高等数学第六版上下册(同济大学出版社)

合集下载

最新同济大学第六版高等数学上下册课后习题答案8-6

最新同济大学第六版高等数学上下册课后习题答案8-6

同济大学第六版高等数学上下册课后习题答案8-6仅供学习与交流,如有侵权请联系网站删除 谢谢2习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12(-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2 π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T .因此在点)22 ,1 ,12(-π处, 切线方程为 22211121-=-=-+z y x π, 法平面方程为 0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程.解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t . 在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为仅供学习与交流,如有侵权请联系网站删除 谢谢3 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为 0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0. 3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x 的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 对x 求导得,仅供学习与交流,如有侵权请联系网站删除 谢谢4⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程.解 令F (x , y , z )=e z -z +xy -3, 则仅供学习与交流,如有侵权请联系网站删除 谢谢5n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程. 解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++, 法线方程为 000000cz z z by y y ax x x -=-=-.仅供学习与交流,如有侵权请联系网站删除 谢谢68. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程. 解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z , 解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6).仅供学习与交流,如有侵权请联系网站删除 谢谢7 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为 0)(1)(1)(1000000=-+-+-z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为 a z y x a az ay ax =++=++)(000000.。

高等数学-同济大学第六版--高等数学课件第一章函数与极限

高等数学-同济大学第六版--高等数学课件第一章函数与极限

函数与极限
x
4
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
2024/7/17
函数与极限
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2024/7/17
函数与极限
2
数集分类: N----自然数集 Z----整数集
2024/7/17
函数与极限
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
(通常说周期函数的周期是指其最小正周期).
3l
l
2
2
l 2
3l 2
2024/7/17
函数与极限
25
四、反函数
y 反函数y ( x)
Q(b, a )
直接函数y f ( x)
o
P(a, b)
x
直接函数与反函数的图形关于直线 y x对称.
2024/7/17
函数与极限
26
五、小结
基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数

同济大学第六版高等数学上下册课后习题答案5-2

同济大学第六版高等数学上下册课后习题答案5-2

同济大学第六版高等数学上下册课后习题答案5-2 1. 试求函数⎰=xtdt y 0sin 当x =0及4π=x 时的导数. 解 x tdt dx d y x sin sin 0=='⎰, 当x =0时, y '=sin0=0; 当4π=x 时, 224sin =='πy . 2. 求由参数表示式⎰=t udu x 0sin , ⎰=tudu y 0cos 所给定的函数y 对x 的导数.解 x '(t )=sin t , y '(t )=cos t , t t x t y dx dy cos )()(=''=. 3. 求由⎰⎰=+x y ttdt dt e 000cos 所决定的隐函数y 对x 的导数dxdy . 解 方程两对x 求导得0cos =+'x y e y ,于是 ye x dx dy cos-=. 4. 当x 为何值时, 函数⎰-=x t dt te x I 02)(有极值? 解 2)(x xe x I -=', 令I '(x )=0, 得x =0. 因为当x <0时, I '(x )<0; 当x >0时, I '(x )>0,所以x =0是函数I (x )的极小值点.5. 计算下列各导数:(1)⎰+2021x dt t dx d ; (2)⎰+32411x x dt tdx d ; (3)⎰x xdt t dx d cos sin 2)cos(π. 解 (1)dxdu dt t du d u x dt t dx d u x ⋅+=+⎰⎰02202112令 421221x x x u +=⋅+=.(2)⎰⎰⎰+++=+323204044111111x x x x dt tdx d dt t dx d dt t dx d ⎰⎰+++-=3204041111x x dt t dx d dt t dx d )()(11)()(11343242'⋅++'⋅+-=x x x x 12281312xx x x +++-=. (3)⎰⎰⎰+-=x x x x dt t dx d dt t dx d dt t dx d cos 02sin 02cos sin 2)cos()cos()cos(πππ ))(cos cos cos())(sin sin cos(22'+'-=x x x x ππ)cos cos(sin )sin cos(cos 22x x x x ππ⋅-⋅-=)sin cos(sin )sin cos(cos 22x x x x πππ-⋅-⋅-=)sin cos(sin )sin cos(cos 22x x x x ππ⋅+⋅-=)sin cos()cos (sin 2x x x π-=.6. 计算下列各定积分:(1)⎰+-adx x x 02)13(; 解 a a a x x x dx x x a a+-=+-=+-⎰230230221|)21()13(. (2)⎰+2142)1(dx xx ; 解 852)11(31)22(31|)3131()1(333321332142=---=-=+---⎰x x dx x x . (3)⎰+94)1(dx x x ; 解 94223942194|)2132()()1(x x dx x x dx x x +=+=+⎰⎰ 6145)421432()921932(223223=+-+=. (4)⎰+33121x dx ; 解 66331arctan 3arctan arctan 13313312πππ=-=-==+⎰x x dx . (5)⎰--212121x dx ; 解 3)6(6)21arcsin(21arcsin arcsin 1212121212πππ=--=--==---⎰x x dx .(6)⎰+a x a dx 3022; 解 a a a a xa x a dx aa 30arctan 13arctan 1arctan 1303022π=-==+⎰. (7)⎰-1024x dx ; 解 60arcsin 21arcsin 2arcsin 410102π=-==-⎰x x dx . (8)dx x x x ⎰-+++012241133; 解 013012201224|)arctan ()113(1133---+=++=+++⎰⎰x x dx x x dx x x x 41)1arctan()1(3π+=----=. (9)⎰---+211e x dx ; 解 1ln 1ln ||1|ln 12121-=-=+=+------⎰e x x dx e e . (10)⎰402tan πθθd ; 解 4144tan )(tan )1(sec tan 40402402πππθθθθθθπππ-=-=-=-=⎰⎰d d . (11)dx x ⎰π20|sin |; 解 ⎰⎰⎰-=ππππ2020sin sin |sin |xdx xdx dx x πππ20cos cos x x +-==-cos π +cos0+cos2π-cos π=4.(12)⎰20)(dx x f , 其中⎪⎩⎪⎨⎧>≤+=1 211 1)(2x x x x x f . 解 38|)61(|)21(21)1()(2131022121020=++=++=⎰⎰⎰x x x dx x dx x dx x f . 7. 设k 为正整数. 试证下列各题: (1)⎰-=ππ0cos kxdx ; (2)⎰-=ππ0sin kxdx ; (3)⎰-=πππkxdx 2cos ; (4)⎰-=πππkxdx 2sin . 证明 (1)⎰--=-=--==ππππππ000)(sin 1sin 1|sin 1cos k k k k kx k kxdx . (2))(cos 1cos 1cos 1sin ππππππ-+-=-=--⎰k k k k x k k kxdx 0cos 1cos 1=+-=ππk kk k . (3)πππππππππ=+=+=+=---⎰⎰22|)2sin 21(21)2cos 1(21cos 2kx k x dx kx kxdx . (4)πππππππππ=+=-=-=---⎰⎰22|)2sin 21(21)2cos 1(21sin 2kx k x dx kx kxdx . 8. 设k 及l 为正整数, 且k ≠l . 试证下列各题:(1)⎰-=ππ0sin cos lxdx kx ; (2)⎰-=ππ0cos cos lxdx kx ;(3)⎰-=ππ0sin sin lxdx kx . 证明 (1)⎰⎰----+=ππππdx x l k x l k lxdx kx ])sin()[sin(21sin cos 0])cos()(21[])cos()(21[=----++-=--ππππx l k l k x l k l k . (2)⎰⎰---++=ππππdx x l k x l k lxdx kx ])cos()[cos(21cos cos 0])sin()(21[])sin()(21[=--+++=--ππππx l k l k x l k l k . (3)⎰⎰----+-=ππππdx x l k x l k lxdx kx ])cos()[cos(21sin sin . 0])sin()(21[])sin()(21[=--+++-=--ππππx l k l k x l k l k . 9. 求下列极限:(1)x dt t x x ⎰→020cos lim;(2)⎰⎰→x t x t x dt te dt e 0220022)(lim .解 (1)11cos lim cos lim 20020==→→⎰x x dt t x x x . (2)22222200002200)(2lim )(lim x xt x t x xt x t x xe dt e dt e dtte dt e '⋅=⎰⎰⎰⎰→→ 22222002002lim 2lim x x t x x x xt x xe dt e xe edt e ⎰⎰→→=⋅=2212lim 22lim 2020222=+=+=→→x e x e e x x x x x . 10. 设⎩⎨⎧∈∈=]2 ,1[ ]1 ,0[ )(2x x x x x f . 求⎰=x dt t f x 0)()(ϕ在[0, 2]上的表达式, 并讨论ϕ(x )在(0, 2)内的连续性.解 当0≤x ≤1时, 302031)()(x dt t dt t f x xx ===⎰⎰ϕ; 当1<x ≤2时, 6121212131)()(2211020-=-+=+==⎰⎰⎰x x tdt dt t dt t f x xx ϕ. 因此 ⎪⎩⎪⎨⎧≤<-≤≤=21 612110 31)(23x x x x x ϕ. 因为31)1(=ϕ, 3131lim )(lim 30101==-→-→x x x x ϕ, 316121)6121(lim )(lim 20101=-=-=+→+→x x x x ϕ, 所以ϕ(x )在x =1处连续, 从而在(0, 2)内连续.11. 设⎪⎩⎪⎨⎧><≤≤=ππx x x x x f 或0 00 sin 21)(. 求⎰=x dt t f x 0)()(ϕ在(-∞, +∞)内的表达式.解 当x <0时,00)()(00===⎰⎰xx dt dt t f x ϕ; 当0≤x ≤π时,21cos 21|cos 21sin 21)()(000+-=-===⎰⎰x t tdt dt t f x x xx ϕ; 当x >π时,πππϕ000|cos 210sin 21)()(t dt tdt dt t f x x x -=+==⎰⎰⎰ 10cos 21cos 21=+-=π. 因此 ⎪⎩⎪⎨⎧≥≤≤-<=ππϕx x x x x 10 )cos 1(210 0)(. 12. 设f (x )在[a , b ]上连续, 在(a , b )内可导且f '(x )≤0,⎰-=x adt t f a x x F )(1)(. 证明在(a , b )内有F '(x )≤0.证明 根据积分中值定理, 存在ξ∈[a , x ], 使))(()(a x f dt t f x a -=⎰ξ. 于是有)(1)()(1)(2x f ax dt t f a x x F x a -+--='⎰ ))(()(1)(12a x f a x x f a x ----=ξ )]()([1ξf x f ax --=. 由 f '(x )≤0可知f (x )在[a , b ]上是单调减少的, 而a ≤ξ≤x , 所以f (x )-f (ξ)≤0. 又在(a , b )内, x -a >0, 所以在(a , b )内 0)]()([1)(≤--='ξf x f ax x F .。

同济大学高等数学第六版上第一章第五节 极限运算法则

同济大学高等数学第六版上第一章第五节 极限运算法则

3.无穷小的运算性质:
定理2 在同一过程中,有限个无穷小的代数和 仍是无穷小. 证 设及 是当x 时的两个无穷小,
0, N 1 0, N 2 0, 使得
当 x N 1时恒有 ; 当 x N 2时恒有 ; 2 2 取 N max{ N 1 , N 2 }, 当 x N时, 恒有 , 2 2 0 ( x )
证 必要性 设 lim f ( x ) A, 令 ( x ) f ( x ) A, x x
0
则有 lim ( x ) 0,
x x0
f ( x ) A ( x ).
充分性 设 f ( x ) A ( x ),
其中 ( x )是当x x 0时的无穷小,
又设是当x x 0时的无穷小,
0, 2 0, 使得当0 x x 0 2时 恒有 . M
取 min{ 1 , 2 }, 则当 0 x x 0 时, 恒有 u u M , M
当x x Байду номын сангаас时, u 为无穷小.
lim P ( x )
若Q( x 0 ) 0, 则商的法则不能应用.
4x 1 . 例2 求 lim 2 x 1 x 2 x 3
解 lim( x 2 2 x 3) 0,
x 1
商的法则不能用
又 lim(4 x 1) 3 0,
x 1
x 2x 3 0 lim 0. x 1 4x 1 3
1 1 例如, 当x 0时, y sin x x 是一个无界变量, 但不是无穷大.
(1) 取 x 0 1 ( k 0,1,2,3,)

第六版同济大学高等数学上下课后答案详解

第六版同济大学高等数学上下课后答案详解
1
|sin x | | x | 3 求 ( ) ( ) ( ) (2) 并作出函数 y(x) 8 设 ( x) 4 6 4 | x | 0 3
的图形 解 ( ) |sin | 1 ( ) |sin | 2 ( ) |sin( )| 2 (2) 0 6 6 2 4 4 2 4 4 2 9 试证下列函数在指定区间内的单调性 (1) y x ( 1) 1 x (2)yxln x (0 ) 证明 (1)对于任意的 x1 x2( 1) 有 1x10 1x20 因为当 x1x2 时
对于映射 g YX 因为对每个 yY 有 g(y)xX 且满足 f(x)f[g(y)]Iy yy 按逆映射的定义 g 是 f 的逆映射 5 设映射 f XY AX 证明 (1)f 1(f(A))A (2)当 f 是单射时 有 f 1(f(A))A 证明 (1)因为 xA f(x)yf(A) f 1(y)xf 1(f(A)) f 1(f(A))A 所以 (2)由(1)知 f 1(f(A))A 另一方面 对于任意的 xf 1(f(A))存在 yf(A) 使 f 1(y)xf(x)y 因为 yf(A)且 f 是单射 所以 xA 这就证明了 f 1(f(A))A 因此 f 1(f(A))A 6 求下列函数的自然定义域 (1) y 3x 2 解 由 3x20 得 x 2 函数的定义域为 [ 2 , ) 3 3 (2) y 1 2 1 x 解 由 1x20 得 x1 函数的定义域为( 1)(1 1)(1 ) (3) y 1 1 x 2 x 解 由 x0 且 1x20 得函数的定义域 D[1 0)(0 1] (4) y
y1 y2
x1 x x1 x2 2 0 1 x1 1 x2 (1 x1)(1 x2 )

考研高等数学教材

考研高等数学教材

高等数学:同济大学编写的高等数学第6版高等教育出版社(绿色)最好别用第5版的,因为第6版的总复习题和考研题很接近,有的就是考研的真题,所以对你的前期复习有帮助。

线性代数:同济大学编写的线性代数第4版或第5版高等教育出版社(紫色)或清华大学居于马编写的线性代数第2版清华大学出版社(黄色)这两本都是教育部推荐的,同济的比较薄,内容紧凑;清华的比较厚,内容完整。

建议你水平高的选同济的,水平一般的选清华的。

另外线代的书,同济4版和5版都无所谓。

概率论与数理统计:浙江大学盛骤编写的概率论与数理统计第4版浙江大学出版社(蓝色)还有一本是经济数学吴传生的概率论,虽说是经济数学但内容也不错,你可以实地考察一下,一般的书店都有。

主要是吴传生这本书的习题,曾经有考题根据它改编过。

另外复习中还需要全书和题目,这个建议你去一些考研论坛看看别人的经验贴,我这里帮你把所有的辅导书列出来也没意思是吧,你根据自身的情况选一些适合自己的就可以了。

数学主要用李永乐的书,陈文灯的可以辅助一下。

高等数学:同济五版线性代数:同济六版概率论与数理统计:浙大三版推荐资料:1、李永乐考研数学3--数学复习全书+习题全解(经济类)2、李永乐《经典400题》3、《李永乐考研数学历年试题解析(数学三)真题》考研数学规划:课本+复习指导书+习题集+模拟题+真题= KO复习资料来说:李永乐的不错,注重基础;陈文灯的要难一些。

经济类一般都用李永乐的(经济类数学重基础不重难度),基础好的话可以考虑下陈文灯的书。

李永乐的线性代数很不错陈文灯的高等数学很不错文都考研《高等数学》(上下册)第六版,同济大学数学系编,高等教育出版社出版;《高等数学过关与提高》(上下册),原子能出版社出版,适合理工类考生使用。

《微积分》吴传生主编,高等教育出版社出版;《微积分过关与提高》(上下册),原子能出版社出版,适合经济类考生使用。

《线性代数》第四版,同济大学数学系编,高等教育出版社出版;《线性代数过关与提高》,原子能出版社出版,适合所有考生使用。

同济大学第六版高等数学上下册课后习题答案5-7

同济大学第六版高等数学上下册课后习题答案5-71. 判别下列各反常积分的收敛性, 如果收敛, 计算反常积分的值:(1)⎰+∞14xdx; 解 因为3131)31(lim 3131314=+-=-=-+∞→+∞-+∞⎰x x x dx x , 所以反常积分⎰+∞14x dx收敛, 且3114=⎰∞+x dx . (2)⎰+∞1xdx ;解 因为+∞=-==+∞→+∞∞+⎰22lim 211x xxdx x , 所以反常积分⎰+∞1xdx 发散.(3)dx e ax ⎰+∞-0(a >0); 解 因为aa e a e adx e ax x ax ax 11)1(lim 100=+-=-=-+∞→+∞-+∞-⎰, 所以反常积分dx e ax ⎰+∞-0收敛, 且adx e ax 10=⎰+∞-.(4)⎰+∞-0ch tdt e pt (p >1); 解 因为1]1111[21][21ch 20)1()1(0)1()1(0-=+--=+=+∞+--∞++--∞+-⎰⎰p p e pe p dt e e tdt e tp t p t p tp pt ,所以反常积分⎰+∞-0ch tdt e pt 收敛, 且1ch 20-=⎰∞+-p p tdt e pt .(5)⎰+∞-0sin tdt e pt ω(p >0, ω>0); 解⎰⎰+∞-+∞--=0cos 1sin t d e tdt ept ptωωω⎰⎰+∞-+∞-+∞--=-⋅+-=020sin 1)(cos 1cos 1t d e pdt pe t te pt pt pt ωωωωωωω⎰+∞-+∞--⋅+-=0202)(sin sin 1dt pe t pte p ptpt ωωωωω⎰+∞--=022sin 1tdt e p pt ωωω,所以 22sin w p tdt e pt +=⎰+∞-ωω.(6)⎰+∞∞-++222x x dx;解 πππ=--=+=++=++⎰⎰+∞∞-+∞∞-+∞∞-)2(2)1arctan()1(12222x x dxx x dx . (7)dx xx ⎰-121;解 这是无界函数的反常积分, x =1是被积函数的瑕点.11)1(lim 112110212=+--=--=--→⎰x x dx x x x .(8)⎰-22)1(x dx;解 这是无界函数的反常积分, x =1是被积函数的瑕点. 因为⎰⎰⎰-+-=-212102202)1()1()1(x dxx dx x dx , 而 +∞=--=-=--→⎰111lim 11)1(110102x x x dx x ,所以反常积分⎰-202)1(x dx发散.(9)⎰-211x xdx ;解 这是无界函数的反常积分, x =1是被积函数的瑕点.21232121]12)1(32[)111(1-+-=-+-=-⎰⎰x x dx x x x xdx322]12)1(32[lim 38231=-+--=+→x x x .(10)⎰-ex x dx 12)(ln 1.解 这是无界函数的反常积分, x =e 是被积函数的瑕点.2)arcsin(ln lim )arcsin(ln ln )(ln 11)(ln 111212π===-=--→⎰⎰x x x d x x x dx ex e ee.2. 当k 为何值时, 反常积分⎰+∞)(ln kx x dx收敛? 当k 为何值时, 这反常积分发散? 又当k 为何值时, 这反常积分取得最小值?解 当k <1时, +∞=-==+∞+-+∞+∞⎰⎰2122)(ln 11ln )(ln 1)(ln k kk x k x d x x x dx ;当k =1时, +∞===+∞+∞+∞⎰⎰222)ln(ln ln ln 1)(ln x x d x x x dxk ; 当k >1时,k k kkk x kx d x x x dx -+∞+-+∞+∞-=-==⎰⎰12122)2(ln 11)(ln 11ln )(ln 1)(ln . 因此当k >1时, 反常积分⎰+∞0)(ln k x x dx 收敛; 当k ≤1时, 反常积分⎰+∞0)(ln k x x dx发散. 当k >1时, 令kk k x x dx k f -∞+-==⎰10)2(ln 11)(ln )(, 则 )2ln ln 11()1(2ln ln )2(ln 2ln ln )2(ln 11)2(ln )1(1)(21112+---=----='---k k k k k f k kk. 令f '(k )=0得唯一驻点2ln ln 11-=k . 因为当2ln ln 111-<<k 时f '(k )<0, 当2ln ln 11->k 时f '(k )>0, 所以2ln ln 11-=k 为极小值点, 同时也是最小值点, 即当2ln ln 11-=k 时, 这反常积分取得最小值 3. 利用递推公式计算反常积分⎰+∞-=0dx e x I x n n . 解 因为101000-+∞--+∞-+∞-+∞-=+-=-==⎰⎰⎰n x n x n x n x n n nI dx e x n e x de x dx e x I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1. 又因为 1000001=-=+-=-==+∞-+∞-+∞-+∞-+∞-⎰⎰⎰xx x x x e dx e xe xde dx xe I ,所以 I n = n ⋅(n -1)⋅(n -2)⋅ ⋅ ⋅2⋅I 1=n !.。

最新同济大学第六版高等数学上下册课后习题答案9-2

同济大学第六版高等数学上下册课后习题答案9-2仅供学习与交流,如有侵权请联系网站删除 谢谢13 习题9-21. 计算下列二重积分:(1)⎰⎰+Dd y x σ)(22, 其中D ={(x , y )| |x |≤1, |y |≤1};解 积分区域可表示为D : -1≤x ≤1, -1≤y ≤1. 于是⎰⎰+D d y x σ)(22y d y x dx ⎰⎰--+=111122)(x d y y x ⎰--+=111132]31[ x d x ⎰-+=112)312(113]3232[-+=x x 38=. (2)⎰⎰+Dd y x σ)23(, 其中D 是由两坐标轴及直线x +y =2所围成的闭区域: 解 积分区域可表示为D : 0≤x ≤2, 0≤y ≤2-x . 于是⎰⎰+D d y x σ)23(y d y x dx x ⎰⎰-+=2020)23(dx y xy x ⎰-+=20022]3[ dx x x ⎰-+=202)224(0232]324[x x x -+=320=. (3)⎰⎰++Dd y y x x σ)3(223, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤1};解 ⎰⎰++D d y y x x σ)3(323⎰⎰++=1032310)3(dx y y x x dy ⎰++=1001334]4[dy x y y x x ⎰++=103)41(dy y y 0142]424[y y y ++=1412141=++=. (4)⎰⎰+Dd y x x σ)cos(, 其中D 是顶点分别为(0, 0), (π, 0), 和(π, π)的三角形闭区域.解 积分区域可表示为D : 0≤x ≤π, 0≤y ≤x . 于是,⎰⎰+D d y x x σ)cos(⎰⎰+=x dy y x xdx 00)cos(π⎰+=π0)][sin(dx y x x x ⎰-=π0)sin 2(sin dx x x x ⎰--=π0)cos 2cos 21(x x xd仅供学习与交流,如有侵权请联系网站删除 谢谢13+--=0|)cos 2cos 21(πx x x dx x x ⎰-π0)cos 2cos 21(π23-=. . 2. 画出积分区域, 并计算下列二重积分: (1)⎰⎰Dd y x σ, 其中D 是由两条抛物线x y =, 2x y =所围成的闭区域;解 积分区域图如, 并且D ={(x , y )| 0≤x ≤1, x y x ≤≤2}. 于是 ⎰⎰D d y x σ⎰⎰=102dy y x dx x x ⎰=10223]32[dx y x x x 556)3232(10447=-=⎰dx x x . (2)⎰⎰Dd xy σ2, 其中D 是由圆周x 2+y 2=4及y 轴所围成的右半闭区域;解 积分区域图如, 并且D ={(x , y )| -2≤y ≤2, 240y x -≤≤}. 于是 ⎰⎰⎰⎰⎰----=22402240222222]21[dy y x dx xy dy d xy y y D σ 1564]10132[)212(22225342=-=-=--⎰y y dy y y . (3)⎰⎰+Dy x d e σ, 其中D ={(x , y )| |x |+|y |≤1};解 积分区域图如, 并且D ={(x , y )| -1≤x ≤0, -x -1≤y ≤x +1}⋃{(x , y )| 0≤x ≤1, x -1≤y ≤-x +1}.于是⎰⎰⎰⎰⎰⎰+--+---++=11101101x x y x x x y x D y x dy e dx e dy e dx e d eσ ⎰⎰+---+--+=10110111][][dy e e dx e e x x y x x x y x ⎰⎰---+-+-=101201112)()(dx e e dx e e x x 101201112]21[]21[---+-+-=x x e ex x e e =e -e -1. (4)⎰⎰-+Dd x y x σ)(22, 其中D 是由直线y =2, y =x 及y =2x 轴所围成的闭区域.仅供学习与交流,如有侵权请联系网站删除 谢谢13解 积分区域图如, 并且D ={(x , y )| 0≤y ≤2, y x y ≤≤21}. 于是 ⎰⎰⎰⎰⎰-+=-+=-+2022232222022]2131[)()(dy x x y x dx x y x dy d x y x y y y y D σ 613)832419(2023=-=⎰dy y y . 3. 如果二重积分⎰⎰Ddxdy y x f ),(的被积函数f (x , y )是两个函数f 1(x )及f 2(y )的乘积,即f (x , y )= f 1(x )⋅f 2(y ), 积分区域D ={(x , y )| a ≤x ≤b , c ≤ y ≤d }, 证明这个二重积分等于两个单积分的乘积, 即])([])([)()(2121dy y f dx x f dxdy y f x f dc b a D ⎰⎰⎰⎰⋅=⋅证明 dx dy y f x f dy y f x f dx dxdy y f x f d c b a d c b a D⎰⎰⎰⎰⎰⎰⋅=⋅=⋅])()([)()()()(212121,而 ⎰⎰=⋅dc d c dy y f x f dy y f x f )()()()(2121, 故 dx dy y f x f dxdy y f x f b a dc D ⎰⎰⎰⎰=⋅])()([)()(2121.由于⎰dc dy y f )(2的值是一常数, 因而可提到积分号的外面, 于是得 ])([])([)()(2121dy y f dx x f dxdy y f x f dc b a D ⎰⎰⎰⎰⋅=⋅4. 化二重积分⎰⎰=Dd y x f I σ),(为二次积分(分别列出对两个变量先后次序不同的两个二次积分), 其中积分区域D 是:(1)由直线y =x 及抛物线y 2=4x 所围成的闭区域;仅供学习与交流,如有侵权请联系网站删除 谢谢13 解积分区域如图所示, 并且D ={(x , y )|x y x x 2 ,40≤≤≤≤}, 或D ={(x , y )| y x y y ≤≤≤≤241 ,40}, 所以 ⎰⎰=x x dy y x f dx I 240),(或⎰⎰=yy dx y x f dy I 4402),(. (2)由x 轴及半圆周x 2+y 2=r 2(y ≥0)所围成的闭区域;解积分区域如图所示, 并且D ={(x , y )|220 ,x r y r x r -≤≤≤≤-},或D ={(x , y )| 2222 ,0y r x y r r y -≤≤--≤≤},所以 ⎰⎰--=220),(x r r r dy y x f dx I , 或⎰⎰---=2222),(0y r y r r dx y x f dy I .(3)由直线y =x , x =2及双曲线xy 1=(x >0)所围成的闭区域; 解积分区域如图所示, 并且D ={(x , y )|x y xx ≤≤≤≤1 ,21}, 或D ={(x , y )| 21 ,121≤≤-≤≤x yy }⋃{(x , y )|2 ,21≤≤≤≤x y y }, 所以 ⎰⎰=x x dy y x f dx I 1),(21, 或⎰⎰⎰⎰+=22121121),(),(y ydx y x f dy dx y x f dy I .仅供学习与交流,如有侵权请联系网站删除 谢谢13 (4)环形闭区域{(x , y )| 1≤x 2+y 2≤4}.解 如图所示, 用直线x =-1和x =1可将积分区域D 分成四部分, 分别记做D 1, D 2, D 3, D 4. 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ ⎰⎰⎰⎰--------+=222244411112),(),(x x x x dy y x f dx dy y x f dx ⎰⎰⎰⎰--------++222214442111),(),(x x x x dy y x f dx dy y x f dx用直线y =1, 和y =-1可将积分区域D 分成四部分, 分别记做D 1, D 2, D 3, D 4, 如图所示. 于是⎰⎰⎰⎰⎰⎰⎰⎰+++=4321),(),(),(),(D D D D d y x f d y x f d y x f d y x f I σσσσ ⎰⎰⎰⎰--------+=222244141121),(),(y y y y dx y x f dy dx y x f dy ⎰⎰⎰⎰--------++222241441211),(),(y y y y dx y x f dy dx y x f dy5. 设f (x , y )在D 上连续, 其中D 是由直线y =x 、y =a 及x =b (b >a )围成的闭区域, 证明:⎰⎰⎰⎰=byb a x a b a dx y x f dy dy y x f dx ),(),(.仅供学习与交流,如有侵权请联系网站删除 谢谢13证明 积分区域如图所示, 并且积分区域可表示为D ={(x , y )|a ≤x ≤b , a ≤y ≤x }, 或D ={(x , y )|a ≤y ≤b , y ≤x ≤b }.于是 ⎰⎰D d y x f σ),(⎰⎰=x a b a dy y x f dx ),(, 或⎰⎰D d y x f σ),(⎰⎰=b yb a dx y x f dy ),(.因此 ⎰⎰⎰⎰=by b a x a b a dx y x f dy dy y x f dx ),(),(. 6. 改换下列二次积分的积分次序:(1)⎰⎰ydx y x f dy 010),(; 解 由根据积分限可得积分区域D ={(x , y )|0≤y ≤1, 0≤x ≤y }, 如图.因为积分区域还可以表示为D ={(x , y )|0≤x ≤1, x ≤y ≤1}, 所以⎰⎰⎰⎰=110010),(),(x y dy y x f dx dx y x f dy . (2)⎰⎰yy dx y x f dy 2202),(; 解 由根据积分限可得积分区域D ={(x , y )|0≤y ≤2, y 2≤x ≤2y }, 如图.因为积分区域还可以表示为D ={(x , y )|0≤x ≤4, x y x ≤≤2}, 所以 ⎰⎰y y dx y x f dy 2202),(⎰⎰=402),(xx dy y x f dx . (3)⎰⎰---221110),(y y dx y x f dy ;解 由根据积分限可得积分区域}11 ,10|),{(22y x y y y x D -≤≤--≤≤=, 如图. 因为积分区域还可以表示为}10 ,11|),{(2x y x y x D -≤≤≤≤-=, 所以仅供学习与交流,如有侵权请联系网站删除 谢谢13 ⎰⎰⎰⎰-----=22210111110),(),(x y y dy y x f dx dx y x f dy (4)⎰⎰--21222),(x x x dy y x f dx ;解 由根据积分限可得积分区域}22 ,21|),{(2x x y x x y x D -≤≤-≤≤=, 如图. 因为积分区域还可以表示为}112 ,10|),{(2y x y y y x D -+≤≤-≤≤=, 所以 ⎰⎰--21222),(x x x dy y x f dx ⎰⎰-+-=101122),(y y dx y x f dy . (5)⎰⎰e x dy y x f dx 1ln 0),(;解 由根据积分限可得积分区域D ={(x , y )|1≤x ≤e , 0≤y ≤ln x }, 如图.因为积分区域还可以表示为D ={(x , y )|0≤y ≤1, e y ≤x ≤ e }, 所以⎰⎰e x dy y x f dx 1ln 0),(⎰⎰=10),(ee y dx y xf dy (6)⎰⎰-x xdy y x f dx sin 2sin 0),(π(其中a ≥0).解 由根据积分限可得积分区域}sin 2sin ,0|),{(x y x x y x D ≤≤-≤≤=π, 如图. 因为积分区域还可以表示为}arcsin 2 ,01|),{(π≤≤-≤≤-=x y y y x D}arcsin arcsin ,10|),{(y x y y y x -≤≤≤≤⋃π,所以 ⎰⎰⎰⎰⎰⎰----+=y y y x xdx y x f dy dx y x f dy dy y x f dx arcsin arcsin 10arcsin 201sin 2sin 0),(),(),(πππ.7. 设平面薄片所占的闭区域D 由直线x +y =2, y =x 和x 轴所围成, 它的面密度为μ(x , y )=x 2+y 2, 求该薄片的质量.仅供学习与交流,如有侵权请联系网站删除 谢谢13解 如图, 该薄片的质量为⎰⎰=D d y x M σμ),(⎰⎰+=D d y x σ)(22⎰⎰-+=10222)(y y dx y x dy ⎰-+-=10323]372)2(31[dy y y y 34=. 8. 计算由四个平面x =0, y =0, x =1, y =1所围成的柱体被平面z =0及2x +3y +z =6截得的立体的体积.解 四个平面所围成的立体如图, 所求体积为⎰⎰--=D dxdy y x V )326(⎰⎰--=1010)326(dy y x dx ⎰--=10102]2326[dx y xy y ⎰=-=1027)229(dx x .9. 求由平面x =0, y =0, x +y =1所围成的柱体被平面z =0及抛物面x 2+y 2=6-z 截得的立体的体积.解 立体在xOy 面上的投影区域为D ={(x , y )|0≤x ≤1, 0≤y ≤1-x }, 所求立体的体积为以曲面z =6-x 2-y 2为顶, 以区域D 为底的曲顶柱体的体积, 即⎰⎰--=D d y x V σ)6(22⎰⎰---=101022)6(x dy y x dx 617=. 10. 求由曲面z =x 2+2y 2及z =6-2x 2-y 2所围成的立体的体积.解 由⎩⎨⎧--=+=2222262yx z y x z 消去z , 得x 2+2y 2=6-2x 2-y 2, 即x 2+y 2=2, 故立体在x O y 面上的投影区域为x 2+y 2≤2, 因为积分区域关于x 及y 轴均对称, 并且被积函数关于x , y 都是偶函数, 所以仅供学习与交流,如有侵权请联系网站删除 谢谢13 ⎰⎰+---=D d y x y x V σ)]2()26[(2222⎰⎰--=Dd y x σ)336(22⎰⎰---=2202220)2(12x dy y x dx π6)2(82032=-=⎰dx x . 11. 画出积分区域, 把积分⎰⎰D dxdy y x f ),(表示为极坐标形式的二次积分, 其中积分区域D 是:(1){(x , y )| x 2+y 2≤a 2}(a >0);解积分区域D 如图. 因为D ={(ρ, θ)|0≤θ≤2π, 0≤ρ≤a }, 所以⎰⎰⎰⎰=DD d d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ200)sin ,cos (d f d a. (2){(x , y )|x 2+y 2≤2x };解 积分区域D 如图. 因为}cos 20 ,22|),{(θρπθπθρ≤≤≤≤-=D , 所以⎰⎰⎰⎰=DD d d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰-=22cos 20)sin ,cos (ππθρρθρθρθd f d .(3){(x , y )| a 2≤x 2+y 2≤b 2}, 其中0<a <b ;解 积分区域D 如图. 因为D ={(ρ, θ)|0≤θ≤2π, a ≤ρ≤b }, 所以⎰⎰⎰⎰=DD d d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰=πρρθρθρθ20)sin ,cos (ba d f d . (4){(x , y )| 0≤y ≤1-x , 0≤x ≤1}.解 积分区域D 如图. 因为}sin cos 10 ,20|),{(θθρπθθρ+≤≤≤≤=D , 所以 ⎰⎰⎰⎰=DD d d f dxdy y x f θρρθρθρ)sin ,cos (),(⎰⎰+=θθρρθρθρθπsin cos 1020)sin ,cos (d f d .12. 化下列二次积分为极坐标形式的二次积分: (1)⎰⎰101),(dy y x f dx ;解 积分区域D 如图所示. 因为}csc 0 ,24|),{(}sec 0 ,40|),{(θρπθπθρθρπθθρ≤≤≤≤⋃≤≤≤≤=D ,所以 ⎰⎰⎰⎰⎰⎰==DDd d f d y x f dy y x f dx θρρθρθρσ)sin ,cos (),(),(101⎰⎰=40sec 0)sin ,cos (πθρρθρθρθd f d ⎰⎰+24csc 0)sin ,cos (ππθρρθρθρθd f d .(2)⎰⎰+xxdy y x f dx 3222)(;解 积分区域D 如图所示, 并且 }sec 20 ,34|),{(θρπθπθρ≤≤≤≤=D , 所示 ⎰⎰⎰⎰⎰⎰=+=+xxDDd d f d y x f dy y x f dx 3222220)()()(θρρρσ⎰⎰=34sec 20)(ππθρρρθd f d .(3)⎰⎰--21110),(x xdy y x f dx ;解 积分区域D 如图所示, 并且}1sin cos 1 ,20|),{(≤≤+≤≤=ρθθπθθρD ,所以 ⎰⎰⎰⎰⎰⎰--==10112)sin ,cos (),(),(x xDDd d f d y x f dy y x f dx θρρθρθρσ⎰⎰+=2sin cos 101)sin ,cos (πθθρρθρθρθd f d(4)⎰⎰21),(x dy y x f dx .解 积分区域D 如图所示, 并且}sec tan sec ,40|),{(θρθθπθθρ≤≤≤≤=D ,所以 ⎰⎰210),(x dy y x f dx ⎰⎰⎰⎰==DDd d f d y x f θρρθρθρσ)sin ,cos (),(⎰⎰=40sec tan sec )sin ,cos (πθθθρρθρθρθd f d13. 把下列积分化为极坐标形式, 并计算积分值: (1)⎰⎰-+2202220)(x ax ady y x dx ;解 积分区域D 如图所示. 因为}cos 20 ,20|),{(θρπθθρa D ≤≤≤≤=, 所以⎰⎰-+2202220)(x ax ady y x dx ⎰⎰⋅=Dd d θρρρ2⎰⎰⋅=20cos 202πθρρρθa d d ⎰=2044cos 4πθθd a 443a π=. (2)⎰⎰+xa dy y x dx 0220;解 积分区域D 如图所示. 因为}sec 0 ,40|),{(θρπθθρa D ≤≤≤≤=, 所以⎰⎰⎰⎰⋅=+Dxa d d dy y x dx θρρρ0220⎰⎰⋅=40sec 0πθρρρθa d d ⎰=4033sec 3πθθd a )]12ln(2[63++=a . (3)⎰⎰-+xxdy y xdx 221221)(;解 积分区域D 如图所示. 因为}tan sec 0 ,40|),{(θθρπθθρ≤≤≤≤=D , 所以⎰⎰⎰⎰⋅=+--Dxx d d dy y xdx θρρρ21212212)(12tan sec 40tan sec 02140-==⋅=⎰⎰⎰-πθθπθθθρρρθd d d .(4)⎰⎰-+220220)(y a a dx y x dy .解 积分区域D 如图所示. 因为}0 ,20|),{(a D ≤≤≤≤=ρπθθρ, 所以⎰⎰⎰⎰⋅=+-Dy a ad d dx y x dy θρρρ2022022)(420028a d d aπρρρθπ=⋅=⎰⎰.14. 利用极坐标计算下列各题: (1)⎰⎰+Dy xd e σ22,其中D 是由圆周x 2+y 2=4所围成的闭区域;解 在极坐标下D ={(ρ, θ)|0≤θ≤2π, 0≤ρ≤2}, 所以 ⎰⎰⎰⎰=+DDy xd de d e θρρσρ222)1()1(2124420202-=-⋅==⎰⎰e e d e d ππρρθπρ.(2)⎰⎰++Dd y x σ)1ln(22,其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰+=++DDd d d y x θρρρσ)1ln()1ln(222)12ln 2(41)12ln 2(212)1ln(20102-=-⋅=+=⎰⎰πρρρθπd d .(3)σd xyDarctan⎰⎰, 其中D 是由圆周x 2+y 2=4, x 2+y 2=1及直线y =0, y =x 所围成的第一象限内的闭区域.解 在极坐标下}21 ,40|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⎰⎰⋅=⋅=DDDd d d d d xyθρρθθρρθσ)arctan(tan arctan⎰⎰⋅=4021πρρθθd d ⎰⎰==40321643ππρρθθd d .15. 选用适当的坐标计算下列各题: (1)dxdy y x D22⎰⎰,其中D 是由直线x =2,y =x 及曲线xy =1所围成的闭区域. 解 因为积分区域可表示为}1 ,21|),{(x y x x y x D ≤≤≤≤=, 所以dxdy y x D22⎰⎰dy y dx x x x ⎰⎰=211221⎰-=213)(dx x x 49=. (2)⎰⎰++--Dd yx y x σ222211, 其中D 是由圆周x 2+y 2=1及坐标轴所围成的在第一象限内的闭区域;解 在极坐标下}10 ,20|),{(≤≤≤≤=ρπθθρD , 所以⎰⎰⎰⎰⋅+-=++--DDd d d y x y x θρρρρσ2222221111)2(811102220-=+-=⎰⎰ππρρρρθπd d .(3)⎰⎰+Dd y x σ)(22, 其中D 是由直线y =x , y =x +a , y =a , y =3a (a >0)所围成的闭区域;解 因为积分区域可表示为D ={(x , y )|a ≤y ≤3a , y -a ≤x ≤y }, 所以⎰⎰+Dd y x σ)(22⎰⎰-+=aaya y dx y x dy 322)(4332214)312(a dy a y a ay aa =+-=⎰. (4)σd y x D22+⎰⎰, 其中D 是圆环形闭区域{(x , y )| a 2≤x 2+y 2≤b 2}.解 在极坐标下D ={(ρ, θ)|0≤θ≤2π, a ≤ρ≤b }, 所以 σd y x D22+⎰⎰)(3233202a b dr r d ba -==⎰⎰πθπ. 16. 设平面薄片所占的闭区域D 由螺线ρ=2θ上一段弧(20πθ≤≤)与直线2πθ=所围成, 它的面密度为μ(x , y )=x 2+y 2. 求这薄片的质量.解 区域如图所示. 在极坐标下}20 ,20|),{(θρπθθρ≤≤≤≤=D , 所以所求质量⎰⎰⎰⎰⋅==Dd d d y x M 20202),(πθρρρθσμ⎰==254404ππθθd .17. 求由平面y =0, y =kx (k >0), z =0以及球心在原点、半径为R 的上半球面所围成的在第一卦限内的立体的体积.解 此立体在xOy 面上的投影区域D ={(x , y )|0≤θ≤arctan k , 0≤ρ≤R }. ⎰⎰--=Ddxdy y x R V 222k R d R d kRarctan 313arctan 022=-=⎰⎰ρρρθ.18. 计算以xOy 平面上圆域x 2+y 2=ax 围成的闭区域为底, 而以曲面z =x 2+y 2为顶的曲顶柱体的体积.解 曲顶柱体在xOy 面上的投影区域为D ={(x , y )|x 2+y 2≤ax }. 在极坐标下}cos 0 ,22|),{(θρπθπθρa D ≤≤≤≤-=, 所以⎰⎰≤++=axy x dxdy y xV 22)(22πθθρρρθππθππ422cos 022442323cos 4a d a d d a ==⋅=⎰⎰⎰--.。

高等数学第六版上下册(全)(同济大学出版社)


它们都单调递增, 其图形关于直线 y x 对称 .
目录 上页 下页 返回 结束
(2) 复合函数 设有函数链
xg D
u
f
Rg D f
y
y f (u), u Df

u g(x), x D, 且 Rg D f


y f [g(x)] , x D
称为由①, ②确定的复合函数 , u 称为中间变量.
f 1 : f (D) D, 使 y f (D), f 1( y) x , 其中f (x) y, 称此映射 f 1为 f 的反函数 .
习惯上, y f (x), x D 的反函数记成 y f 1(x) , x f (D)
性质: 1) y=f (x) 单调递增 (减) , 其反函数 y f 1(x) 存在,
值域 f (D) [0, ) y 2 x
f
(
1 2
)
2
1 2
2
O
f
(
1 t
)
11 , t
2, t
0t 1 t 1
1
x
目录 上页 下页 返回 结束
2. 函数的几种特性
设函数 y f (x) , x D , 且有区间 I D .
(1) 有界性
x D , M 0, 使 f (x) M , 称 f (x) 为有界函数. x I , M 0, 使 f (x) M , 称 f (x) 在 I 上有界.
目录 上页 下页 返回 结束
(3) 奇偶性
x D, 且有 x D,
若 f (x) f (x), 则称 f (x) 为偶函数;
y
若 f (x) f (x),则称 f (x) 为奇函数.
说明: 若 f (x) 在 x = 0 有定义 , 则当

高等数学第六版上下册(同济大学出版社)课件

具有重要的作用。
不定积分的几何意义
不定积分表示的是一种曲线族 ,每一条曲线都有一个与之对
应的方程。
积分的应用场景
01
物理应用
积分在物理中有广泛的应用,例 如计算物体的质量、重心、转动 惯量等。
工程应用
02
03
经济应用
积分在工程中有广泛的应用,例 如计算曲线的长度、面积、体积 等。
积分在经济中有广泛的应用,例 如计算总成本、总收益、总利润 等。
05
多重积分与向量分析
二重积分的概念与性质
二重积分的定义
二重积分是定积分在二维平面上的推广,表示一个二元函数在某个区域上的累积值。
二重积分的性质
二重积分具有可加性、可减性、可交换性等性质,这些性质使得二重积分在解决实际问题中具有广泛的应用。
三重积分的概念与性质
三重积分的定义
三重积分是定积分在三维空间上的推广 ,表示一个三元函数在某个区域上的累 积值。
03
导数与微分
导数的概念与性质
导数的定义
导数描述了函数在某一点附近的变化率,是函数局部 性质的一种体现。
导数的几何意义
导数在几何上表示函数图像在某一点的切线的斜率。
导数的性质
导数具有一些基本的性质,如线性性质、乘积法则、 商的导数法则等。
微分的概念与性质
微分的定义
01
微分是函数在某一点附近的小变化量,用于近似计算函数的值
求函数的最值
导数可以用于求函数在一定区间内的最大值和最小值,这在优化问题中具有广泛的应用。
04
积分
定积分的概念与性质
01
定积分的定义
定积分是积分的一种,是函数在区间上与区间的乘积在区间的两个端点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) 元素 x 的像 y 是唯一的, 但 y 的原像不一定唯一.
对映射
若 f ( X ) Y , 则称 f 为满射; 引例2, 3
X
f Y f (X)


X
Y
则称 f 为单射; 引例2 若 f 既是满射又是单射, 则称 f 为双射 或一一映射.
引例2
例1.
海伦公式 (满射)
例2. 如图所示,
2
例如, 反正弦主值 定义域
又如, 绝对值函数
值域
1 O 1x
2
定义域
值域
例4.
已知函数
y
f
(
x)
2 1
x, x,
0 x 1 x 1
写出 f (x) 的定义域及值域, 并求
f
(
1 2
)

f
(
1 t
).
解: f (x) 的定义域D [0, ) y
y 1 x
值域 f (D) [0, ) y 2 x
例如,
,
,
显然有下列关系 :
定义 3 .
B,
给定两个集合 A,定义下列运算:
并集 A B x

A B
交集 A B x

B A
差集 A \ B x
且 xB
A\B AB
余集 BAc A \ B (其中B A)
直积 A B (x , y) x A, y B
特例: R R 记 R2
元素 a 不属于集合 M , 记作 a M ( 或 a M ) .
注: M 为数集
M *表示 M 中排除 0 的集 ;
M 表示 M 中排除 0 与负数的集 .
表示法:
(1) 列举法: 按某种方式列出集合中的全体元素 .
例: 有限集合
A
a1
,
a2
,,
an
ai
n i 1
自然数集 N 0, 1 , 2 , , n, n
无限区间
点的 邻域
a
(
a
a
)
去心 邻域
其中, a 称为邻域中心 , 称为邻域半径 .
左 邻域 :
右 邻域 :
2. 集合之间的关系及运算
定义2 . 设有集合 A, B , 若 x A 必有 x B , 则称 A
是 B 的子集 , 或称 B 包含 A , 记作 A B.


则称 A 与 B 相等, 记作 A B .
2

ch x
双曲余弦
偶函数
y ex ex
y ch x
O
Hale Waihona Puke x又如 ,y
f (x) ex ex 2

sh x 双曲正弦
再如,
y
sh ch
x x
ex ex ex ex
无单界调.减函数
I x上的D, 使
.
O
f
(xx)1
xM2 ,
x
(3) 奇偶性
x D, 且有 x D,

则称 f (x) 为偶函数;
y

则称 f (x) 为奇函数.
说明: 若 f (x) 在 x = 0 有定义 ,则当
x O x x
f (x) 为奇函数时, 必有 f (0) 0.
例如,
y f (x) ex ex
说明: 还可定义有上界、有下界、无界 . (见 P11 )
(2) 单调性
x1, x2, f (Ix, )x当1Mx2,时称,为有上界
y

f
(x1) ,
f( M
x2
), 称 f (x),
f称(x)为为有下I 界上的
单调增函数 ;

若对任意正数 M , 均存在
f 则(x称1)
f
f
(
(xx2))
, 称 f (x)为
第一章 函数与极限
分析基础
函数 — 研究对象 极限 — 研究方法 连续 — 研究桥梁
第一章
第一节 映射与函数
一、集合 二、映射 三、函数
一、 集合
1. 定义及表示法
简称集
定义 1. 具有某种特定性质的事物的总体称为集合.
组成集合的事物称为元素.
简称元
不含任何元素的集合称为空集 , 记作 .
元素 a 属于集合 M , 记作 a M .
对应阴影部分的面积
则在数集
自身之间定义了一种映射
例3. 如图所示, 则有
(满射)
r
(满射)
说明:
映射又称为算子. 在不同数学分支中有不同的惯用
名称. 例如,
X (≠ ) f Y (数集) X (≠ ) f X X (数集 或点集 ) f R
f 称为X 上的泛函 f 称为X 上的变换
f 称为定义在 X 上的函数
为平面上的全体点集
B ABAc
y
B AB
OA x
二、 映射
引例1.
某校学生的集合 按一定规则查号
学号的集合
某班学生的集合
按一定规则入座
某教室座位 的集合
引例2.
引例3.
向 y 轴投影
(点集) (点集)
定义4. 设 X , Y 是两个非空集合, 若存在一个对应规
则 f ,使得
有唯一确定的
与之对应, 则称
x
D f (D)
x D f y Rf f (D) y y f (x), x D
(定义域) (对应规则) (值域)
• 定义域
使表达式或实际问题有意义的自变量集合.
对实际问题, 书写函数时必须写出定义域;
对无实际背景的函数, 书写时可以省略定义域.
y
• 对应规律的表示方法:
解析法 、图像法 、列表法
f
(
1 2
)
2
1 2
2
O
f
(
1 t
)
11 , t
2, t
0t 1 t 1
1
x
2. 函数的几种特性
设函数 y f (x) , x D , 且有区间 I D .
(1) 有界性
x D , M 0, 使 f (x) M , 称 f (x)为有界函数. x I , M 0, 使 f (x) M , 称 f (x) 在 I 上有界.
f 为从 X 到 Y 的映射,记作 f : X Y.
X
f
Y
元素 y 称为元素 x 在映射 f 下的像, 记作 y f (x).
元素 x 称为元素 y 在映射 f 下的原像 . 集合 X 称为映射 f 的定义域 ;
Y 的子集 Rf f ( X ) f (x) x X 称为 f 的 值域 .
注意: 1) 映射的三要素— 定义域 , 对应规则, 值域.
三、函数
1. 函数的概念
定义5. 设数集 D R , 则称映射
为定义在
D 上的函数 , 记为
定义域
y f (x), x D
因变量
自变量
Rf f (D) y y f (x), x D
y y
称为值域
函数图形:
C (x , y) y f (x) , x D O
ax b ( D [a,b])
(2) 描述法:M x x 所具有的特征
例: 整数集合 Z x x N 或 x N
有理数集
Q
p q
pZ, qN,
p 与 q 互质
实数集合 R x x 为有理数或无理数
开区间 ( a , b ) x a x b
闭区间 [ a , b ] x a x b
半开区间
相关文档
最新文档