥xlnx﹣x2﹣x+1.【解答】解:(1)∵f′(x)=e x﹣2x﹣a,∴f′(0)=1﹣a=1,∴a=0,∴f′(x)=e x﹣2x,记h(x)=e x﹣2x,∴h′(x)=e x﹣2,令h′(x)=0得x=ln2.当0<x<ln2时,h′(x)<0,h(x)单减;当ln2<x<1时,h′(x)>0,h(x)单增,∴h(x)min=h(ln2)=2﹣2ln2>0,故f′(x)>0恒成立,所以f(x)在[0,1]上单调递增,∴f(x)min=f(0)=1,f(x)max=f(1)=e﹣1.(2)∵g(x)=e x﹣(x+a)2,∴g′(x)=e x﹣x﹣a.令m(x)=e x﹣x﹣a,∴m′(x)=e x﹣1,当x≥0时,m′(x)≥0,∴m(x)在[0,+∞)上单增,∴m(x)min=m(0)=1﹣a.(i)当1﹣a≥0即a≤1时,m(x)≥0恒成立,即g′(x)≥0,∴g(x)在[0,+∞)上单增,∴g(x)min=g(0)=1﹣≥0,解得﹣≤a≤,所以﹣≤a≤1.(ii)当1﹣a<0即a>1时,∵m(x)在[0,+∞)上单增,且m(0)=1﹣a<0,当1<a<e2﹣2时,m(ln(a+2))=2﹣ln(2+a)>0,∴∃x0∈(0,ln(a+2)),使m(x0)=0,即e=x0+a.当x∈(0,x0)时,m(x)<0,即g′(x)<0,g(x)单减;当x∈(x0,ln(a+2))时,m(x)>0,即g′(x)>0,g(x)单增.∴g(x)min=g(x0)=e﹣(x0+a)2=e﹣e=e(1﹣e)≥0,∴e≤2可得0<x0≤ln2,由e=x0+a,∴a=e﹣x0.记t(x)=e x﹣x,x∈(0,ln2],∴t′(x)=e x﹣1>0,∴t(x)在(0,ln2]上单调递增,∴t(x)≤t(ln2)=2﹣2ln2,∴1<a≤2﹣2ln2,综上,a∈[﹣,2﹣ln2].(3)证明:f(x)﹣ex≥xlnx﹣x2﹣x+1等价于e x﹣x2﹣ex≥xlnx﹣x2﹣x+1,即e x﹣ex≥xlnx﹣x+1.∵x>0,∴等价于﹣lnx ﹣﹣e+1≥0.令h(x)=﹣lnx ﹣﹣e+1,则h′(x)=.∵x>0,∴e x﹣1>0.当0<x<1时,h′(x)<0,h(x)单减;当x>1时,h′(x)>0,h(x)单增.∴h(x)在x=1处有极小值,即最小值,∴h(x)≥h(1)=e﹣1﹣e+1=0,∴a=0且x>0时,不等式f(x)﹣ex≥xlnx﹣x2﹣x+1成立.22.(12分)(2017•市中区校级模拟)为了调查每天人们使用手机的时间,我校某课外兴趣小组在天府广场随机采访男性、女性用户各50 名,其中每天玩手机超过6小时的用户列为“手机控”,否则称其为“非手机控”,调查结果如下:(1)根据以上数据,能否有60%的把握认为“手机控”与“性别”有关?(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取5人中“手机控”和“非手机控”的人数;(3)从(2)中抽取的5人中再随机抽取3人,记这3人中“手机控”的人数为X,试求X的分布列与数学期望.参考公式:.参考数据:【解答】解:∴没有60%的把握认为“手机控”与“性别”有关;(2)从参与调查的女性用户中按分层抽样的方法,比例为3:2,所抽取的5人中“手机”有3人,“非手机控”的人数有2人;(3)X=1,2,3,则.X的分布列为:X的数学期望为E(X)=1×0.3+2×0.6+3×0.1=1.8.参与本试卷答题和审题的老师有:左杰;刘老师;沂蒙松;w3239003;lcb001;danbo7801;陈高数;qiss;maths;sxs123;minqi5;zlzhan;双曲线(排名不分先后)菁优网2017年6月13日赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。

数学知识点山东省桓台第二中学2017届高三4月月考(模拟)数学(理)试题 Word版含答案-总结

山东省桓台第二中学2017届高三4月月考(模拟)数学试卷(理科)第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合}8,6,4,2{=A ,}0189|{2≤+-=x xx B ,则=B A ( )A .}4,2{B .}6,4{C .}8,6{D .}8,2{ 2.若复数iia 21++(R a ∈)为纯虚数,其中i 为虚数单位,则=a ( ) A .2 B .3 C .2- D .3-3.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”.现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( ) A .41 B .21 C .31 D .32 4.等比数列}{n a 的前n 项和为b a S n n+⋅=-13,则=ba( ) A .3- B .1- C. 1 D .3 5.直线l :)(04R k y kx ∈=++是圆C :064422=+-++y x y x的一条对称轴,过点),0(k A 作斜率为1的直线m ,则直线m 被圆C 所截得的弦长为( )A .22B .2 C. 6 D .62 6.祖冲之之子祖恒是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得面积恒等,那么这两个几何体的体积相等.此即祖恒原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个该几何体的下底面平行相距为h (20<<h )的平面截几何体,则截面面积为( )A .π4B .2h π C. 2)2(h -π D .2)4(h -π7.函数x x f xx cos 1212)(⋅-+=的图象大致是( )8.已知0>>b a ,0<c ,下列不等关系正确的是( )A .bc ac >B .ccb a > C. )(log )(logc b c a b a ->- D .cb bc a a ->- 9.执行如图所示的程序框图,若输入2017=p ,则输出i 的值为( )A .335B .336 C. 337 D .33810.已知F 是双曲线E :12222=-by a x (0,0>>b a )的右焦点,过点F 作E 的一条渐近线的垂线,垂足为P ,垂线PF 与E 相交于点Q ,记点Q 到E 的两条渐近线的距离之积为2d ,若d FP 2||=,则该双曲线的离心率( )A .2 B .2 C.3 D .4第Ⅱ卷二、填空题(每题5分,满分20分,将答案填在答题纸上)11.已知向量)2,1(=p ,)3,(x q =,若q p ⊥,则=+||q p .12.5)1(xx -的二项展开式中,含x 的一次项的系数为 .(用数字作答) 13.若实数y x ,满足不等式组⎪⎩⎪⎨⎧≥≤--≤-+1083204x y x y x ,目标函数y kx z -=的最大值为12,最小值为0,则实数=k .14.已知数列}{n a 满足)2()2(22n n a n na nn +=+-+λ,其中2,121==a a ,若1+<n n a a 对*∈∀N n 恒成立,则实数λ的取值范围为 .15.设函数2)2()(x x g x f +=,曲线)(x g y =在点))1(,1(g 处的切线方程为019=-+y x ,则曲线)(x f y =在点))2(,2(f 处的切线方程为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)16.已知函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f 满足下列条件:①周期π=T ;②图象向左平移6π个单位长度后关于y 轴对称;③1)0(=f . (1)求函数)(x f 的解析式; (2)设)4,0(,πβα∈,1310)3(-=-παf ,56)6(=+πβf ,求)22cos(βα-的值. 17. ABC ∆的内角C B A ,,的对边分别为c b a ,,,已知C a A c a cos sin 32-=.(1)求C ; (2)若3=c ,求ABC ∆的面积的最大值.18.如图,四边形ABCD 为菱形,四边形ACEF 为平行四边形,设BD 与AC 相交于点G ,2==BD AB ,3=AE ,EAB EAD ∠=∠.(1)证明:平面⊥ACEF 平面ABCD ;(2)若AE 与平面ABCD 所成角为60,求二面角D EF B --的余弦值.19.某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过200度的部分按0.5元/度收费,超过200度但不超过400度的部分按0.8元/度收费,超过400度的部分按1.0元/度收费.(1)求某户居民的用电费用y (单位:元)关于月用电量x (单位:度)的函数解析式;(2)为了了解居民的用电情况,通过抽样,获得了今年1月份100户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这100户居民中,今年1月份用电量不超过260元的占80%,求b a ,的值;(3)在满足(2)的条件下,若以这100户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点值代替,记Y 为该居民用户1月份是用电费用,求Y 的分布列和数学期望.20.已知椭圆C :)0(12222>>=+b a by a x 的左右顶点21,A A ,上下顶点分别为21,B B ,左右焦点分别为21,F F ,其中长轴长为4,且圆O :71222=+y x 为菱形2211B A B A 的内切圆. (1)求椭圆C 的方程;(2)点)0,(n N 为x 轴正半轴上一点,过点N 作椭圆C 的切线l ,记右焦点2F 在l 上的射影为H ,若HN F 1∆的面积不小于2163n ,求n 的取值范围. 21.已知函数x x x f ln )(=,e 为自然对数的底数. (1)求曲线)(x f y =在2-=ex 处的切线方程;(2)关于x 的不等式)1()(-≥x x f λ在),0(+∞上恒成立,求实数λ的值; (3)关于x 的方程a x f =)(有两个实根21,x x ,求证:22112||-++<-e a x x .试卷答案一、选择题1-5: BCBAC 6-10: DCDCB二、填空题11.2512. 5- 13. 3 14. ),0[+∞15.062=++y x三、解答题16.解:(1)∵)(x f 的周期为πωπ==2T ,∴2=ω,又函数)(x f 的图象向左平移6π个单位长度,变为])6(2sin[)(ϕπ++=x A x g ,由题意,)(x g 的图象关于y 轴对称,∴ππϕπk +=+⨯262,Z k ∈,又2||πϕ<,∴6πϕ=,∴函数)62sin()(π+=x A x f ,又1)0(=f ,∴16sin=πA ,解得2=A ,∴函数)62sin(2)(π+=x x f .(2)由1310)3(-=-παf ,56)6(=+πβf ,得1310)6322sin(2-=+-ππα,56)632sin(2=++ππβ, ∴532cos ,1352cos ==βα,又)2,0(,πβα∈,∴13122sin =α,542sin =β,∴6563541312531352sin 2sin 22cos )22cos(=⨯+⨯=+=-βαβαβαos . 17.解:(1)由已知及正弦定理可得C a A C A cos sin sin 3sin 2-=,在ABC∆中,0sin >A ,∴C C cos sin 32-=,∴1cos 21sin 23=-C C ,从而1)6sin(=-πC ,∵π<<C 0,∴6566πππ<-<-C ,∴26ππ=-C ,∴32π=C .(2)解法1:由(1)知32π=C ,∴23sin =C ,∵C ab S sin 21=,∴ab S 43=,∵abc b a C 2cos 222-+=,∴ab b a -=+322,∵ab b a 222≥+,∴1≤ab (当且仅当1==b a 时等号成立),∴4343≤=ab S ;解法2:由正弦定理可知2sin sin sin ===C c B b A a ,∵C ab S sin 21=,∴B A S sin sin 3=, ∴)3sin(sin 3A A S -=π,∴43)62sin(23-+=πA S ,∵30π<<A ,∴65626πππ<+<A ,当262ππ=+A ,即6π=A 时,S 取最大值43. 18.解:(1)证明:连接EG ,∵四边形ABCD 为菱形,AB AD =,AC BD ⊥,GB DG =,在EAD ∆和EAB ∆中,AB AD =,AE AE =,EAB EAD ∠=∠,∴EAD ∆EAB ∆≅,∴EB ED =,∴EG BD ⊥,∵G EG AC = ,∴⊥BD 平面ACFE ,∵⊂BD 平面ABCD ,∴平面⊥ACFE 平面ABCD .(2)解法1:过G 作EF 垂线,垂足为M ,连接MB ,MG ,MD ,易得EAC ∠为AE 与面ABCD 所成的角,∴ 60=∠EAC ,∵GM EF ⊥,BD EF ⊥,∴⊥EF 平面BDM ,∴DMB ∠为二面角D EF B --的平面角,可求得23=MG ,213==BM DM ,在DMB ∆中余弦定理可得135cos =∠BMD ,∴二面角D EF B --的余弦值为135.解法2:如图,在平面ABCD 内,过G 作AC 的垂线,交EF 于点M ,由(1)可知,平面⊥ACFE 平面ABCD ,∴⊥MG 平面ABCD ,∴直线GB GA GM ,,两两垂直,分别以GM GB GA ,,为z y x ,,轴建立空间直角坐标系xyz G -,易得EAC ∠为AE 与平面ABCD 所成的角,∴60=∠EAC ,则)0,1,0(-D ,)0,1,0(B ,)23,0,23(E ,)23,0,233(-F ,)0,0,32(=FE ,)23,1,23(-=BE ,)23,1,23(=DE ,设平面BEF 的一个法向量为),,(z y x =,则0=⋅且0=⋅,∴0=x ,且02323=+-z y x ,取2=z ,可得平面BEF 的一个法向量为)2,3,0(=n ,同理可求得平面DEF 的一个法向量为)2,3,0(-=m ,∴135,>=<m n cis , ∴二面角D EF B --的余弦值为135. 19.解:(1)当2000≤≤x 时,x y 5.0=;当当400200≤<x 时,608.0)200(8.02005.0-=-⨯+⨯=x x y ;当当400>x 时,140)400(0.12008.02005.0-=-⨯+⨯+⨯=x x y ,所以y 与x 之间的函数解析式为⎪⎩⎪⎨⎧>-≤<-≤≤=140,140400200,608.02000,5.0x x x x x x y .(2)由(1)可知,当260=y 时,400=x ,则80.0)400(=≤x P ,结合频率分布直方图可知⎩⎨⎧=+=+⨯+2.005.01008.03.010021.0a b ,∴0015.0=a ,0020.0=b(3)由题意可知X 可取50,150,250,350,450,550, 当50=x 时,25505.0=⨯=y ,∴1.0)25(==y P , 当150=x 时,751505.0=⨯=y ,∴2.0)75(==y P ,当250=x 时,140508.02005.0=⨯+⨯=y ,∴3.0)140(==y P , 当350=x 时,2201508.02005.0=⨯+⨯=y ,∴2.0)220(==y P ,当450=x 时,310500.12008.02005.0=⨯+⨯+⨯=y ,∴15.0)310(==y P , 当550=x 时,4101500.12008.02005.0=⨯+⨯+⨯=y ,∴05.0)410(==y P , 故Y 的概率分布列为5.17005.041015.03102.02203.01402.0751.025=⨯+⨯+⨯+⨯+⨯+⨯=EY20.解:(1)由题意知42=a ,所以2=a ,所以)0,2(1-A ,)0,2(2A ,),0(1b B -,),0(2b B ,则直线22B A 的方程为12=+b y x ,即022=-+b y bx ,所以7124|2|2=+-b b ,解得32=b ,故椭圆C 的方程为13422=+y x . (2)由题意,可设直线l 的方程为0,≠+=m n my x ,联立⎩⎨⎧=++=124322y x n my x 消去x 得0)4(36)43(222=-+++n mny y m (*),由直线l 与椭圆C 相切,得0)4)(43(34)6(222=-+⨯-=∆n m mn ,化简得04322=+-n m ,设点),(t n mt H +,由(1)知)0,1(),0,1(21F F -,则111)(0-=⋅-+-mn mt t ,解得21)1(m n m t +--=,所以HN F 1∆的面积2221|)1(|21|1)1(|)1(211m n m m n m n S HNF +-=+--+=∆,代入04322=+-n m 消去n 化简得||231m S HN F =∆,所以)43(163163||2322+=≥m n m ,解得2||32≤≤m ,即4942≤≤m ,从而434942≤-≤n ,又0>n ,所以4334≤≤n ,故n 的取值范围为]4,334[.21.解:(1)对函数)(x f 求导得1ln 1ln )('+=⋅+=x xx x x f ,∴11ln )('22-=+=--e e f ,又22222ln )(-----==e e e e f ,∴曲线)(x f y =在2-=e x 处的切线方程为)()2(22----=--e x e y ,即2---=e x y .(2)记)1(ln )1()()(--=--=x x x x x f x g λλ,其中0>x ,由题意知0)(≥x g 在),0(+∞上恒成立,下求函数)(x g 的最小值,对)(x g 求导得λ-+=1ln )('x x g ,令0)('=x g ,得1-=λe x ,当x 变化时,)('x g ,)(x g 变化情况列表如下:∴111min )1()1()()()(----=---===λλλλλe e e e g x g x g 极小,∴01≥--λλe,记1)(--=λλλe G ,则11)('--=λλeG ,令0)('=λG ,得1=λ.当λ变化时,)('λG ,)(λG 变化情况列表如下:∴max 极大故01≤--λλe当且仅当1=λ时取等号,又01≥--λλe ,从而得到1=λ;(3)先证2)(---≥e x x f ,记22ln )()()(--++=---=e x x x e x x f x h ,则2ln )('+=x x h ,令0)('=x h ,当x 变化时,)('x h ,)(x h 变化情况列表如下:∴0ln )()()(222min=++===---e e e e e h x h x h 极小,0)(≥x h 恒成立,即2)(---≥e x x f ,记直线2---=e x y ,1-=x y 分别与a y =交于),'(),,'(21a x a x ,不妨设21x x <,则21121)('----≥=--=e x x f e x a ,从而11'x x ≤,当且仅当22--=e a 时取等号,由(2)知,1)(-≥x x f ,则1)(1'222-≥=-=x x f x a ,从而22'x x ≤,当且仅当0=a 时取等号,故2212122112)()1(''||--++=---+=-≤-=-e a e a a x x x x x x ,因等号成立的条件不能同时满足,故22112||-++<-e a x x .。

2017年高考理科数学模拟试卷(全国卷)【精选文档】

2017年普通高等学校招生全国统一模拟考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。

全卷满分150分.考试时间120分钟。

注意事项:⒈答题前,考生务必把自己的姓名、考生号等填写在答题卡相应的位置上。

⒉做选择题时,必须用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

⒊非选择题必须使用黑色字迹钢笔或签字笔,将答案写在答题卡规定的位置上. ⒋所有题目必须在答题卡上指定位置作答,不按以上要求作答的答案无效。

⒌考生必须保持答题卡的整洁.考试结束后,将答题卡交回。

参考公式:柱体体积公式:V Sh = (其中S 为底面面积,h 为高)锥体体积公式:13V Sh =(其中S 为底面面积,h 为高) 球的表面积、体积公式:2344,3S R V R ==ππ (其中R 为球的半径)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12iz i-+=(i 是虚数单位)在复平面上对应的点位于 ( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限 2.已知集合M={x |y=lg},N={y|y=x 2+2x+3},则(∁R M )∩N= ( )A . {x|0<x <1}B . {x |x >1}C . {x|x≥2}D . {x|1<x <2}3、采用系统抽样方法从960人中抽取32人做问卷调查为此将他们随机编号为1,2 .。

.960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落人区间[451,750]的人做问卷B ,其余的人做问卷C 。

则抽到的人中,做问卷C 的人数为 ( ) A. 15 B 。

10 C 。

9 D. 7 4.设{n a } 是公差为正数的等差数列,若12315a a a ++=,且12380a a a =,则111213a a a ++等于( )A .120B . 105C . 90D .755.由2y x =和23y x =-所围成图形面积是 ( )A.B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省威海市2017届高考模拟试卷 (理科数学)(4月份) 一、选择题(本大题共10小题,每小题5分,共50分.每小题只有一个选项符合题意) 1.已知集合M={0,1,2},N={x|﹣1≤x≤1,x∈Z},则( ) A.M⊆N B.N⊆M C.M∩N={0,1} D.M∪N=N 2.如果复数z=(b∈R)的实部和虚部相等,则|z|等于( ) A.3 B.2 C.3 D.2 3.“log2(2x﹣3)<1”是“4x>8”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 4.某几何体的三视图如图所示,在该几何体的体积是( )

A. B. C. D. 5.函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g(x)=Asinωx的图象,只需将函数y=f(x)的图象( )

A.向左平移个单位长度 B.向左平移个单位长度 C.向右平移个单位长度 D.向右平移个单位长度 6.甲、乙、丙 3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是( ) A.210 B.84 C.343 D.336

7.已知变量x,y满足:,则z=()2x+y的最大值为( ) A. B.2 C.2 D.4 8.如图,正方形ABCD中,M是BC的中点,若=λ+μ,则λ+μ=( )

A. B. C. D.2 9.己知函数f(x)是定义在R上的偶函数,f(x+1)为奇函数,f(0)=0,当x∈(0,1]时,f(x)=log2x,则在区间(8,9)内满足方f(x)程f(x)+2=f()的实数x为 ( ) A. B. C. D. 10.已知点F1是抛物线C:x2=4y的焦点,点F2为抛物线C的对称轴与其准线的交点,过F2作抛物线C的切线,切点为A,若点A恰好在以F1,F2为焦点的双曲线上,则双曲线的离心率为( ) A. B.﹣1 C. +1 D.

二、填空题(本大题共5个小题,每小题5分,共25分). 11.设的值为 . 12.如图是一个算法流程图,则输出的k的值是 . 13.设随机变量ξ服从正态分布N(2,9),若P(ξ>c+1)=P(ξ<c﹣1),则c= . 14.现有一半球形原料,若通过切削将该原料加工成一正方体工件,则所得工件体积与原料体积之比的最大值为 . 15.对于函数f(x),若存在区间A=[m,n],使得{y|y=f(x),x∈A}=A,则称函数f(x)为“同域函数”,区间A为函数f(x)的一个“同城区间”.给出下列四个函数: ①f(x)=cosx;②f(x)=x2﹣1;③f(x)=|x2﹣1|;④f(x)=log2(x﹣1). 存在“同域区间”的“同域函数”的序号是 (请写出所有正确的序号)

三、解答题(本大题共6小题,第16~19每小题12分,第20题13分,第21题14分,共75分). 16.(12分)已知函数f(x)=sin2x﹣2cos2x﹣1,x∈R. (Ⅰ)求函数f(x)的最小正周期和最小值; (Ⅱ)在△ABC中,A,B,C的对边分别为a,b,c,已知c=,f(C)=0,sinB=2sinA,求a,b的值. 17.(12分)某公司的两个部门招聘工作人员,应聘者从 T1、T2两组试题中选择一组参加测试,成绩合格者可签约.甲、乙、丙、丁四人参加应聘考试,其中甲、乙两人选择使用试题 T1,且表示只要成绩合格就签约;丙、丁两人选择使用试题 T2,并约定:两人成绩都合格就一同签约,否则两人都不签约.已知甲、乙考试合格的概率都是,丙、丁考试合格的概率都是,且考试是否合格互不影响. (I)求丙、丁未签约的概率; (II)记签约人数为 X,求 X的分布列和数学期望EX. 18.(12分)如图,菱形ABCD与正三角形BCE的边长均为2,它们所在平面互相垂直,FD⊥平面ABCD,且FD=. (I)求证:EF∥平面ABCD; (Ⅱ)若∠CBA=60°,求二面角A﹣FB﹣E的余弦值.

19.(12分)已知数列{an}满足a1=1,an+1=1﹣,其中n∈N*. (Ⅰ)设bn=,求证:数列{bn}是等差数列,并求出{an}的通项公式an; (Ⅱ)设Cn=,数列{CnCn+2}的前n项和为Tn,是否存在正整数m,使得Tn<对于n∈N*恒成立,若存在,求出m的最小值,若不存在,请说明理由.

20.(13分)已知左、右焦点分别为F1(﹣c,0),F2(c,0)的椭圆过点,且椭圆C关于直线x=c对称的图形过坐标原点. (I)求椭圆C的离心率和标准方程. (II)圆与椭圆C交于A,B两点,R为线段AB上任一点,直线F1R交椭圆C于P,Q两点,若AB为圆P1的直径,且直线F1R的斜率大于1,求|PF1||QF1|的取值范围. 21.(14分)设f(x)=xex(e为自然对数的底数),g(x)=(x+1)2. (I)记,讨论函F(x)单调性; (II)令G(x)=af(x)+g(x)(a∈R),若函数G(x)有两个零点. (i)求参数a的取值范围; (ii)设x1,x2是G(x)的两个零点,证明x1+x2+2<0. 山东省威海市2017届高考数学模拟试卷(理科)(4月份) 参考答案与试题解析

一、选择题(本大题共10小题,每小题5分,共50分.每小题只有一个选项符合题意) 1.已知集合M={0,1,2},N={x|﹣1≤x≤1,x∈Z},则( ) A.M⊆N B.N⊆M C.M∩N={0,1} D.M∪N=N 【考点】1E:交集及其运算. 【分析】列举出N中元素确定出N,找出M与N的交集即可. 【解答】解:∵M={0,1,2},N={x|﹣1≤x≤1,x∈Z}={﹣1,0,1}, ∴M∩N={0,1}, 故选:C. 【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

2.如果复数z=(b∈R)的实部和虚部相等,则|z|等于( ) A.3 B.2 C.3 D.2 【考点】A8:复数求模. 【分析】由已知条件利用复数代数形式的乘除运算法则和复数的实部和虚部相等,求出z=3+3i,由此能求出|z|. 【解答】解:z====﹣i, ∵复数z=(b∈R)的实部和虚部相等, ∴,解得b=﹣9, ∴z=3+3i, ∴|z|==3. 故选:A. 【点评】本题考查复数的模的求法,是基础题,解题时要认真审题,注意复数的代数形式的乘除运算法则的合理运用. 3.“log2(2x﹣3)<1”是“4x>8”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【考点】2L:必要条件、充分条件与充要条件的判断. 【分析】利用函数的单调性分别化简log2(2x﹣3)<1,4x>8,即可判断出结论. 【解答】解:log2(2x﹣3)<1,化为0<2x﹣3<2,解得. 4x>8,即22x>23,解得x. ∴“log2(2x﹣3)<1”是“4x>8”的充分不必要条件. 故选:A. 【点评】本题考查了函数的单调性、不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

4.某几何体的三视图如图所示,在该几何体的体积是( )

A. B. C. D. 【考点】L!:由三视图求面积、体积. 【分析】如图所示,该几何体为四棱锥,其中PA⊥底面ABCD,作BE⊥CD,垂足为E点,底面由直角梯形ABED与直角三角形BCE组成. 【解答】解:如图所示,该几何体为四棱锥,其中PA⊥底面ABCD,作BE⊥CD,垂足为E点,底面由直角梯形ABED与直角三角形BCE组成. 则V= =. 故选:B. 【点评】本题考查了四棱锥的三视图及其体积计算公式,考查了推理能力与计算能力,属于基础题.

5.函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分图象如图所示,为了得到g(x)=Asinωx的图象,只需将函数y=f(x)的图象( )

A.向左平移个单位长度 B.向左平移个单位长度 C.向右平移个单位长度 D.向右平移个单位长度 【考点】HJ:函数y=Asin(ωx+φ)的图象变换. 【分析】由函数的最值求出A,由周期求出ω,由特殊点求出φ的值,可得凹函数f(x)的解析式,再利用y=Asin(ωx+φ)的图象变换规律,得出结论. 【解答】解:由函数f(x)=Acos(ωx+φ)(A>0,ω>0,﹣π<φ<0)的部分图象, 可得A=2,∵,∴T=π,ω=2,f(x)=2cos(2x+φ), 将代入得,∵﹣π<φ<0, ∴. 故可将函数y=f(x)的图象向左平移个单位长度得到l的图象,即可得到g(x)=Asinωx的图象, 故选:B. 【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由特殊点求出φ的值,y=Asin(ωx+φ)的图象变换规律,属于基础题.

6.甲、乙、丙 3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是( ) A.210 B.84 C.343 D.336 【考点】D9:排列、组合及简单计数问题. 【分析】由题意知本题需要分组解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果. 【解答】解:由题意知本题需要分组解决,因为对于7个台阶上每一个只站一人有种; 若有一个台阶有2人另一个是1人共有种, 所以根据分类计数原理知共有不同的站法种数是种. 故选:D. 【点评】分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到步骤完整,完成了所有步骤,恰好完成任务.

7.已知变量x,y满足:,则z=()2x+y的最大值为( ) A. B.2 C.2 D.4 【考点】7C:简单线性规划. 【分析】作出不等式组对应的平面区域,设m=2x+y,利用线性规划的知识求出m的最大值即可求出z的最大值. 【解答】解:作出不等式组对应的平面区域如图:(阴影部分). 设m=2x+y得y=﹣2x+m, 平移直线y=﹣2x+m, 由图象可知当直线y=﹣2x+m经过点A时,直线y=﹣2x+m的截距最大,

相关文档
最新文档