高等数学同济大学下第125全微分方程
同济大学《高等数学》第五版下册习题答案

同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 8-6
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
总习题八
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
练习 12-4
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济大学《高等数学》第五版下册习题答案
同济版大一高数下第七章第六节全微分方程xg

x2 2 xy 3 dx − 3 x 2 y 2 dy d( 3 ) = y y6
7
常用微分倒推公式: 常用微分倒推公式
1) d x ± d y = d ( x ± y ) 3) xd x + yd y = d (
1 (x2 2
2) xd y + yd x = d ( x y )
+y ))
2
= d(
x2 + y2 )
8
思考: 思考 如何解方程
∂P ∂Q Q =1 = −1 ∂y ∂x
1 这不是一个全微分方程 , 但若在方程两边同乘 2 , x 就化成例2 的方程 : 2
即
1 2 y d ( x ) − d ( ) = 0, 2 x
或
1 2 y d ( x − )= 0 2 x
9
二、积分因子法
为全微分方程 ( 又叫做恰当方程 ) . 判别: P, Q 在某单连通域D内有连续一阶偏导数, 则 ① 为全微分方程 求解步骤: 1. 求原函数 u (x, y) 方法1 凑微分法; 方法2 利用积分与路径无关的条件. 2. 由 d u = 0 知通解为 u (x, y) = C .
3
例1. 求解
yd x − xd y x 7) = d ( arctan ) 2 2 y x +y
11
例1:求下列微分方程的通解 1. yd x − xd y = yd y
y 解法1: 解法 :写成全微分方程的形式: d x − ( x + y )d y = 0 ∂P ∂Q 由于 Q =1 = −1 原方程不是全微分方程 ∂y ∂x yd x − xd y x 1 Q = d( ) 在方程两边同时乘以 2 2 y y y x yd x − xd y d y 即 d = d (ln y ) 得: = y y y2
同济大学《高等数学(下)》模拟试卷(二)及参考答案

同 济 大 学 模 拟 试 卷课程名称 高等数学(下) 姓 名 学 号适用专业考试形式闭卷考试时间 120分钟一.填空题(每空3分,共15分)(1)函数z =的定义域为 ; (2)已知函数xyz e =,则在(2,1)处的全微分dz = ;(3)交换积分次序,ln 1(,)e x dx f x y dy⎰⎰= ;(4)已知L 是抛物线2y x =上点(0,0)O 与点(1,1)B 之间的一段弧,则=⎰;(5)已知微分方程20y y y '''-+=,则其通解为 .二.选择题(每空3分,共15分)(1)设直线L 为300x y z x y z ++=⎧⎨--=⎩,平面π为10x y z --+=,则L 与π的夹角为( );A. 0B. 2πC. 3πD. 4π(2)设(,)z f x y =是由方程333z xyz a -=确定,则z x ∂=∂( );A. 2yz xy z -B. 2yz z xy -C. 2xz xy z -D. 2xyz xy -(3)微分方程256x y y y xe '''-+=的特解y *的形式为y *=( );A.2()x ax b e +B.2()x ax b xe +C.2()x ax b ce ++D.2()xax b cxe ++ (4)已知Ω是由球面2222x y z a ++=所围成的闭区域, 将dvΩ⎰⎰⎰在球面坐标系下化成三次积分为( );A2220sin ad d r drππθϕϕ⎰⎰⎰ B.220ad d rdrππθϕ⎰⎰⎰C.200ad d rdrππθϕ⎰⎰⎰ D.220sin ad d r drππθϕϕ⎰⎰⎰(5)已知幂级数1212nnn n x ∞=-∑,则其收敛半径( ).A. 2B. 1C. 12D.三.计算题(每题8分,共48分)1、 求过(0,2,4)A 且与两平面1:21x z π+=和2:32y z π-=平行的直线方程 .2、 已知(sin cos ,)x yz f x y e +=,求zx ∂∂, z y ∂∂ .3、 设22{(,)1,0}D x y x y y x =+≤≤≤,利用极坐标计算arctanDydxdy x ⎰⎰ .4、 求函数22(,)56106f x y x y x y =+-++的极值. 5、 利用格林公式计算(sin 2)(cos 2)x x Le y y dx e y dy-+-⎰,其中L 为沿上半圆周222(),0x a y a y -+=≥、从(2,0)A a 到(0,0)O 的弧段.6、求微分方程 32(1)1y y x x '-=++的通解.四.解答题(共22分)1、(1)(6')判别级数11(1)2sin3n n n n π∞-=-∑的敛散性,若收敛,判别是绝对收敛还是条件收敛;(2)(4')在区间(1,1)-内求幂级数1nn x n ∞=∑的和函数 .2、(12)'利用高斯公式计算2xdydz ydzdx zdxdy∑++⎰⎰,∑为抛物面22z x y =+(01)z ≤≤的下侧高等数学(下)模拟试卷二参考答案一、填空题:(每空3分,共15分)1、 222{(,)|4,01}x y y x x y ≤<+< 2、222e dx e dy + 3、10(,)y eedy f x y dx⎰⎰4、11)12 5、12()xy C C x e =+二、选择题:(每空3分,共15分) 1. A 2.B 3. B 4.D 5. A三、计算题(每题8分,共48分)1、解: 12(0,2,4){1,0,2}{0,1,3}A n n →→==- 2'1210223013ij ks n n i j k →→→→→→→→→=⨯==-++- 6'∴直线方程为24231x y z --==- 8' 2、解: 令sin cos x yu x y v e +== 2' 12cos cos x yz z u z v f x y f e x u x v x+∂∂∂∂∂''=⋅+⋅=⋅+⋅∂∂∂∂∂ 6' 12(sin sin )x yz z u z v f x y f e y u y v y+∂∂∂∂∂''=⋅+⋅=⋅-+⋅∂∂∂∂∂ 8'3、解::0014D r πθ≤≤≤≤, 3'21400arctan 64D Dy dxdy r drd d rdr x ππθθθθ∴===⎰⎰⎰⎰⎰⎰ 8' 4.解: (,)260(,)10100x y f x y x f x y y =-=⎧⎪⎨=+=⎪⎩ 得驻点(3,1)- 4' (,)2,(,)0,(,)10xx xy yy A f x y B f x y C f x y ====== 6'220,200A ACB =>-=>∴极小值为(3,1)8f -=- 8'5.解:sin 2,cos 2x x P e y y Q e y =-=-,有cos 2,cos ,x x PQe y e y yx ∂∂=-=∂∂2'取(2,0),:0,A a OA y x =从02a → 4'L OA Pdx Qdy Pdx Qdy +++⎰⎰2()2D D Q P dxdy dxdy a x y π∂∂=-==∂∂⎰⎰⎰⎰ 6'∴原式=2a π-OA Pdx Qdy +⎰=220a a ππ-= 8'6.解:321,(1)1P Q x x =-=++ 2'∴通解为113()()112[()][(1)]dx dx P x dxP x dxx x y e Q x e dx C e x e dx C --++⎰⎰⎰⎰=+=++⎰⎰ 4'13222(1)[(1)](1)[(1)]3x x dx C x x C =+++=+++⎰ 8'四、解答题1、解:(1)令1(1)2sin 3n n n n u π-=-1112sin23lim lim 132sin 3n n n n n n n nu u ππ+++→∞→∞==<4' 12sin 3nn n π∞=∴∑收敛, 11(1)2sin 3n n nn π∞-=∴-∑绝对收敛 6' (2)令1()n n x s x n ∞==∑1111()1n n n n x s x x n x ∞∞-=='⎛⎫'===⎪-⎝⎭∑∑, 2' 0()()(0)ln(1)xs x s x dx s x '⇒=+=--⎰ 4'2、解:构造曲面1:1,z ∑=上侧122xdydz ydzdx zdxdy xdydz ydzdx zdxdy∑∑+++++⎰⎰⎰⎰ 2'22110(211)44r dv dv d rdr dz πθΩΩ=++==⎰⎰⎰⎰⎰⎰⎰⎰⎰1208(1)2r rdr ππ=-=⎰4' 6' 8'122I xdydz ydzdx zdxdyπ∑∴=-++⎰⎰ 10'2xyD dxdy ππ=-=⎰⎰ 12'。
高等数学 下册-全微分 ppt课件

取 x 1, y 2, x 0.04, y 0.02
1.042.02 f (1.04, 2.02 )
1 2 0.04 0 0.02 1.08
机动
目录
上页
下页
返回
结束
2. 误差估计
利用
z f x ( x, y ) x f y ( x, y ) y
( A) f ( x, y ) 在 ( x0 , y0 ) 连续 ;
( B) f x ( x, y ) , f y ( x, y ) 在 ( x0 , y0 ) 的某邻域内存在 ; (C ) z f x ( x, y )x f y ( x, y )y
当 (x) 2 (y ) 2 0 时是无穷小量 ; z f x ( x, y )x f y ( x, y )y
5. 已知
答案:
作业
P24 1 (3) , (4) ; 8 ; 10 3; 5;
第四节 目录
上页
下页
返回
结束
备用题
证明函数 在点 (0,0) 连续且偏导数存在, 但偏导数在点 (0,0) 不连 续, 而 f ( x, y ) 在点 (0,0) 可微 . 1 x2 y2 证: 1) 因 xy sin xy 2 x2 y2 所以
x 0 y 0
lim f ( x, y ) 0 f (0,0)
故函数在点 (0, 0) 连续 ;
机动 目录 上页 下页 返回 结束
2) f ( x,0) 0 , f x (0,0) 0 ; 同理 f y (0,0) 0. 3) 当( x, y ) (0,0)时 , 1 x2 y f x ( x, y ) sin 2 2 x y ( x 2 y 2 )3
1.5全微分方程及积分因子 .

(x,y)
(0,0)
u( x, y )
x 0 x
( x, y)
( 0, 0 )
M ( x, y )dx N ( x, y )dy
y 0
M ( x,0)dx N ( x, y)dy 2 xdx (sin x x e 2)dy
y 2 y
0
0
x y sin x x (e 1) 2 y y sin x x 2e y 2 y.
M ( x , y )dx N ( x , y )dy 0, (1)
(2).
4
为恰当方程的充要条件是
M ( x, y ) N ( x, y ) , y x
常微分方程
绵阳师范学院
u 证明 “必要性” 设(1)是恰当方程, 则有函数 ( x, y ), 使得
u u du( x, y ) dx dy M ( x , y )dx N ( x , y )dy x y
故有
u M ( x , y ), x
2 u M , yx y
u N ( x, y ) y
从而
2 u N . xy x
2u 2u , y x x y
2u 2u 由于 和 都 是 连 续 的从 而 有 , yx xy
12
常微分方程
绵阳师范学院
(3 x 2 6 xy2 )dx (6 x 2 y 4 y 3 )dy 0 的通解. 例2 求方程
解:
由于M ( x, y) 3 x 2 6 xy2 , N ( x, y) 6 x 2 y 4 y 3 ,
N ( x , y ) M ( x, y) , 12xy x y
高等数学同济大学第七章微分方程-5

思考题
2x y2 3 x2 是否为全微分方程? dy 0 方程 3 dx y y4
思考题解答
P 2 x 6x 3 4, y y y y
Q y 2 3 x 2 6x 4, 4 x x y y
u( x , y ) 0 ( x 3 xy )d x 0 y 3dy
3 2
x
y
x4 3 2 2 y4 x y , 4 2 4
x4 3 2 2 y4 x y C. 原方程的通解为 4 2 4
2x y2 3x2 例2 求方程 3 dx dy 0的通解. 4 y y
P Q 全微分方程 . y x
2.解法:
P ( x , y )dx Q( x , y )dy 0 全微分方程
P Q 法一:应用曲线积分与路径无关. y x
通解为 u( x , y ) x P ( x , y )d x y Q( x0 , y )dy
P 6 x Q 解 4 , 是全微分方程, y y x 1 2x 3x2 将左端重新组合 2 dy ( 3 dx 4 dy ) y y y
2 1 x 1 x d ( ) d ( 3 ) d ( 3 ), y y y y 2 1 x 原方程的通解为 3 C . y y
2
dy x2 x3 y 的通解. 例6 求微分方程 dx 1 x
解1
dy 1 2 y x , 整理得 dx 1 x
公式法:
ye
1 dx 1 x
[ x e
2
1 dx 1 x
Hale Waihona Puke dx C ],x x 通解为 y xy C. 3 4
12-5全微分方程

d(1y)d(xy32)
d(
1 y
x2 y3
),
原方程的通解为
1 y
x2 y3
C.
例3 求微分方程
2 x (1 x 2y)d xx 2y d y 0 的.通
解 2 x d 2 xx x 2 y d x x 2 y d 0 y ,
d ( x 2 ) x 2 y d ( x 2 ) x 2 y d 0 y ,
0
0
x43x2y2y4,
42
4
原方程的通解为 x43x2y2y4C.
42
4
方法二
因为 P6xyQ, 原方程是全微分方程,
y
x
所以
ux33x2,yuy33x2y,
x
y
从而
u (x 3 3 x 2 ) d y 1 x x 4 3 x 2 y 2 (y ) 42
( y) 为任意连续可微函数。而
u y3 3x2y y
所以 故
3 x 2 y (y ) y 3 3 x 2 y
( y) 1 y4
4
u1x43x2y21y4 42 4
原方程的通解为 1x43x2y21y4C
42 4
例2 求方 2 yx 3d程 x y2 y4 3x2dy 0的通 .
解 Py 6yx4 Q x, 是全微分方程, 将左端重新组合 y12dy(2yx3dx3yx42dy)
u (x ,y )x (x 2 x 3 y )d xyd,y
0
0
B 凑微分法:
d ( x y d y) d y x 2 d x x x 3 d 0 x ,
dyd(x)ydx3dx40, 34
x3 x4 d(yxy )0.
34
高等数学下(同济大学第五版)课后习题答案1(精品文档)

第八章 多元函数微分法及其应用第一节 多元函数的基本概念本节主要概念,定理,公式和重要结论理解多元函数的概念,会表达函数,会求定义域; 理解二重极限概念,注意A y x f y x y x =→),(lim),(),(00是点),(y x 以任何方式趋于),(00y x ;注意理解本节中相关概念与一元函数中相应内容的区分与联系。
习题 8-11.求下列函数表达式:(1)xy y x y x f +=),(,求),(y x xy f +解:(,)()x yxy f xy x y xyx y ++=++(2)22),(y x y x y x f -=-+,求),(y x f解:(,)()()(,)f x y x y x y x y f x y xy +-=-+⇒= 2.求下列函数的定义域,并绘出定义域的图形: (1)221)1ln(yx x y x z --+-+=解:22221011010x y x y x y x y x +->⎧+>⎧⎪-->⇒⎨⎨+<⎩⎪≥⎩(2))12ln(2+-=y x z 解:2210x y -+>(3) |)|||1ln(),(y x y x f --= 解:1||||0||||1x y x y -->⇒+< 3.求下列极限:(1)22)1,0(),(1limy x xyx y x ++-→解:22(,)(0,1)1lim1x y x xyx y →-+=+ (2)xyxy y x 42lim)0,0(),(+-→解一:(,)(0,0)(,)(0,0)(,)(0,0)18lim2lim2lim 4x y x y x y xyxy →→→=-=-=-(3)yxy x y x )sin()2(lim )0,1(),(+→(4)2222011limy x y x y x +-+→→解一:(,)(1,0)(,)(1,0)sin()sin()lim (2)lim [(2)]3x y x y xy xy x x x y xy→→+=+=解二:(,)(1,0)(,)(1,0)(,)(1,0)sin()lim (2)lim (2)lim (2)3x y x y x y xy xyx x x x y y →→→+=+=+= (4)22220011limyx y x y x +-+→→解一:2222222200000011lim lim()022x x x y y y x y y x xy x y →→→→→→==⋅=++ 解二:222222000000x x x y y y y x y →→→→→→===+ 4.证明下列函数当)0,0(),(→y x 时极限不存在:(1)2222),(yx y x y x f +-=解:222222222222001lim lim 1x x y kxx y x k x k x y x k x k →→=---==+++ (2)22222)(),(y x y x y x y x f -+= 解:224222400lim lim 1()x x y x x y x x y x y x →→===+- 2222200lim 0()x y x y x y x y →==+- 5.下列函数在何处是间断的? (1) yx z -=1解:x y =(2)x y xy z 2222-+=解:22y x =第二节 偏导数本节主要概念,定理,公式和重要结论1.偏导数:设),(y x f z =在),(00y x 的某一邻域有定义,则xy x f y x x f y x f x x ∆∆∆),(),(lim),(0000000-+=→, yy x f y y x f y x f y y ∆∆∆),(),(lim ),(0000000-+=→. ),(00y x f x 的几何意义为曲线⎩⎨⎧==0),(y y y x f z 在点)),(,,(0000y x f y x M 处的切线对x 轴的斜率.),(y x f 在任意点),(y x 处的偏导数),(y x f x 、),(y x f y 称为偏导函数,简称偏导数.求),(y x f x 时,只需把y 视为常数,对x 求导即可. 2.高阶偏导数),(y x f z =的偏导数),(),,(y x f y x f y x 的偏导数称为二阶偏导数,二阶偏导数的偏导数称为三阶偏导数,如此类推. 二阶偏导数依求导次序不同,有如下4个:xy zy x z y z x z ∂∂∂∂∂∂∂∂∂∂222222,,,,其中后两个称为混合偏导数. 若两个混合偏导数皆为连续函数,则它们相等,即可交换求偏导数的次序.高阶混合偏导数也有类似结果.习题 8-21.求下列函数的一阶偏导数:(1)xy y xz +=解:21,z z xy x x y y y∂∂=+=-+∂∂ (2)xyz arctan =解:2222222111,1()1()z y y z x y y x x x y y x x y x x∂--∂=⋅==⋅=∂+∂+++ (3))ln(22y x x z ++=解:(1z x ∂=+=∂z y ∂==∂ (4))ln(222z y x u ++=解:222222222222,,u x u y u z x x y z y x y z z x y z∂∂∂===∂++∂++∂++ (5)⎰=yzxzt dt e u 2解:22222222,,x z y z y z x z u u u ze ze ye xe x y z∂∂∂=-==-∂∂∂ (6)x y y x z cos sin = 解:2211cos cos sin sin ,cos cos sin sin z x y y x y u x x y x y x y y x x y x y y y x x y x ∂∂=+=--∂∂ (7)y x xy z ++=)1( (8))cos(ϕθϕθ-=+e u解:(1)[ln(1)],(1)[ln(1)]11x y x y z x y u x y xy xy y xy xy x x xy y xy ++∂+∂+=+++=+++∂+∂+ (8))cos(ϕθϕθ-=+e u解:[cos()sin()],[cos()sin()]u u e e θϕθϕθϕθϕθϕθϕθϕ++∂∂=---=-+-∂∂ 2.求下列函数在指定点处的一阶偏导数: (1)yxy x z arcsin)1(2-+=,求)1,0(x z 解:20(0,1)lim0x x x z x∆→∆==∆ (2)xyx e x z yarctan)1(2-+=,求)0,1(y z 解:01(1,0)lim1y y y e z y∆∆→-==-∆ 3.求下列函数的高阶偏导数:(1))ln(xy x z =, 求22x z ∂∂,22yz ∂∂,y x z∂∂∂2解:ln()1,z z x xy x y y∂∂=+=∂∂ 22222211,,z z x z x x y y x y y∂∂∂==-=∂∂∂∂ (2))2(cos 2y x z +=,求22x z ∂∂,22yz ∂∂,y x z ∂∂∂2,x y z ∂∂∂2解:2cos(2)sin(2)sin 2(2)z x y x y x y x∂=-++=-+∂4cos(2)sin(2)2sin 2(2)zx y x y x y y∂=-++=-+∂ 222222cos 2(2),8cos 2(2),4cos 2(2)z z zx y x y x y x y x y∂∂∂=-+=-+=-+∂∂∂∂ (3)⎰+=22 y x xtdt e z , 求22x z ∂∂, yx z∂∂∂2解:22222222222,2(12),4x y x x y x x y z z z xe e x e e xye x x x y+++∂∂∂=-=+-=∂∂∂∂ 4.设⎪⎩⎪⎨⎧=+≠++-=0 00),(22222233y x y x y x xy y x y x f ,求)0,0(xy f 和)0,0(yx f .解:00(0)(0,0)00(0,0)lim lim 0x x x f x f f x x ∆→∆→∆--===∆∆,00(0,)(0,0)00(0,0)lim lim 0y y y f y f f y y ∆→∆→∆--===∆∆4224222224(,),0()x x x y y f x y y x y x y +-=+≠+ 4224222224(,),0()y x x y y f x y x x y x y --=+≠+ 54000(0,)(0,0)(0,0)lim lim 1x x xy y y y f y f yf y y∆→∆→-∆-∆-∆===-∆∆54000(,0)(0,0)(0,0)lim lim 1x x yx x x x f x f x f x x ∆→∆→∆-∆-∆===∆∆5.设)11(y x e z +-=, 求证z y z y x z x222=∂∂+∂∂ 解: 1111()()2211,x y x y z z e ex x y y-+-+∂∂==∂∂ 111111()()()2222221122x yx y x y z z x y x e y e e z x y x y-+-+-+∂∂+=⋅+⋅==∂∂ 6.设222z y x r ++=, 证明r zr y r x r 2222222=∂∂+∂∂+∂∂证明: 22222223,r x r x r r x r r x x r x r x r r r ∂--∂∂-∂=====∂∂由轮换对称性, 2222222323,r r y r r z y r z r∂-∂-==∂∂ 222222222223321r r r r x y z r x y z r r r∂∂∂---++===∂∂∂ 第三节 全微分本节主要概念,定理,公式和重要结论 1.全微分的定义若函数),(y x f z =在点),(00y x 处的全增量z ∆表示成22),(y x o y B x A z ∆+∆=+∆+∆=∆ρρ则称),(y x f z =在点),(00y x 可微,并称Bdy Adx y B x A +=+∆∆为),(y x f z =在点),(00y x 的全微分,记作dz .2.可微的必要条件:若),(y x f z =在),(00y x 可微,则 (1)),(y x f 在),(00y x 处连续;(2)),(y x f 在),(00y x 处可偏导,且),(),,(0000y x f B y x f A y x ==,从而dy y x f dx y x f dz y x ),(),(0000+=.一般地,对于区域D 内可微函数, dy y x f dx y x f dz y x ),(),(+=.3.可微的充分条件:若),(y x f z =在),(00y x 的某邻域内可偏导,且偏导数在),(00y x 处连续,则),(y x f z =在),(00y x 可微。