同济大学第七版高数A下知识点

合集下载

同济大学《高等数学》第七版上、下册问题详解(详解)

同济大学《高等数学》第七版上、下册问题详解(详解)

练习1-1
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-2
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-3
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全。

同济大学《高等数学》第七版上、下册答案(详解)

同济大学《高等数学》第七版上、下册答案(详解)
-
0
+

-
-
yf(x)
1
极小值



0
拐点



-1
极大值
练习3-7
总习题三
x
(, 0)
0
f(x)
+
不存在
-
0
+
f(x)

2
极大值

极小值

练习4-2
练习4-3
练习4-4
>>>
总习题四
练习5-1
练习5-2
练习5-3
练习5-4
总习题五
练习6-2
练习6-3
总习题六
练习7-1
练习7-2
练习7-3
练习7-4
练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9
练习1-10
总习题一
练习2-1
练习2-2
练习2-3
练习2-4
练习2-5
总习题二
练习3-1
练习3-2
练习3-3练习3-4Biblioteka 练习3-5练习3-6
x
(2)
2
(21)
1
(11)
1
(1)
y
0
+
+
+
0
+
y
+
+
+
0
0
+
yf(x)
练习7-5
练习7-6
总习题七
练习8-1

高等数学(同济第七版)提纲

高等数学(同济第七版)提纲

函数、极限、连续一、函数:五大类根本初等函数幂函数,指数函数,对数函数反函数,有界性,奇偶性三角函数:正割函数,余割反三角函数二、极限1、数列的极限夹逼准那么2、函数的极限〔1〕两个重要极限〔2〕无穷小:高阶,低阶,同阶,等价;性质:有界函数与无穷小的乘积仍然是无穷小。

等价无穷小代换;三、连续间断点:第一类,第二类左右极限都存在;可去间断点,跳跃间断点无穷间断点,振荡间断点一切初等函数在定义区间内都连续。

闭区间上连续函数的性质:零点定理:方程根的存在性第二章导数与微分、相关概念1、导数的两大定义式;2、左右导数;3、几何意义;4、可导与连续的关系。

5、16 个根本导数公式,4 个求导法那么二、六大类函数求导1、复合函数求导;2、隐函数求导;3、参数方程所确定的函数求导;4、幂指函数求导;对数求导法5、分段函数求导;6、抽象函数求导。

三、微分1、概念;可微2、计算第三章微分中值定理与导数的应用一、中值定理罗尔定理:驻点拉格朗日中值定理二、洛必达法那么三、单调性和凹凸性单调性:求单调区间;求极值;证明不等式;证明方程根的唯一性。

极值的第一充分条件有且仅有;凹凸性:凹凸区间;拐点四、渐近线1、水平渐近线2、垂直渐近线3、斜渐近线第四章不定积分一、不定积分的概念;〔13+2〕原函数;被积函数;积分变量二、计算1、凑微分法〔第一类换元法〕2、第二类换元法3、分部积分法〔一〕4 小题〔二〕2 小题〔三〕1 小题简单根式的积分第五章定积分一、相关概念和性质积分下限,积分上限几何意义:面积的代数和[a,b] 积分区间比拟性质定积分的中值定理二、关于计算方面的内容1、定积分的计算;2、广义积分〔反常积分〕;〔1〕无穷限的广义积分;收敛;发散〔2〕无界函数的广义积分〔瑕积分〕无界间断点,瑕点3、积分上限的函数;〔1〕变上限定积分;〔2〕求导运算;4、用定积分求平面图形的面积和旋转体的体积。

两个简便公式第六章微分方程一、相关概念定义:未知函数,未知函数的导数,自变量;阶,解,通解,特解初始条件二、四类方程1、可别离变量的微分方程;2、一阶线性微分方程;一阶齐次线性。

高等数学下册同济第七版

高等数学下册同济第七版
链式法则
复合函数的求导法则,即一个复合函数的导数等于其内部函数的导数乘以外部函数的导数。
乘法法则
复合函数的求导法则,即两个函数的乘积的导数等于第一个函数的导数乘以第二个函数加上第二个函 数的导数乘以第一个函数。
隐函数的求导公式
隐函数
一个方程可以确定一个函数,这样的函 数称为隐函数。
VS
隐函数的求导公式
曲面及其方程
曲面的概念
曲面是一维图形在三维空间中的表现形式,它由多个点组成,每个 点都对应于空间中的一个位置。
曲面方程
曲面方程是描述曲面形状和大小的数学表达式。对于给定的曲面, 可以通过在其上任取一点,并建立该点的坐标系来得到该曲面的方 程。
常见曲面及其方程
例如,球面、锥面、柱面等都有对应的方程式。这些方程式描述了这 些曲面的形状和大小,并且可以通过图形来直观地表现出来。
VS
详细描述
对坐标的曲面积分主要用于计算曲面图形 上某部分区域内某物理量的累积值,如流 量、速度等。求解方法通常为定义法、参 数方程法、公式法等。在具体问题中,还 需考虑积分曲面的方向、不同部分的分界 线等因素。
THANK YOU
重积分的应用
总结词
重积分的应用非常广泛,包括求面积、求体 积、求质量等。
详细描述
重积分的应用包括求曲顶柱体的体积、求空 间物体的质量、求平面的面积等。例如,利 用二重积分可以求出平面区域的面积,利用 三重积分可以求出空间物体的质量。此外, 重积分还可以用于求解某些物理问题,如力
学、电磁学、光学等问题。
两个向量的向量积是一个向量,记作 $\overset{\longrightarrow}{a} \times \overset{\longrightarrow}{b}$,其 大小等于两个向量对应分量乘积的矢 量和,其方向垂直于两个向量所确定 的平面。

高数下册知识点

高数下册知识点

高等数学下册(同济大学第七版)知识点高等数学下册知识点下册预备知识第八章 空间解析几何与向量代数(一) 向量及其线性运算1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面;2、 线性运算:加减法、数乘;3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;4、 利用坐标做向量的运算:设),,(z y x a a a a = ,),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=±, ),,(z y x a a a a λλλλ= ;5、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rz r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα5) 投影:ϕcos Pr a a j u =,其中ϕ为向量a 与u 的夹角。

(二) 数量积,向量积1、 数量积:θcos b a b a=⋅1)2a a a =⋅高等数学(下)知识点 2)⇔⊥b a 0=⋅b az z y y x x b a b a b a b a ++=⋅2、 向量积:b a c⨯= 大小:θsin b a ,方向:c b a ,,符合右手规则1)0=⨯a a 2)b a //⇔0=⨯b a z y x z y x b b b a a a k j i b a =⨯ 运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面: yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:0),(=y x F 表示母线平行于z 轴,准线为⎪⎩⎪⎨⎧==00),(z y x F 的柱面 4、 二次曲面1)椭圆锥面:22222zbyax=+2)椭球面:1222222=++czbyax旋转椭球面:1222222=++czayax3)单叶双曲面:1222222=-+czbyax4)双叶双曲面:1222222=--czbyax5)椭圆抛物面:zbyax=+22226)双曲抛物面(马鞍面):zbyax=-22227)椭圆柱面:12222=+byax8)双曲柱面:12222=-byax9)抛物柱面:ay x=2(四)空间曲线及其方程1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F 2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===btz t a y t a x sin cos 3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H(五) 平面及其方程1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n = ,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax 截距式方程:1=++cz b y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n = ,222222212121212121cos C B A C B A C C B B A A ++⋅++++=θ⇔∏⊥∏21 0212121=++C C B B A A⇔∏∏21// 212121C C B B A A ==4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:222000C B A DCz By Ax d +++++=(六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s = ,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=ptz z nt y y mt x x 000 4、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s = ,222222212121212121cos p n m p n m p p n n m m ++⋅++++=ϕ⇔⊥21L L 0212121=++p p n n m m⇔21//L L 212121p p n n m m ==5、 直线与平面的夹角:直线与它在平面上的投影的夹角,222222sin p n m C B A CpBn Am ++⋅++++=ϕ⇔∏//L 0=++Cp Bn Am⇔∏⊥L pC n B m A ==第九章 多元函数微分法及其应用(一) 基本概念(了解)1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集。

同济大学第七版高数A下知识点

同济大学第七版高数A下知识点
10.空间曲线的切线与法平面
11.空间曲面的切平面与法线
12.方向导数与梯度
13.多元函数的极值和条件极值的计算
14.直角坐标系下二重积分的计算(交换积分次序(可能作为填空题))
15.极坐标下二重积分的计算(计算题)
16.三重积分的计算
17.第一类、第二类曲线积分的计算
18.积分与路径无关的条件
19.格林公式的应用(应用在封闭曲线上)
高数A(二)知识重点
1.两个平面之间的垂直或平行(平面的法向量)
平面方程:A x +B y +C z +D =0
2.多元函数的定义域
3.多元函数的极限
4.多元函数的连续性
5.多元复合函数求偏导数
6.多元隐函数求偏导数
7.多元函数的微分
8.多元函数偏导数连续性和可微的关系
9.分段函数在分段点处,连续偏导数存在和可微的判断
20.第一类、第二类曲面积分的计算
21.高斯公式的应用(封闭曲面)Байду номын сангаас
22.正项级数敛散性的各种判别方法
23.交错级数敛散性的判别方法
24.一般项级数敛散性的判别(绝对收敛、条件收敛)
25.幂级数的收敛半径,收敛域以及和函数的计算(逐项求导或积分求和)
26.常微分方程的阶,可分离变量的微分方程的通解与特解

高等数学同济第七版下册笔记

高等数学同济第七版下册笔记

高等数学同济第七版下册笔记
摘要:
一、引言
二、高等数学同济第七版下册的主要内容
三、下册的重点与难点
四、学习建议与方法
五、总结
正文:
一、引言
高等数学是理工科专业的基础课程,对于学生的综合素质培养具有重要意义。

同济大学第七版《高等数学》下册,作为经典教材,涵盖了微分方程、向量代数与空间解析几何、无穷级数等内容,是学生学习高等数学的重要参考资料。

二、高等数学同济第七版下册的主要内容
1.微分方程:介绍了常微分方程的基本概念、解法及其应用,如线性微分方程、一阶微分方程组、线性微分方程组等。

2.向量代数与空间解析几何:涉及向量及其运算、空间解析几何中的直线与平面、空间曲线与曲面等内容。

3.无穷级数:讨论了级数收敛性、级数求和、幂级数、傅里叶级数等概念。

三、下册的重点与难点
1.微分方程:理解微分方程的基本概念,熟练掌握解法,并能应用于实际问题。

2.空间解析几何:熟练掌握向量及其运算,理解空间解析几何中的直线与平面、空间曲线与曲面的性质。

3.无穷级数:理解级数收敛性及其判断方法,熟练掌握级数求和技巧,了解幂级数与傅里叶级数的性质及应用。

四、学习建议与方法
1.注重理论联系实际,通过大量例题巩固理论知识。

2.及时复习,整理笔记,避免遗漏重点内容。

3.参加讨论班,与同学互相交流,取长补短。

4.多做习题,提高解题能力。

五、总结
同济大学第七版《高等数学》下册是学生学习高等数学的重要教材,内容丰富且具有挑战性。

同济大学《高等数学》第七版上、下册答案(详解)

同济大学《高等数学》第七版上、下册答案(详解)
练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9
练习1-10
总习题一练习2-1练 Nhomakorabea2-2练习2-3
练习2-4
练习2-5
总习题二
练习3-1
练习3-2
练习3-3
练习3-4
练习3-5
练习3-6
x
(2)
2
(21)
1
(11)
1
(1)
y
0
+
+
+
0
+
y
+
+
+
0
0
+
yf(x)

17/5
极小值

6/5
拐点

2
拐点

x
0
(01)
1
y
+
+
0
-
-
-
y
0
-
-
-
0
+
yf(x)
0
拐点

极大值

拐点

x
1
y
+
+
+
0
-
-
-
y
+
0
-
-
-
0
+
yf(x)

拐点

1
极大值

拐点

x
(1)
-1
(10)
0
y
-
-
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数A(二)知识重点
1.两个平面之间的垂直或平行(平面的法向量)
平面方程:A x +B y +C z +D =0
2.多元函数的定义域
3.多元函数的极限
4.多元函数的连续性
5.多元复合函数求偏导数
6.多元隐函数求偏导数
7.多元函数的微分
8.多元函数偏导数连续性和可微的关系
9.分段函数在分段点处,连续偏导数存在和可微的判断
10.空间曲线的切线与法平面
11.空间曲面的切平面与法线
12.方向导数与梯度
13.多元函数的极值和条件极值的计算
14.直角坐标系下二重积分的计算(交换积分次序(可能作为填空题))
15.极坐标下二重积分的计算(计算题)
16.三重积分的计算
17.第一类、第二类曲线积分的计算
18.积分与路径无关的条件
19.格林公式的应用(应用在封闭曲线上)
20.第一类、第二类曲面积分的计算
21.高斯公式的应用(封闭曲面)
22.正项级数敛散性的各种判别方法
23.交错级数敛散性的判别方法
24.一般项级数敛散性的判别(绝对收敛、条件收敛)
25.幂级数的收敛半径,收敛域以及和函数的计算(逐项求导或积分求和)
26.常微分方程的阶,可分离变量的微分方程的通解与特解。

相关文档
最新文档