《大高考》高考数学文(全国通用)二轮复习专题训练:三年模拟专题第节导数的概念及其运算含答案
五年高考3年模拟2019高中文科数学3.1导数的概念与运算

5 年高考 3 年模拟 B 版(教师用书)
第三章 导数及其应用
§ 3.1 导数的概念与运算
������������������������������������������������������������������������������������������������������������
y′
=
1 xln
a( a> 0,且
a≠1)
3.导数的运算法则 运算
对应学生用书起始页码 P40 法则
加、减
[u(x) ±v(x)]′ = u′(x)±v′(x)
乘
[u(x)v(x)]′ = u′(x)v(x)+u(x)v′(x)
除
[ ] u(x) v( x)
′
=
u′(
x)
v( x) [ v(
)
,又点(
0,0)
在切线上,所以
-x30 -3x20
= -3x30 -6x20 ,解得
x0
= 0(舍去) 或
x0
=-
3 2
,故切线方程
为 9x+4y = 0.
答案 (1)y = 2ex-e (2)y = 0 或 9x+4y = 0
1-1
已知
a>0,曲线
f( x) =
2ax2
-
1 ax
在点( 1,f( 1) )
,
因为 f ′( x) 是奇函数,
所以 f ′(0)= 0⇒a = 1.
设切点坐标为( x0 ,y0 ) ,
由题意得 f
′( x0 ) =
ex0
-
1 ex0
=
3 2
,
解得 x0 = ln 2.来自1 2 时, f ′(1) 取得最小值 4,故选 A.
2023高考数学二轮复习专项训练《导数的概念和几何意义》(含答案)

2023高考数学二轮复习专项训练《导数的概念和几何意义》一、单选题(本大题共12小题,共60分)1.(5分)直线y=x与曲线y=e x+m(m∈R,e为自然对数的底数)相切,则m=()A. 1B. 2C. −1D. −22.(5分)与曲线y=x3−5x相切且过原点的直线的斜率为()A. 2B. −5C. −1D. −23.(5分)曲线y=ax2在点P(1,a)处的切线平行于直线y=2x+1,则a=()A. 1B. 12C. −12D. −14.(5分)在曲线y=x3+x-2的切线中,与直线4x-y=1平行的切线方程是( )A. 4x-y=0B. 4x-y-4=0C. 2x-y-2=0D. 4x-y=0或4x-y-4=05.(5分)若函数f(x)=1x−3ax的图象在x=1处的切线与直线x+4y=0垂直,则a= ()A. −1B. 1C. −712D. −536.(5分)函数f(x)=−x2+3ln x的图象在x=1处的切线倾斜角为α,则cos2α=()A. 13B. 12C. 23D. 347.(5分)已知函数y=3x在x=2处的自变量的增量为Δx=0.1,则Δy为( )A. -0.3B. 0.6C. -0.6D. 0.38.(5分)曲线在点(1,2)处的切线方程为A. B. C. D.9.(5分)曲线y=12x2−2x在点(1,−32)处的切线的倾斜角为()A. −135°B. 45°C. −45°D. 135°10.(5分)已知曲线C:x2−2x+y2+b=0,且曲线C上一点P(2,2)处的切线与直线ax−y+1=0垂直,则a=()A. 2B. 12C. −12D. −211.(5分)设f(x)=x3+(a−1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0 ,0)处的切线方程为()A. y=xB. y=−xC. y=2xD. y=−2x12.(5分)物体运动方程为s=14t4−3,则t=5时的瞬时速率为()A. 5m/sB. 25m/sC. 125m/sD. 625m/s二、填空题(本大题共5小题,共25分)13.(5分)曲线y=x+lnx−1往点(1,0)处的切线方程为______.14.(5分)已知定义在R上的函数f(x)满足f′(x)>0,且f(f(x)−e x)=e+1,若f(x)⩾ax−a+1恒成立,则实数的取值范围是____________.15.(5分)如果质点A的位移s与时间t满足方程s=2t3,则在t=3时的瞬时速度为____.16.(5分)已知函数f(x)={1x,x∈(0,2]f(x−2),x∈(2,+∞),则f(x)在x=3处的切线方程为______.17.(5分)若函数f(x)=−x2+x在[2,2+Δx](Δx>0)上的平均变化率不大于−1,则Δx的取值范围是____________.三、解答题(本大题共6小题,共72分)18.(12分)已知函数f(x)=x2−2x−alnx+ax,a∈R.(1)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)设f(x)的极小值点为x0,且f(x0)<a−a24,求a的取值范围.19.(12分)已知函数f(x)=ln x−ax,其中a为非零常数.(1)当a=1时,求f(x)的单调区间;(2)若函数f(x)在x=1处的切线斜率为−1,求f(x)的极值.20.(12分)已知函数f(x)=−x2+x图像上两点A(2,f(2))、B(2+Δx,f(2+Δx)).(1)若割线AB的斜率不大于−1,求Δx的范围;(2)用导数的定义求函数f(x)=−x2+x在x=2处的导数f′(2),并求在点A处的切线方程.21.(12分)已知函数y=23x3−2x2+3,(1)求在点(1,53)处的切线方程,(2)求函数在[−1,3]的最值.22.(12分)已知函数f(x)=e x ln x−ae x(a∈R).(1)若f(x)在点(1,f(1))处的切线与直线y=−e x+1平行,求a的值;(2)若f(x)在(0,+∞)上是单调函数,求实数a的取值范围.23.(12分)已知函数f(x)=ae x,g(x)=ln(ax)+52,a>0.(Ⅰ)若y=f(x)的图象在x=1处的切线过点(3,3),求a的值并讨论ℎ(x)=xf(x)+m(x2+2x−1)(m∈R)在(0,+∞)上的单调增区间;(Ⅱ)定义:若直线l:y=kx+b与曲线C1:f1(x,y)=0、C2:f2(x,y)=0都相切,则我们称直线l为曲线C1、C2的公切线.若曲线y=f(x)与y=g(x)存在公切线,试求实数a的取值范围.四、多选题(本大题共5小题,共25分)24.(5分)已知函数f(x)=√x−ln x,若f(x)在x=x1和x=x2(x1≠x2)处切线平行,则()A.√x1√x2=12B. x1x2<128C. x1+x2<32D. x12+x22>51225.(5分)函数f(x)的导函数为f′(x),若已知f′(x)的图像如图,则下列说法不正确的是()A. f(x)存在极大值点B. f(x)在(0,+∞)单调递增C. f(x)一定有最小值D. 不等式f(x)<0一定有解26.(5分)关于函数f(x)=a ln x+2x,下列判断正确的是()A. 函数f(x)的图象在点x=1处的切线方程为(a−2)x−y−a+4=0B. x=2a是函数f(x)的一个极值点C. 当a=1时,f(x)⩾ln2+1D. 当a=−1时,不等式f(2x−1)−f(x)>0的解集为(12,1)27.(5分)已知函数f(x)=ax3+x2+axe x,则()A. 若曲线y=f(x)在(0,f(0))处的切线与x+5y=0相互垂直,则a=5B. 若a=0,则函数f(x)的单调递减区间为(−∞,0)∪(2,+∞)C. 若a=0,则函数f(x)有2个极值点D. 若关于x的不等式函数x2+1⩾f(x)在(0,+∞)上恒成立,则实数a的取值范围为(−∞,e-12]28.(5分)函数f(x)={e x−1,x⩽1,ln(x−1),x>1,若函数g(x)=f(x)−x+a只有一个零点,则a的值可以为()A. 2B. −2C. 0D. 1答案和解析1.【答案】C;【解析】解:设切点为(x,y),则x=y,∵y=e x+m,∴y′=e x+m∴e x+m=1,即x+m=0,又e x+m=x,∴e0=x,∴x=1,∴m=−1,故选:C.先求导函数,利用直线y=x与曲线y=e x+m相切,可知切线的斜率为1,即切点处的函数值为1,再利用切点处的函数值相等,即可求出a的值本题以直线与曲线相切为载体,考查了利用导数研究曲线上过某点切线方程的斜率,解答该题的关键是正确理解导数的几何意义.2.【答案】B;【解析】解:设切点坐标为P(x0,y0),由曲线y=f(x)=x3−5x,得f′(x)=3x2−5,所以过原点的切线斜率为k=f′(x0)=3x02−5,所以切线方程为y−y0=(3x02−5)(x−x0);又切线过原点O(0,0),所以−x03+5x0=−3x03+5x0,解得x0=0,所以y0=0,则P(0,0);所以与曲线y=x3−5x相切且过原点的直线的斜率为k=f′(0)=−5.故选:B.设切点为(x0,y0),求出切线l的斜率为f′(x0),写出切线l的方程,根据且线1过原点求出切点坐标和斜率.该题考查了导数的几何意义与应用问题,也考查了运算求解能力,是基础题.3.【答案】A;【解析】解:y=ax2的导数为y′=2ax,可得曲线在点P(1,a)处的切线斜率为k=2a,由切线平行于直线y=2x+1,可得k=2,即2a=2,解得a=1,故选:A.求得y=ax2的导数,可得切线的斜率,由两直线平行的条件可得a的方程,解方程可得a的值.该题考查导数的几何意义,考查两直线平行的条件,考查方程思想和运算能力,属于基础题.4.【答案】D;【解析】曲线y=x 3+x-2求导可得y′=3x 2+1 设切点为(a ,b)则3a 2+1=4,解得a=1或a=-1 切点为(1,0)或(-1,-4)与直线4x-y-1=0平行且与曲线y=x 3+x-2相切的 直线方程是:4x-y-4=0和4x-y=0 故选D 。
三年高考两年模拟高考数学专题汇编 第三章 导数及其应用2 文

第二节 导数的应用A 组 三年高考真题(2016~2014年)1.(2016·四川,6)已知a 是函数f (x )=x 3-12x 的极小值点,则a =( ) A.-4 B.-2 C.4D.22.(2015·陕西,9)设f (x )=x -sin x ,则f (x )( ) A .既是奇函数又是减函数 B .既是奇函数又是增函数 C .是有零点的减函数D .是没有零点的奇函数3.(2015·安徽,10)函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列结论成立的是( ) A .a >0,b <0,c >0,d >0 B .a >0,b <0,c <0,d >0 C .a <0,b <0,c >0,d >0 D .a >0,b >0,c >0,d <04.(2014·新课标全国Ⅱ,11)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)5.(2014·湖南,9)若0<x 1<x 2<1,则( ) A .e2x -e 1x>ln x 2-ln x 1B .e2x -e 1x<ln x 2-ln x 1C .x 2e 1x>x 1e 2x D .x 2e 1x<x 1e2x6.(2014·新课标全国Ⅰ,12)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)7.(2016·新课标全国卷Ⅱ,20)已知函数f (x )=(x +1)ln x -a (x -1). (1)当a =4时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)若当x ∈(1,+∞)时,f (x )>0,求a 的取值范围. 8.(2016·新课标全国Ⅲ,21)设函数f (x )=ln x -x +1. (1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x<x ;(3)设c >1,证明:当x ∈(0,1)时,1+(c -1)x >c x. 9.(2016·山东,20)设f (x )=x ln x -ax 2+(2a -1)x ,a ∈R . (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值.求实数a 的取值范围.10.(2016·四川,21)设函数f (x )=ax 2-a -ln x ,g (x )=1x -e e x ,其中a ∈R ,e =2.718…为自然对数的底数. (1)讨论f (x )的单调性; (2)证明:当x >1时,g (x )>0;(3)确定a 的所有可能取值,使得f (x )>g (x )在区间(1,+∞)内恒成立. 11.(2016·北京,20)设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件. 12.(2015·新课标全国Ⅱ,21)已知f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 13.(2015·新课标全国Ⅰ,21)设函数f (x )=e 2x-a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a.14.(2015·福建,22)已知函数f (x )=ln x -(x -1)22.(1)求函数f (x )的单调递增区间; (2)证明:当x >1时,f (x )<x -1;(3)确定实数k 的所有可能取值,使得存在x 0>1,当x ∈(1,x 0)时,恒有f (x )>k (x -1).15.(2015·浙江,17)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路和山区边界的直线型公路,记两条相互垂直的公路为l 1,l 2,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到l 1,l 2的距离分别为5千米和40千米,点N 到l 1,l 2的距离分别为20千米和2.5千米,以l 2,l 1所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数y =ax 2+b(其中a ,b 为常数)模型. (1)求a ,b 的值;(2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式f (t ),并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.16.(2015·湖南,21)已知a >0,函数f (x )=a e xcos x (x ∈[0,+∞)).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点. (1)证明:数列{f (x n )}是等比数列;(2)若对一切n ∈N *,x n ≤|f (x n )|恒成立,求a 的取值范围.17.(2015·山东,20)设函数f (x )=(x +a )ln x ,g (x )=x 2e x . 已知曲线y =f (x ) 在点(1,f (1))处的切线与直线2x -y =0平行. (1)求a 的值;(2)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(3)设函数m (x )=min{f (x ),g (x )}(min{p ,q }表示p ,q 中的较小值),求m (x )的最大值. 18.(2015·浙江,20)设函数f (x )=x 2+ax +b (a ,b ∈R ).(1)当b =a 24+1时,求函数f (x )在[-1,1]上的最小值g (a )的表达式;(2)已知函数f (x )在[-1,1]上存在零点,0≤b -2a ≤1,求b 的取值范围. 19.(2015·天津,20)已知函数f (x )=4x -x 4,x ∈R . (1)求f (x )的单调区间;(2)设曲线y =f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y =g (x ), 求证:对于任意的实数x ,都有f (x )≤g (x );(3)若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-a3+134.20.(2015·广东,21)设a 为实数,函数f (x )=(x -a )2+|x -a |-a (a -1). (1)若f (0)≤1,求a 的取值范围; (2)讨论f (x )的单调性;(3)当a ≥2时,讨论f (x )+4x在区间(0,+∞)内的零点个数.21.(2014·安徽,20)设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值.22.(2014·广东,21)已知函数f (x )=13x 3+x 2+ax +1(a ∈R ).(1)求函数f (x )的单调区间;(2)当a <0时,试讨论是否存在x 0∈⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎭⎪⎫12,1,使得f (x 0)=f ⎝ ⎛⎭⎪⎫12. 23.(2014·天津,19)已知函数f (x )=x 2-23ax 3(a >0),x ∈R .(1)求f (x )的单调区间和极值;(2)若对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1.求a 的取值范围.24.(2014·陕西,21)设函数f (x )=ln x +m x,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b)-f (a )b -a<1恒成立,求m 的取值范围.25.(2014·新课标全国Ⅰ,21)设函数f (x )=a ln x +1-a 2x 2-bx (a ≠1),曲线y =f (x )在点(1, f (1))处的切线斜率为0. (1) 求b ;(2)若存在x 0≥1,使得f (x 0)<aa -1,求a 的取值范围.B 组 两年模拟精选(2016~2015年)1.(2016·河北保定第二次模拟)已知函数f (x )=x 2-2cos x ,则f (0),f ⎝ ⎛⎭⎪⎫-13,f ⎝ ⎛⎭⎪⎫25的大小关系是( )A.f (0)<f ⎝ ⎛⎭⎪⎫-13<f ⎝ ⎛⎭⎪⎫25B.f ⎝ ⎛⎭⎪⎫-13<f (0)<f ⎝ ⎛⎭⎪⎫25C.f ⎝ ⎛⎭⎪⎫25<f ⎝ ⎛⎭⎪⎫-13<f (0) D.f (0)<f ⎝ ⎛⎭⎪⎫25<f ⎝ ⎛⎭⎪⎫-132.(2016·云南师大附中检测)若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,518B.(-∞,3]C.⎣⎢⎡⎭⎪⎫518,+∞ D.[3,+∞)3.(2016·四川雅安第三次诊断模拟)设函数f (x )的导函数为f ′(x ),对任意x ∈R ,都有xf ′(x )<f (x )成立,则( )A.3f (2)>2f (3)B.3f (2)=2f (3)C.3f (2)<2f (3)D.3f (2)与2f (3)大小不确定4.(2016·甘肃兰州诊断)若函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+1 (x ≤0),e ax (x >0)在[-2,2]上的最大值为2,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫12ln 2,+∞B.⎣⎢⎡⎦⎥⎤0,12ln 2C.(-∞,0]D.⎝ ⎛⎦⎥⎤-∞,12ln 25.(2015·山东省实验中学二诊)已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导函数f ′(x )<13,则f (x )<x 3+23的解集是( )A.{x |-1<x <1}B.{x |x <-1}C.{x |x <-1或x >1}D.{x |x >1}6.(2015·广东佛山调研)若函数f (x )=x 3-3x 在(a ,6-a 2]上有极小值,则实数a 的取值范围是( ) A.(-5,1) B.[-5,1) C.[-2,1)D.(-2,1)7.(2015·赣州市十二县联考)若函数f (x )=13x 3-a 2x 2+(3-a )x +b 有三个不同的单调区间,则实数a 的取值范围是________.8.(2015·河南南阳三模)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________.9.(2015·河北衡水中学模拟)已知函数f (x )=x ln x ,g (x )=-x 2+ax -3,其中 a 为实数. (1)求函数f (x )在[t ,t +2]上的最小值;(2)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围.答案精析A 组 三年高考真题(2016~2014年)1.解析 ∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12, 令f ′(x )=0,则x 1=-2,x 2=2.当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增; 当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减, ∴f (x )的极小值点为a =2. 答案 D2.解析 f (x )=x -sin x 的定义域为R ,关于原点对称, 且f (-x )=-x -sin(-x )=-x +sin x =-f (x ), 故f (x )为奇函数.又f ′(x )=1-sin x ≥0恒成立,所以f (x )在其定义域内为增函数,故选B. 答案 B3.解析 由已知f (0)=d >0,可排除D ;其导函数f ′(x )=3ax 2+2bx +c 且f ′(0)=c >0,可排除B ; 又f ′(x )=0有两不等实根,且x 1x 2=c a>0,所以a >0.故选A. 答案 A4.解析 因为f (x )=kx -ln x ,所以f ′(x )=k -1x.因为f (x )在区间(1,+∞)上单调递增, 所以当x >1时,f ′(x )=k -1x≥0恒成立,即k ≥1x在区间(1,+∞)上恒成立.因为x >1,所以0<1x<1,所以k ≥1.故选D.答案 D5.解析 构造函数f (x )=e x -ln x ,则f ′(x )=e x -1x,故f (x )=e x-ln x 在(0,1)上有一个极值点,即f (x )=e x-ln x 在(0,1)上不是单调函数,无法判断f (x 1)与f (x 2)的大小,故A 、B 错;构造函数g (x )=e x x ,则g ′(x )=x e x -e x x 2=e x (x -1)x 2,故函数g (x )=exx在(0,1)上单调递减,故g (x 1)>g (x 2),x 2e x 1>x 1e x 2,故选C. 答案 C6. 解析 由题意知f ′(x )=3ax 2-6x =3x (ax -2),当a =0时,不满足题意. 当a ≠0时,令f ′(x )=0,解得x =0或x =2a,当a >0时,f (x )在(-∞,0),⎝ ⎛⎭⎪⎫2a,+∞上单调递增,在 ⎝⎛⎭⎪⎫0,2a 上单调递减.又f (0)=1,此时f (x )在(-∞,0)上存在零点,不满足题意;当a <0时,f (x )在⎝ ⎛⎭⎪⎫-∞,2a ,(0,+∞)上单调递减,在⎝ ⎛⎭⎪⎫2a ,0上单调递增,要使f (x )存在唯一的零点x 0,且x 0>0,则需f ⎝ ⎛⎭⎪⎫2a >0,即a ×⎝ ⎛⎭⎪⎫2a 3-3×⎝ ⎛⎭⎪⎫2a 2+1>0,解得a <-2,故选C.答案 C7.解 (1)f (x )的定义域为(0,+∞),当a =4时,f (x )=(x +1)ln x -4(x -1),f ′(x )=ln x +1x-3,f ′(1)=-2,f (1)=0,曲线y =f (x )在(1,f (1))处的切线方程为2x +y-2=0.(2)当x ∈(1,+∞)时,f (x )>0等价于ln x -a (x -1)x +1>0,设g (x )=ln x -a (x -1)x +1,则g ′(x )=1x -2a (x +1)2=x 2+2(1-a )x +1x (x +1)2,g (1)=0.(ⅰ)当a ≤2,x ∈(1,+∞)时,x 2+2(1-a )x +1≥x 2-2x +1>0,故g ′(x )>0,g (x )在(1,+∞)单调递增,因此g (x )>0;(ⅱ)当a >2时,令g ′(x )=0得,x 1=a -1-(a -1)2-1,x 2=a -1+(a -1)2-1. 由x 2>1和x 1x 2=1得x 1<1,故当x ∈(1,x 2)时,g ′(x )<0,g (x )在(1,x 2)单调递减,因此g (x )<0, 综上,a 的取值范围是(-∞,2].8.(1)解 由题设,f (x )的定义域为(0,+∞),f ′(x )=1x-1,令f ′(x )=0解得x =1.当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减.(2)证明 由(1)知f (x )在x =1处取得最大值,最大值为f (1)=0. 所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x -1,即1<x -1ln x <x .(3)证明 由题设c >1,设g (x )=1+(c -1)x -c x,则g ′(x )=c -1-c xln c ,令g ′(x )=0,解得x 0=lnc -1ln cln c.当x <x 0时,g ′(x )>0,g (x )单调递增;当x >x 0时,g ′(x )<0,g (x )单调递减.由(2)知1<c -1ln c<c ,故0<x 0<1.又g (0)=g (1)=0,故当0<x <1时,g (x )>0. 所以当x ∈(0,1)时,1+(c -1)x >c x. 9.解 (1)由f ′(x )=ln x -2ax +2a . 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞), 则g ′(x )=1x -2a =1-2axx.当a ≤0时,x ∈(0,+∞)时,g ′(x )>0,函数g (x )单调递增; 当a >0时,x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0时,函数g (x )单调递增,x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减. 所以当a ≤0时,g (x )的单调递增区间为(0,+∞);当a >0时,g (x )的单调增区间为⎝ ⎛⎭⎪⎫0,12a ,单调减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0. ①当a ≤0时,f ′(x )单调递增,所以当x ∈(0,1)时,f ′(x )<0,f (x )单调递减, 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增, 所以f (x )在x =1处取得极小值,不合题意.②当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增.可得当x ∈(0,1)时,f ′(x )<0,x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意. ③当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减.所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意. ④当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增, 当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减. 所以f (x )在x =1处取极大值,合题意 .综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.10.(1)解 f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减. 当a >0时,由f ′(x )=0有x =12a .当x ∈⎝⎛⎭⎪⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,f ′(x )>0,f (x )单调递增.(2)证明 令s (x )=ex -1-x ,则s ′(x )=ex -1-1.当x >1时,s ′(x )>0,所以e x -1>x ,从而g (x )=1x -1ex -1>0.(3)解 由(2)知,当x >1时,g (x )>0. 当a ≤0,x >1时,f (x )=a (x 2-1)-ln x <0,故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a >0. 当0<a <12时,12a >1,由(1)有f ⎝ ⎛⎭⎪⎫12a <f (1)=0,而g ⎝ ⎛⎭⎪⎫12a >0.所以f (x )>g (x )在区间(1,+∞)内不恒成立; 当a ≥12时,令h (x )=f (x )-g (x )(x ≥1),当x >1时,h ′(x )=2ax -1x +1x 2-e 1-x>x -1x +1x 2-1x =x 3-2x +1x 2>x 2-2x +1x2>0.因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x >1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈⎣⎢⎡⎭⎪⎫12,+∞. 11.(1)解 由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b ,切线斜率k =f ′(0)=b . 又f (0)=c ,所以切点坐标为(0,c ).所以所求切线方程为y -c =b (x -0),即bx -y +c =0. (2)解 由a =b =4得f (x )=x 3+4x 2+4x +c ∴f ′(x )=3x 2+8x +4=(3x +2)(x +2) 令f ′(x )=0,得(3x +2)(x +2)=0, 解得x =-2或x =-23,f ′(x ),f (x )随x 的变化情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-∞,-2),x 2∈⎝ ⎛⎭⎪⎫-2,-23,x 3∈⎝ ⎛⎭⎪⎫-23,+∞,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝ ⎛⎭⎪⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明 当Δ=4a 2-12b <0时,即a 2-3b <0,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增, 所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0, 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点, 所以a 2-3b >0不是f (x )有三个不同零点的充分条件. 因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件. 12.解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x-a .若a ≤0,则f ′(x )>0,所以f (x )在(0,+∞)上单调递增.若a >0,则当x ∈⎝⎛⎭⎪⎫0,1a 时,f ′(x )>0;当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0.所以f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)由(1)知,当a ≤0时,f (x )在(0,+∞)无最大值;当a >0时,f (x )在x =1a取得最大值,最大值为f ⎝ ⎛⎭⎪⎫1a =ln ⎝ ⎛⎭⎪⎫1a +a ⎝ ⎛⎭⎪⎫1-1a =-ln a +a -1.因此f ⎝ ⎛⎭⎪⎫1a>2a -2等价于ln a +a -1<0.令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增,g (1)=0. 于是,当0<a <1时,g (a )<0;当a >1时,g (a )>0. 因此,a 的取值范围是(0,1).13.(1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x-a x(x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点. 当a >0时,因为e 2x单调递增,-a x单调递增, 所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0,故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1)可设f ′(x )在(0,+∞)的唯一零点为x 0, 当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0. 故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0).由于2e2x 0-a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a.故当a >0时,f (x )≥2a +a ln 2a.14.解 (1)f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞).由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0.解得0<x <1+52. 故f (x )的单调递增区间是⎝⎛⎭⎪⎫0,1+52.(2)令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x2x.当x ∈(1,+∞)时,F ′(x )<0,所以F (x )在[1,+∞)上单调递减, 故当x >1时,F (x )<F (1)=0, 即当x >1时,f (x )<x -1.(3)由(2)知,当k =1时,不存在x 0>1满足题意. 当k >1时,对于x >1,有f (x )<x -1<k (x -1), 则f (x )<k (x -1),从而不存在x 0>1满足题意. 当k <1时,令G (x )=f (x )-k (x -1),x ∈(0,+∞), 则有G ′(x )=1x -x +1-k =-x 2+(1-k )x +1x.由G ′(x )=0得,-x 2+(1-k )x +1=0.解得x 1=1-k -(1-k )2+42<0,x 2=1-k +(1-k )2+42>1.当x ∈(1,x 2)时,G ′(x )>0,故G (x )在[1,x 2)内单调递增. 从而当x ∈(1,x 2)时,G (x )>G (1)=0, 即f (x )>k (x -1).综上,k 的取值范围是(-∞,1).15.解 (1)由题意知,点M ,N 的坐标分别为(5,40),(20,2.5).将其分别代入y =ax 2+b,得⎩⎪⎨⎪⎧a25+b =40,a 400+b =2.5,解得⎩⎪⎨⎪⎧a =1 000,b =0.(2)①由(1)知,y =1 000x2(5≤x ≤20),则点P 的坐标为⎝⎛⎭⎪⎫t ,1 000t2,设在点P 处的切线l 交x ,y 轴分别于A ,B 点,y ′=-2 000x3,则l 的方程为y -1 000t 2=-2 000t3(x -t ),由此得A ⎝ ⎛⎭⎪⎫3t 2,0,B ⎝⎛⎭⎪⎫0,3 000t 2.故f (t )=⎝ ⎛⎭⎪⎫3t 22+⎝ ⎛⎭⎪⎫3 000t 22=32t 2+4×106t4,t ∈[5,20].②设g (t )=t 2+4×106t 4,则g ′(t )=2t -16×106t5. 令g ′(t )=0,解得t =10 2.当t ∈(5,102)时,g ′(t )<0,g (t )是减函数; 当t ∈(102,20)时,g ′(t )>0,g (t )是增函数. 从而,当t =102时,函数g (t )有极小值,也是最小值, 所以g (t )min =300,此时f (t )min =15 3.答:当t =102时,公路l 的长度最短,最短长度为153千米.16.解 (1)f ′(x )=a e x cos x -a e x sin x =2a e xcos ⎝⎛⎭⎪⎫x +π4.令f ′(x )=0,由x ≥0, 得x +π4=m π-π2,即x =m π-3π4,m ∈N *.而对于cos ⎝⎛⎭⎪⎫x +π4,当k ∈Z 时,若2k π-π2<x +π4<2k π+π2,即2k π-3π4<x <2k π+π4,则cos ⎝⎛⎭⎪⎫x +π4>0. 若2k π+π2<x +π4<2k π+3π2,即2k π+π4<x <2k π+5π4,则cos ⎝⎛⎭⎪⎫x +π4<0. 因此,在区间⎝ ⎛⎭⎪⎫(m -1)π,m π-3π4与⎝ ⎛⎭⎪⎫m π-3π4,m π+π4上,f ′(x )的符号总相反.于是当x =m π-3π4(m ∈N *)时,f (x )取得极值,所以x n =n π-34π(n ∈N *).此时,f (x n )=a e n π-3π4cos ⎝⎛⎭⎪⎫n π-3π4=(-1)n +12a 2e n π-3π4.易知f (x n )≠0,而f (x n +1)f (x n )=(-1)n +22a 2e (n +1)π-3π4(-1)n +12a 2e n π-3π4=-e π是常数,故数列{f (x n )}是首项为f (x 1)=2a 2e π4,公比为-e π的等比数列. (2)对一切n ∈N *,x n ≤|f (x n )|恒成立,即n π-3π4≤2a 2e n π-3π4恒成立,亦即2a ≤e n π-3π4n π-3π4恒成立(因为a >0).设g (t )=e tt (t >0),则g ′(t )=e t(t -1)t2. 令g ′(t )=0得t =1.当0<t <1时,g ′(t )<0,所以g (t )在区间(0,1)上单调递减; 当t >1时,g ′(t )>0,所以g (t )在区间(1,+∞)上单调递增. 因为x 1∈(0,1),且当n ≥2时,x n ∈(1,+∞),x n <x n +1, 所以[g (x n )]min =min{g (x 1),g (x 2)}=min ⎩⎨⎧⎭⎬⎫g ⎝ ⎛⎭⎪⎫π4,g ⎝ ⎛⎭⎪⎫5π4=g ⎝ ⎛⎭⎪⎫π4=4πe π4. 因此,x n ≤|f (x n )|恒成立,当且仅当2a ≤4πe π4,解得a ≥2π4e -π4. 故a 的取值范围是⎣⎢⎡⎭⎪⎫2π4e -π4,+∞.17.解 (1)由题意知,曲线y =f (x )在点(1,f (1))处的切线斜率为2, 所以f ′(1)=2,又f ′(x )=ln x +ax+1,所以a =1.(2)k =1时,方程f (x )=g (x )在(1,2)内存在唯一的根. 设h (x )=f (x )-g (x )=(x +1)ln x -x 2e x ,当x ∈(0,1]时,h (x )<0.又h (2)=3ln 2-4e 2=ln 8-4e 2>1-1=0,所以存在x 0∈(1,2),使得h (x 0)=0. 因为h ′(x )=ln x +1x +1+x (x -2)e x, 所以当x ∈(1,2)时,h ′(x )>1-1e >0,当x ∈(2,+∞)时,h ′(x )>0, 所以当x ∈(1,+∞)时,h (x )单调递增,所以k =1时,方程f (x )=g (x )在(k ,k +1)内存在唯一的根. (3)由(2)知方程f (x )=g (x )在(1,2)内存在唯一的根x 0. 且x ∈(0,x 0)时,f (x )<g (x ),x ∈(x 0,+∞)时,f (x )>g (x ), 所以m (x )=⎩⎪⎨⎪⎧(x +1)ln x ,x ∈(0,x 0],x 2e x ,x ∈(x 0,+∞).当x ∈(0,x 0)时,若x ∈(0,1],m (x )≤0; 若x ∈(1,x 0),由m ′(x )=ln x +1x+1>0,可知0<m (x )≤m (x 0); 故m (x )≤m (x 0).当x ∈(x 0,+∞)时,由m ′(x )=x (2-x )ex,可得x ∈(x 0,2)时,m ′(x )>0,m (x )单调递增;x ∈(2,+∞)时,m ′(x )<0,m (x )单调递减;可知m (x )≤m (2)=4e 2,且m (x 0)<m (2).综上可得,函数m (x )的最大值为4e2.18.解 (1)当b =a 24+1时,f (x )=⎝ ⎛⎭⎪⎫x +a 22+1,故对称轴为直线x =-a2.当a ≤-2时,g (a )=f (1)=a 24+a +2.当-2<a ≤2时,g (a )=f ⎝ ⎛⎭⎪⎫-a 2=1.当a >2时,g (a )=f (-1)=a 24-a +2.综上,g (a )=⎩⎪⎨⎪⎧a 24+a +2,a ≤-2,1,-2<a ≤2,a 24-a +2,a >2.(2)设s ,t 为方程f (x )=0的解,且-1≤t ≤1,则⎩⎪⎨⎪⎧s +t =-a ,st =b ,由于0≤b -2a ≤1,因此-2t t +2≤s ≤1-2tt +2(-1≤t ≤1).当0≤t ≤1时,-2t 2t +2≤st ≤t -2t2t +2,由于-23≤-2t 2t +2≤0和-13≤t -2t 2t +2≤9-45,所以-32≤b ≤9-4 5.当-1≤t <0时,t -2t 2t +2≤st ≤-2t2t +2,由于-2≤-2t 2t +2<0和-3≤t -2t2t +2<0,所以-3≤b <0.故b 的取值范围是[-3,9-45].19.(1)解 由f (x )=4x -x 4,可得f ′(x )=4-4x 3. 当f ′(x )>0,即x <1时,函数f (x )单调递增; 当f ′(x )<0,即x >1时,函数f (x )单调递减.所以,f (x )的单调递增区间为(-∞,1),单调递减区间为(1,+∞). (2)证明 设点P 的坐标为(x 0,0),则x 0=413,f ′(x 0)=-12.曲线y =f (x )在点P 处的切线方程为y =f ′(x 0)(x -x 0),即g (x )=f ′(x 0)(x -x 0). 令函数F (x )=f (x )-g (x ),即F (x )=f (x )-f ′(x 0)(x -x 0), 则F ′(x )=f ′(x )-f ′(x 0).由于f ′(x )=-4x 3+4在(-∞,+∞)上单调递减, 故F ′(x )在(-∞,+∞)上单调递减,又因为F ′(x 0)=0,所以当x ∈(-∞,x 0)时,F ′(x )>0,当x ∈(x 0,+∞)时,F ′(x )<0, 所以F (x )在(-∞,x 0)上单调递增,在(x 0,+∞)上单调递减,所以对于任意的实数x ,F (x )≤F (x 0)=0, 即对于任意的实数x ,都有f (x )≤g (x ). (3)证明 由(2)知g (x )=-12(x -413).设方程g (x )=a 的根为x 2′,可得x 2′=-a 12+413.因为g (x )在(-∞,+∞)上单调递减, 又由(2)知g (x 2)≥f (x 2)=a =g (x 2′), 因此x 2≤x 2′.类似地,设曲线y =f (x )在原点处的切线方程为y =h (x ), 可得h (x )=4x .对于任意的x ∈(-∞,+∞),有f (x )-h (x )=-x 4≤0,即f (x )≤h (x ). 设方程h (x )=a 的根为x 1′,可得x 1′=a4.因为h (x )=4x 在(-∞,+∞)上单调递增,且h (x 1′)=a =f (x 1)≤h (x 1),因此x 1′≤x 1,由此可得x 2-x 1≤x 2′-x 1′=-a 3+413.20.解 (1)f (0)=a 2+|a |-a 2+a =|a |+a ,因为f (0)≤1,所以|a |+a ≤1, 当a ≤0时,|a |+a =-a +a =0≤1,显然成立; 当a >0,则有|a |+a =2a ≤1,所以a ≤12,所以0<a ≤12,综上所述,a 的取值范围是a ≤12.(2)f (x )=⎩⎪⎨⎪⎧x 2-(2a -1)x ,x ≥a ,x 2-(2a +1)x +2a ,x <a .对于u 1=x 2-(2a -1)x ,其对称轴为x =2a -12=a -12<a ,开口向上,所以f (x )在(a ,+∞)上单调递增;对于u 1=x 2-(2a +1)x +2a ,其对称轴为x =2a +12=a +12>a ,开口向上,所以f (x )在(-∞,a )上单调递减.综上,f (x )在(a ,+∞)上单调递增,在(-∞,a )上单调递减,(3)由(2)得f (x )在(a ,+∞)上单调递增,在(0,a )上单调递减,所以f (x )min =f (a )=a -a 2.(ⅰ)当a =2时,f (x )min =f (2)=-2,f (x )=⎩⎪⎨⎪⎧x 2-3x ,x ≥2,x 2-5x +4,x <2,令f (x )+4x =0,即f (x )=-4x(x >0),因为f (x )在(0,2)上单调递减,所以f (x )>f (2)=-2,而y =-4x 在(0,2)上单调递增,y <f (2)=2,所以y =f (x )与y =-4x在(0,2)无交点.当x ≥2时,f (x )=x 2-3x =-4x,即x 3-3x 2+4=0,所以x 3-2x 2-x 2+4=0,所以(x -2)2(x +1)=0, 因为x ≥2,所以x =2,即当a =2时,f (x )+4x有一个零点x =2.(ⅱ)当a >2时,f (x )min =f (a )=a -a 2, 当x ∈(0,a )时,f (0)=2a >4,f (a )=a -a 2,而y =-4x 在x ∈(0,a )上单调递增,当x =a 时,y =-4a,下面比较f (a )=a -a 2与-4a的大小,因为a -a 2-⎝ ⎛⎭⎪⎫-4a =-(a 3-a 2-4)a =-(a -2)(a 2+a +2)a <0所以f (a )=a -a 2<-4a.结合图象不难得当a >2,y =f (x )与y =-4x有两个交点,综上,当a =2时,f (x )+4x 有一个零点x =2;当a >2,y =f (x )与y =-4x有两个零点.21.解 (1)f (x )的定义域为(-∞,+∞),f ′(x )=1+a -2x -3x 2. 令f ′(x )=0,得x 1=-1-4+3a 3,x 2=-1+4+3a3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2).当x <x 1或x >x 2时,f ′(x )<0;当x 1<x <x 2时,f ′(x )>0.故f (x )在(-∞,x 1)和(x 2,+∞)内单调递减,在(x 1,x 2)内单调递增. (2)因为a >0,所以x 1<0,x 2>0.①当a ≥4时,x 2≥1,由(1)知,f (x )在[0,1]上单调递增, 所以f (x )在x =0和x =1处分别取得最小值和最大值.②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减, 因此f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值; 当a =1时,f (x )在x =0和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 22.解 (1)f ′(x )=x 2+2x +a 开口向上, 方程x 2+2x +a =0的判别式Δ=4-4a =4(1-a ),若a ≥1,则Δ≤0,f ′(x )=x 2+2x +a ≥0恒成立,∴f (x )在R 上单调递增.若a <1,则Δ>0,方程x 2+2x +a =0有两个不同的实数根,x 1=-1-1-a ,x 2=-1+1-a ,当x <x 1或x >x 2时,f ′(x )>0;当x 1<x <x 2时,f ′(x )<0, ∴f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞), 单调递减区间为(-1-1-a ,-1+1-a ). 综上所述,当a ≥1时,f (x )在R 上单调递增;当a <1时,f (x )的单调递增区间为(-∞,-1-1-a )和(-1+1-a ,+∞),f (x )的单调递减区间为(-1-1-a ,-1+1-a ).(2)当a <0时,Δ>0,且f (0)=1,f ⎝ ⎛⎭⎪⎫12=3124+a2,f (1)=73+a ,此时x 1<0,x 2>0, 令x 2=12得a =-54.①当-54<a <0时,x 1<0<x 2<12,f (x )在(0,x 2)上单调递减,在⎝⎛⎭⎪⎫x 2,12上单调递增,在⎝⎛⎭⎪⎫12,1上单调递增.(ⅰ)若-54<a <-712,则f (0)=1>f ⎝ ⎛⎭⎪⎫12,∴存在x 0∈(0,x 2),使得f (x 0)=f ⎝ ⎛⎭⎪⎫12;(ⅱ)当-712≤a <0时,f (0)≤f ⎝ ⎛⎭⎪⎫12, ∴不存在x 0∈⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎭⎪⎫12,1,使得f (x 0)=f ⎝ ⎛⎭⎪⎫12.②当a =-54时,f (x )在⎝ ⎛⎭⎪⎫0,12上单调递减,在⎝ ⎛⎭⎪⎫12,1上单调递增. ∴不存在x 0,使得f (x 0)=f ⎝ ⎛⎭⎪⎫12.③当-2512<a <-54时,f ⎝ ⎛⎭⎪⎫12<f (1), ∴存在x 0∈⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎭⎪⎫12,1,使得f (x 0)=f ⎝ ⎛⎭⎪⎫12.④当a ≤-2512时,f ⎝ ⎛⎭⎪⎫12≥f (1), ∴不存在x 0∈⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎭⎪⎫12,1,使得f (x 0)=f ⎝ ⎛⎭⎪⎫12. 综上,当a ∈⎣⎢⎡⎭⎪⎫-712,0∪{-54}∪⎝ ⎛⎦⎥⎤-∞,-2512时,不存在x 0∈⎝ ⎛⎭⎪⎫0,12∪⎝ ⎛⎭⎪⎫12,1,使得f (x 0)=f ⎝ ⎛⎭⎪⎫12;当a ∈⎝⎛⎭⎪⎫-2512,-54∪⎝⎛⎭⎪⎫-54,-712时,存在x 0∈⎝⎛⎭⎪⎫0,12∪⎝⎛⎭⎪⎫12,1,使得f (x 0)=f ⎝ ⎛⎭⎪⎫12. 23.解 (1)由已知,有f ′(x )=2x -2ax 2(a >0). 令f ′(x )=0,解得x =0或x =1a.当x 变化时,f ′(x ),f (x )的变化情况如下表:所以,f (x )的单调递增区间是⎝⎭⎪⎫0,a ;单调递减区间是(-∞,0),⎝ ⎭⎪a ,+∞.当x =0时,f (x )有极小值,且极小值f (0)=0;当x =1a时,f (x )有极大值,且极大值f ⎝ ⎛⎭⎪⎫1a =13a2. (2)由f (0)=f ⎝ ⎛⎭⎪⎫32a =0及(1)知,当x ∈⎝ ⎛⎭⎪⎫0,32a 时,f (x )>0;当x ∈⎝ ⎛⎭⎪⎫32a ,+∞时,f (x )<0.设集合A ={f (x )|x ∈(2,+∞)},集合B =⎩⎨⎧⎭⎬⎫1f (x )|x ∈(1,+∞),f (x )≠0,则“对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)·f (x 2)=1”等价于A ⊆B .显然,0∉B .下面分三种情况讨论:(1)当32a >2,即0<a <34时,由f ⎝ ⎛⎭⎪⎫32a =0可知,0∈A ,而0∉B ,所以A 不是B 的子集. (2)当1≤32a ≤2,即34≤a ≤32时,有f (2)≤0,且此时f (x )在(2,+∞)上单调递减,故A =(-∞,f (2)),因而A ⊆(-∞,0);由f (1)≥0,有f (x )在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B .所以A ⊆B .(3)当32a <1,即a >32时,有f (1)<0,且此时f (x )在(1,+∞)上单调递减, 故B =⎝ ⎛⎭⎪⎫1f (1),0,A =(-∞,f (2)), 所以A 不是B 的子集.综上,a 的取值范围是⎣⎢⎡⎦⎥⎤34,32. 24.解 (1)由题设,当m =e 时,f (x )=ln x +e x ,则f ′(x )=x -e x 2, ∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减,当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增,∴x =e 时,f (x )取得极小值f (e)=ln e +e e=2, ∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0), 令g (x )=0,得m =-13x 3+x (x >0). 设φ(x )=-13x 3+x (x ≥0), 则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点.∴φ(x )的最大值为φ(1)=23. 又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.(3)对任意的b >a >0,f (b )-f (a )b -a <1恒成立,等价于f (b )-b <f (a )-a 恒成立. (*)设h (x )=f (x )-x =ln x +m x -x (x >0),∴(*)式等价于h (x )在(0,+∞)上单调递减.由h ′(x )=1x -mx 2-1≤0在(0,+∞)上恒成立,得m ≥-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14(x >0)恒成立,∴m ≥14(对m =14,h ′(x )=0仅在x =12时成立),∴m 的取值范围是⎣⎢⎡⎭⎪⎫14,+∞.25.解 (1)f ′(x )=a x +(1-a )x -b .由题设知f ′(1)=0,解得b =1.(2)f (x )的定义域为(0,+∞).由(1)知,f (x )=a ln x +1-a 2x 2-x ,f ′(x )=a x +(1-a )x -1=1-a x (x -a 1-a)(x -1). ①若a ≤12,则a 1-a≤1,故当x ∈(1,+∞)时,f ′(x )>0,f (x )在(1,+∞)单调递增. 所以,存在x 0≥1,使得f (x 0)<aa -1的充要条件为f (1)<a a -1,即1-a 2-1<a a -1, 解得-2-1<a <2-1.②若12<a <1,则a 1-a >1, 故当x ∈⎝ ⎛⎭⎪⎫1,a 1-a 时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a 1-a ,+∞时,f ′(x )>0. f (x )在⎝ ⎛⎭⎪⎫1,a 1-a 单调递减,在⎝ ⎛⎭⎪⎫a 1-a ,+∞单调递增. 所以,存在x 0≥1,使得f (x 0)<a a -1的充要条件为f ⎝ ⎛⎭⎪⎫a 1-a <a a -1. 而f ⎝ ⎛⎭⎪⎫a 1-a =a ln a 1-a +a 22(1-a )+a a -1>a a -1,所以不合题意. ③若a >1,则f (1)=1-a 2-1=-a -12<a a -1. 综上,a 的取值范围是(-2-1,2-1)∪(1,+∞).B 组 两年模拟精选(2016~2015年)1.解析 f ′(x )=2x +2sin x ,当x ∈[0,1]时f ′(x )>0.∴f (x )为增函数,所以f (0)<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫25, 又f (x )为偶函数,所以f ⎝ ⎛⎭⎪⎫-13=f ⎝ ⎛⎭⎪⎫13, 则f (0)<f ⎝ ⎛⎭⎪⎫-13<f ⎝ ⎛⎭⎪⎫25. 答案 A2.解析 f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上恒成立,因为y =32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝⎛⎭⎪⎫4+14=518,故选C. 答案 C3.解析 令F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0, 所以F (x )为减函数,f (2)2>f (3)3,所以3f (2)>2f (3).答案 A4.解析 当x ≤0时,f ′(x )=6x 2+6x ,易知函数f (x )在(-∞,0]上的极大值点是x =-1,且f (-1)=2,故只要在(0,2]上,e ax ≤2即可,即ax ≤ln 2在(0,2]上恒成立,即a ≤ln 2x在(0,2]上恒成立,故a ≤12ln 2. 答案 D5.解析 构造函数F (x )=f (x )-⎝ ⎛⎭⎪⎫x 3+23,F (1)=f (1)-1=0, ∵f ′(x )<13,∴F ′(x )=f ′(x )-13<0,∴F (x )在R 上单调递减, f (x )<x 3+23的解集即F (x )<0=F (1)的解集,得x >1. 答案 D6.解析 f (x )=x 3-3x ,f ′(x )=3x 2-3,令f ′(x )=0,解得x =±1,可以判断当x =1时函数有极小值, ∴⎩⎪⎨⎪⎧a <1,6-a 2≥1,6-a 2>a ,解得a ∈[-5,1),∴选B.答案 B7.解析 f ′(x )=x 2-ax +3-a ,要使f (x )有三个不同单调区间,需Δ=(-a )2-4(3-a )>0,即a ∈(-∞,-6)∪(2,+∞).答案 (-∞,-6)∪(2,+∞)8.解析 ∵f ′(x )=3x 2+1>0恒成立,∴f (x )在R 上是增函数.又f (-x )=-f (x ),∴y =f (x )为奇函数.由f (mx -2)+f (x )<0得f (mx -2)<-f (x )=f (-x ),∴mx -2<-x ,即mx -2+x <0在m ∈[-2,2]上恒成立.记g (m )=xm -2+x ,则⎩⎪⎨⎪⎧g (-2)<0,g (2)<0,即⎩⎪⎨⎪⎧-2x -2+x <0,2x -2+x <0, 解得-2<x <23.答案 ⎝ ⎛⎭⎪⎫-2,239.解 (1)由题知函数f (x )的定义域为(0,+∞),f ′(x )=ln x +1, 当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,故f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增.①当0<t <t +2<1e 时,无解;②当0<t <1e <t +2,即0<t <1e 时,函数f (x )在[t ,t +2]上的最小值f (x )min =f ⎝ ⎛⎭⎪⎫1e =-1e ;③当1e ≤t <t +2,即t ≥1e 时,f (x )在[t ,t +2]上单调递增,故函数f (x )在[t ,t +2]上的最小值f (x )min =f (t )=t ln t .综上可知f (x )min =⎩⎪⎨⎪⎧-1e ,0<t <1e ,t ln t ,t ≥1e .(2)由题知2x ln x ≥-x 2+ax -3,即a ≤2ln x +x +3x 对一切x ∈(0,+∞)恒成立.设h (x )=2ln x +x +3x (x >0),则h ′(x )=(x +3)(x -1)x 2,当x ∈(0,1)时,h ′(x )<0,故h (x )在(0,1)上单调递减, 当x ∈(1,+∞)时,h ′(x )>0,故h (x )在(1,+∞)上单调递增.所以h (x )在(0,+∞)上有唯一极小值h (1),即为最小值, 所以h (x )min =h (1)=4,因为对一切x ∈(0,+∞),a ≤h (x )恒成立,所以a ≤4.。
课标专用5年高考3年模拟A版2021高考数学专题三导数及其应用2导数的应用课件理

-
a
1 a
,
.
综上可知,当a>0时,函数f(x)的单调增区间为
-
,-
a
1 a
和(-1,+∞),单调减区
间为
-
a
a
1
,-1 ;
当a=0时,函数f(x)的单调增区间为(-1,+∞),单调减区间为(-∞,-1);
当a<0时,函数f(x)的单调增区间为
-1,-
a
1 a
,单调减区间为(-∞,-1),
x 1
故f '(1)=ea,结合题意知ea=e,∴a=1. (4分)
(2)由题意知x∈(0,+∞)时, f '(x)=eax+1- 2 <0有解,
x 1
当x∈[1,+∞)时, f '(x)=eax+1- 2 >0恒成立,不存在单调递减区间. (5分)
x 1
当x∈(0,1)时, f '(x)=eax+1- 2 <0有解等价于ln 1-x -ax>0有解. (6分)
有极大值点之和与所有极小值点之和的差为 ( )
A.-5π
B.5π
C.55π
D.-55π
解析 ∵函数f(x)=ex(cos x-sin x), ∴f '(x)=(ex)'(cos x-sin x)+ex(cos x-sin x)'=-2exsin x, ∵x∈(2kπ+π,2kπ+2π)(k∈Z)时, f '(x)>0,x∈(2kπ,2kπ+π)(k∈Z)时, f '(x)<0,∴x ∈(2kπ+π,2kπ+2π)(k∈Z)时, f(x)递增,x∈(2kπ,2kπ+π)(k∈Z)时, f(x)递减,∴当 x=2kπ+π(k∈Z)时, f(x)取极小值,当x=2kπ(k∈Z)时, f(x)取极大值. f(x)的所有极大值点为x=2π,4π,6π,8π, f(x)的所有极小值点为x=π,3π,5π,7π,9π, 故(2π+4π+6π+8π)-(π+3π+5π+7π+9π)=-5π,故选A.
高考数学专题《导数的概念、运算及导数的几何意义》习题含答案解析

专题4.1 导数的概念、运算及导数的几何意义1.(2021·浙江高三其他模拟)函数312x y +=在0x =处的导数是( )A .6ln 2B .2ln 2C .6D .2【答案】A 【解析】利用符合函数的求导法则()()()()()()f g x '''f g x g x =⋅,求出312x y +=的导函数为3131'223322x x y ln ln ++=⋅⋅=⋅,代入x =0,即可求出函数在x =0处的导数.【详解】312x y +=的导函数为3131'223322x x y ln ln ++=⋅⋅=⋅,故当x =0时,'62y ln =.故选:A2.(2021·黑龙江哈尔滨市·哈师大附中高三月考(文))曲线2cos sin y x x =+在(,2)π-处的切线方程为()A .20x y π-+-=B .20x y π--+=C .20x y π++-=D .20x y π+-+=【答案】D 【解析】先求得导函数,根据切点求得斜线的斜率,再由点斜式即可求得方程.【详解】'2sin cos y x x=-+当x π=时,2sin cos 1k ππ=-+=-所以在点(),2π-处的切线方程,由点斜式可得()21y x π+=-⨯- 化简可得20x y π+-+=故选:D练基础3.(2021·全国高三其他模拟(理))曲线12sin()2x y e x π-=-在点(1,1)-处的切线方程为( )A .0x y -=B .10ex y e --+=C .10ex y e ---=D .20x y --=【答案】D 【解析】根据切点和斜率求得切线方程.【详解】因为12sin()2x y ex π-=-,所以1cos()2x y e x ππ-'=-,当1x =时,1y '=,所以曲线12sin()2x y e x π-=-在点(1,1)-处的切线的斜率1k =,所以所求切线方程为11y x +=-,即20x y --=.故选:D4.(2021·山西高三三模(理))已知a R ∈,设函数()ln 1f x ax x =-+的图象在点(1,(1))f 处的切线为l ,则l 过定点( )A .(0,2)B .(1,0)C .(1,1)a +D .(,1)e 【答案】A 【解析】根据导数几何意义求出切线方程,化成斜截式,即可求解【详解】由()1()ln 1'f x ax x f x a x=-+⇒=-,()'11f a =-,()11f a =+,故过(1,(1))f 处的切线方程为:()()()11+112y a x a a x =--+=-+,故l 过定点(0,2)故选:A5.(2021·云南曲靖一中高三其他模拟(理))设曲线()xf x ae b =+和曲线()cos2xg x c π=+在它们的公共点()0,2M 处有相同的切线,则b c a +-的值为( )A .0B .πC .2-D .3【答案】D 【解析】利用导数的几何意义可知()()00f g '=',可求得a ;根据()0,2M 为两曲线公共点可构造方程求得,b c ,代入可得结果.【详解】()x f x ae '= ,()sin22xg x ππ'=-,()0f a '∴=,()00g '=,0a ∴=,又()0,2M 为()f x 与()g x 公共点,()02f b ∴==,()012g c =+=,解得:1c =,2103b c a ∴+-=+-=.故选:D.6.(2021·重庆高三其他模拟)曲线()ln f x ax x x =-在点()()1,1f 处的切线与直线0x y +=垂直,则a =()A .1-B .0C .1D .2【答案】D 【解析】求得()f x 的导数,可得切线的斜率,由两直线垂直的条件,可得a 的方程,解方程可得所求值.【详解】解:()f x ax xlnx =-的导数为()1f x a lnx '=--,可得在点()()1,1f 处的切线的斜率为()11k f a '==-,由切线与直线0x y +=垂直,可得11a -=,解得2a =,故选:D .7.(2021·重庆八中高三其他模拟)已知定义在()0,∞+上的函数()f x 满足ln a fx x =-,若曲线()y f x =在点()()1,1P f 处的切线斜率为2,则()1f =( )A .1B .1-C .0D .2【答案】C 【解析】先由换元法求出()f x 的解析式,然后求导,利用导数的几何意义先求出a 的值,然后可得出()1f 的值.【详解】设t =,则()22ln t f t t a =-,()22at tf t '=-.由()2212a f =-=',解得0a =,从而()10f a =-=,故选: C .8.(2018·全国高考真题(理))设函数f (x )=x 3+(a ―1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0 , 0)处的切线方程为( )A .y =―2xB .y =―xC .y =2xD .y =x 【答案】D【解析】分析:利用奇函数偶此项系数为零求得a =1,进而得到f (x )的解析式,再对f (x )求导得出切线的斜率k ,进而求得切线方程.详解:因为函数f (x )是奇函数,所以a ―1=0,解得a =1,所以f (x )=x 3+x ,f′(x )=3x 2+1,所以f′(0)=1,f (0)=0,所以曲线y =f (x )在点(0,0)处的切线方程为y ―f (0)=f′(0)x ,化简可得y =x ,故选D.9.(2021·河南洛阳市·高三其他模拟(理))设曲线2xy x =-在点()3,3处的切线与直线10ax y ++=平行,则a 等于( )A .12B .2C .12-D .2-【答案】B 【解析】利用导数求出曲线 2xy x =-在点()3,3处的切线的斜率,利用两直线平行可得出实数a 的值.【详解】对函数2x y x =-求导得()()222222x x y x x --'==---,由已知条件可得32x a y ='-==-,所以,2a =.故选:B.10.(2020·河北高三其他模拟(文))已知曲线()xax e f x x =+在点()()0,0f 处的切线斜率为2,则a =___________.【答案】1【解析】求导数,由导数的几何意义,可得切线的斜率,解方程即可求解.【详解】解:()xax e f x x =+的导数为()()1xf x a x e =++',可得曲线()xax e f x x =+在点()()0,0f 处的切线斜率为12a +=,解得1a =.故答案为:1.1.(2021·浙江金华市·高三三模)已知点P在曲线y =θ为曲线在点P 处的切线的倾斜角,则θ的取值范围是( )A .0,3π⎛⎤ ⎥⎝⎦B .,32ππ⎡⎫⎪⎢⎣⎭C .2,23ππ⎛⎤⎥⎝⎦D .2,3ππ⎡⎫⎪⎢⎣⎭【答案】D 【解析】首先根据导数的几何意义求得切线斜率的取值范围,再根据倾斜角与斜率之间的关系求得倾斜角的取值范围.【详解】因为y ==',由于124xxe e ++≥,所以[y ∈',根据导数的几何意义可知:tan [θ∈,所以2[,)3πθπ∈,故选:D.练提升2.(2021·四川成都市·石室中学高三三模)已知函数()2xf x ae x =+的图象在点()()1,1M f 处的切线方程是()22y e x b =++,那么ab =( )A .2B .1C .1-D .2-【答案】D 【解析】根据导数的几何意义确定斜率与切点即可求解答案.【详解】因为()2xf x ae x =+,所以()2x f x ae x '=+,因此切线方程的斜率(1)2k f ae '==+,所以有222ae e +=+,得2a =,又切点在切线上,可得切点坐标为(1,22)e b ++,将切点代入()f x 中,有(1)2122f e e b =+=++,得1b =-,所以2ab =-.故选:D.3.(2021·四川成都市·成都七中高三月考(文))已知直线l 为曲线sin cos y x x x =+在2x π=处的切线,则在直线l 上方的点是( )A .,12π⎛⎫⎪⎝⎭B .()2,0C .(),1π-D .()1,π-【答案】C 【解析】利用导数的几何意义求得切线的方程,进而判定点与切线的位置关系即可.【详解】'cos cos sin 2cos sin y x x x x x x x =+-=-,22x y ππ==-',又 当2x π=时,1y =,所以切线的方程为122y x ππ⎛⎫=--+ ⎪⎝⎭,对于A,当2x π=时,1y =,故点,12π⎛⎫⎪⎝⎭在切线上;对于B,当2x =时,2921π11 3.2502244y πππππ⎛⎫=--+=-++>-++=-> ⎪⎝⎭,故点()2,0在切线下方;对于C,当x π=时,2π91111,2512244y πππ⎛⎫=--+=-+<-+=-<- ⎪⎝⎭,故点(),1π-在切线上方;对于D,当x =1时,211122242y ππππππ⎛⎫=--+=-++>->- ⎪⎝⎭,故点()1,π-在切线下方.故选:C.4.(2021·甘肃高三二模(理))已知函数()ln f x x x =,()2g x x ax =+()a ∈R ,若经过点()0,1A -存在一条直线l 与()f x 图象和()g x 图象都相切,则a =( )A .0B .-1C .3D .-1或3【答案】D 【解析】先求得过()0,1A -且于()f x 相切的切线方程,然后与()()2g x x ax a =+∈R 联立,由0∆=求解.【详解】设直线l 与()ln f x x x =相切的切点为(),ln m m m ,由()ln f x x x =的导数为()1ln f x x '=+,可得切线的斜率为1ln m +,则切线的方程为()()ln 1ln y m m m x m -=+-,将()0,1A -代入切线的方程可得()()1ln 1ln 0m m m m --=+-,解得1m =,则切线l 的方程为1y x =-,联立21y x y x ax=-⎧⎨=+⎩,可得()2110x a x +-+=,由()2140a ∆=--=,解得1a =-或3,故选:D .5.(2021·安徽省泗县第一中学高三其他模拟(理))若点P 是曲线2ln 1y x x =--上任意一点,则点P 到直线3y x =-的最小距离为( )A .1BCD .2【答案】C 【解析】由已知可知曲线2ln 1y x x =--在点P 处的切线与直线3y x =-平行,利用导数求出点P 的坐标,利用点到直线的距离公式可求得结果.【详解】因为点P 是曲线2ln 1y x x =--任意一点,所以当点P 处的切线和直线3y x =-平行时,点P 到直线的3y x =-的距离最小,因为直线3y x =-的斜率等于1,曲线2ln 1y x x =--的导数12y x x'=-,令1y '=,可得1x =或12x =-(舍去),所以在曲线2ln 1y x x =--与直线3y x =-平行的切线经过的切点坐标为()1,0,所以点P 到直线3y x =-的最小距离为d .故选:C.6.(2021·安徽省舒城中学高三三模(理))若函数()ln f x x x =+与2()1x mg x x -=-的图象有一条公共切线,且该公共切线与直线21y x =+平行,则实数m =( )A .178B .176C .174D .172【答案】A 【解析】设函数()ln f x x x =+图象上切点为00(,)x y ,求出函数的导函数,根据0()2f x '=求出切点坐标与切线方程,设函数()21x m g x x -=-的图象上的切点为11(,)x y 1(1)x ≠,根据1()2g x '=,得到211244m x x =-+,再由1112211x mx x --=-,即可求出1x ,从而得解;【详解】解:设函数()ln f x x x =+图象上切点为00(,)x y ,因为1()1f x x'=+,所以001()12f x x '=+=,得01x =, 所以00()(1)1y f x f ===,所以切线方程为12(1)y x -=-,即21y x =-,设函数()21x mg x x -=-的图象上的切点为11(,)x y 1(1)x ≠,因为222(1)(2)2()(1)(1)x x m m g x x x ----'==--,所以1212()2(1)m g x x -'==-,即211244m x x =-+,又11111221()1x m y x g x x -=-==-,即211251m x x =-+-,所以221111244251x x x x -+=-+-,即2114950x x -+=,解得154x =或11x =(舍),所以25517244448m ⎛⎫=⨯-⨯+= ⎪⎝⎭.故选:A7.(2021·全国高三其他模拟)已知直线y =2x 与函数f (x )=﹣2lnx +xe x +m 的图象相切,则m =_________.【答案】2ln 4-+【解析】设出切点()00000,2ln ,0xx x x e m x -++>,根据切线方程的几何意义,得到()00000002ln 2212x x x x e m x x e x ⎧-++=⎪-⎨++=⎪⎩,解方程组即可.【详解】因为()2ln xf x x xe m =-++,所以()()21x f x x e x-'=++设切点为()00000,2ln ,0xx x x e m x -++>,所以切线的斜率为()()000021x k f x x e x -'==++又因为切线方程为y =2x ,因此()00000002ln 2212x x x x e m x x e x ⎧-++=⎪-⎨++=⎪⎩,由()000212x x e x -++=,得()000210x x e x ⎛⎫+-= ⎪⎝⎭,因为010x +≠,所以02x ex =,又00ln 2ln x x =-,所以()000022ln 2ln 2ln x x m x x -+⋅+=-,得2ln 4m =-+.故答案为:2ln 4-+.8.(2021·黑龙江佳木斯市·佳木斯一中高三三模(理))若两曲线y =x 2+1与y =a ln x +1存在公切线,则正实数a 的取值范围是_________.【答案】(0,2e ]【解析】设公切线与曲线y =x 2+1和y =a ln x +1的交点分别为(x 1,x 12+1),(x 2,a ln x 2+1),其中x 2>0,然后分别求出切线方程,对应系数相等,可以得到122122111a x x x a nx a⎧=⎪⎨⎪-=+-⎩,然后转化为﹣2224a x =a ln x 2﹣a ,,然后参变分离得到a =4x 2﹣4x 2ln x ,进而构造函数求值域即可.【详解】解:设公切线与曲线y =x 2+1和y =a ln x +1的交点分别为(x 1,x 12+1),(x 2,a ln x 2+1),其中x 2>0,对于y =x 2+1,y ′=2x ,所以与曲线y =x 2+1相切的切线方程为:y ﹣(x 12+1)=2x 1(x ﹣x 1),即y =2x 1x ﹣x 12+1,对于y =a ln x +1,y ′=ax,所以与曲线y =a ln x +1相切的切线方程为y ﹣(a ln x 2+1)=2a x (x ﹣x 2),即y =2ax x ﹣a +1+a ln x 2,所以122122111a x x x a nx a⎧=⎪⎨⎪-=+-⎩,即有﹣2224a x =a ln x 2﹣a ,由a >0,可得a =4x 2﹣4x 2ln x ,记f (x )=4x 2﹣4x 2ln x (x >0),f ′(x )=8x ﹣4x ﹣8x ln x =4x (1﹣2ln x ),当x时,f ′(x )>0,即f (x )在(0x时,f ′(x )<0,即f (x ),+∞)上单调递减,所以f (x )max =f)=2e ,又x →0时,f (x )→0,x →+∞时,f (x )→﹣∞,所以0<a ≤2e .故答案为:(0,2e ].9.(2021·湖南永州市·高三其他模拟)已知函数()2ln f x x x =+,点P 为函数()f x 图象上一动点,则P 到直线34y x =-距离的最小值为___________.(注ln 20.69≈)【解析】求出导函数,利用导数的几何意义求出切线与已知直线平行时切点坐标,然后转化为求点到直线的距离即可求解.【详解】解:()12f x x x'=+,()0x >,与直线34y x =-平行的切线斜率132k x x ==+,解得1x =或12x =,当1x =时,()11f =,即切点为()1,1,此时点P 到直线34y x =-的距离为d 当12x =时,11ln 224f ⎛⎫=- ⎪⎝⎭,即切点为11,ln 224⎛⎫- ⎪⎝⎭,此时点P 到直线34y x =-的距离为d =>10.(2021·湖北荆州市·荆州中学高三其他模拟)已知1P ,2P 是曲线:2|ln |C y x =上的两点,分别以1P ,2P 为切点作曲线C 的切线1l ,2l ,且12l l ⊥,切线1l 交y 轴于A 点,切线2l 交y 轴于B 点,则线段AB 的长度为___________.【答案】44ln 2-【解析】由两切线垂直可知,1P ,2P 两点必分别位于该函数的两段上,故可设出切点坐标111222(,),(,)P x y P x y ,表示出两条切线方程,根据两切线垂直,可得124x x =,又两切线分别与y 轴交于1(0,22ln )A x -,2(0,22ln )B x -+,则可求出44ln 2AB =-.【详解】曲线2ln ,01:2ln ,1x x C y x x -<<⎧=⎨≥⎩ ,则2,012,1x x y x x⎧-<<⎪⎪=⎨'⎪≥⎪⎩,设111222(,),(,)P x y P x y ,两切线斜率分别为1k ,2k ,由12l l ⊥得121k k =-,则不妨设1201,1x x <<³,111(,2ln )P x x \-,112k x =-,11112:2ln ()l y x x x x +=--,令0x =,得1(0,22ln )A x -222(,2ln )P x x ,222k x =,22222:2ln ()l y x x x x -=-,令0x =,得2(0,22ln )B x -+由121k k =-,即12221x x -×=-,得124x x =,则1242ln()44ln 2AB x x =-=-.故答案为:44ln 2-.1.(2021·全国高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则()A .e b a<B .e a b <C .0e ba <<D .0e ab <<【答案】D【解析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;练真题解法二:画出曲线x y e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.【详解】在曲线x y e =上任取一点(),t P t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()tt y e e x t -=-,即()1t t y e x t e =+-,由题意可知,点(),a b 在直线()1t t y e x t e =+-上,可得()()11t t tb ae t e a t e =+-=+-,令()()1t f t a t e =+-,则()()t f t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点.故选:D.解法二:画出函数曲线x y e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D.2.(2020·全国高考真题(理))函数的图像在点处的切线方程为()A .B .C .D .【答案】B【解析】,,,,因此,所求切线的方程为,即.故选:B.3.(2020·全国高考真题(理))若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D【解析】43()2f x x x =-(1(1))f ,21y x =--21y x =-+23y x =-21y x =+()432f x x x =- ()3246f x x x '∴=-()11f ∴=-()12f '=-()121y x +=--21y x =-+设直线l在曲线y =上的切点为(0x ,则00x >,函数y =的导数为y '=,则直线l的斜率k =,设直线l的方程为)0y x x -=-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D.4.(2020·全国高考真题(文))设函数.若,则a =_________.【答案】1【解析】由函数的解析式可得:,则:,据此可得:,整理可得:,解得:.故答案为:.5.(2019·全国高考真题(文))曲线在点处的切线方程为___________.【答案】.【解析】所以,所以,曲线在点处的切线方程为,即.6.(2020·全国高考真题(文))曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________.e ()xf x x a =+(1)4e f '=()()()()()221x xx e x a e e x a f x x a x a +-+-'==++()()()()12211111e a aef a a ⨯+-'==++()241ae e a =+2210a a -+=1a =123()e x y x x =+(0,0)30x y -=/223(21)3()3(31),x x x y x e x x e x x e =+++=++/0|3x k y ===23()e x y x x =+(0,0)3y x =30x y -=【答案】2y x=【解析】设切线的切点坐标为001(,),ln 1,1x y y x x y x =++'=+,00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2),所求的切线方程为22(1)y x -=-,即2y x =.故答案为:2y x =.。
2021版《3年高考2年模拟》高考数学(浙江版理)检测:9.1 导数的概念及运算 Word版含答案

第九章导数及其应用§9.1导数的概念及运算A组基础题组1.(2021江西重点中学盟校一联)函数f(x)=x3的图象在原点处的切线方程为( )A.y=xB.x=0C.y=0D.不存在2.(2022湖北荆门调考,3,5分)函数f(x)=xe x在点A(0,f(0))处的切线斜率为( )A.0B.-1C.1D.e3.(2021浙江重点中学协作体摸底)已知点P在曲线f(x)=x4-x上,曲线在点P处的切线平行于直线3x-y=0,则点P的坐标为( )A.(0,0)B.(1,1)C.(0,1)D.(1,0)4.(2021吉林二调)若函数f(x)=x3+ax2+bx+c图象上点A(2,1)处的切线方程为2x-y+a=0,则a+b+c=( )A.-B.-C.0D.5.(2021广东惠州第三次调研)给出定义:若函数f(x)在D上可导,即f'(x)存在,且导函数f'(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f'(x))',若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在上不是凸函数的是( )A.f(x)=sinx+cosxB.f(x)=lnx-2xC.f(x)=-x3+2x-1D.f(x)=-xe-x6.(2022山东曲阜期中,8,5分)设函数h(x),g(x)在[a,b]上可导,且h'(x)<g'(x),则当a<x<b时,有( )A.h(x)<g(x)B.h(x)>g(x)C.h(x)+g(a)>g(x)+h(a)D.h(x)+g(b)>g(x)+h(b)7.(2022陕西,10,5分)如图,修建一条大路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为( )A.y=x3-x2-xB.y=x3+x2-3xC.y=x3-xD.y=x3+x2-2x8.(2021天津,11,5分)已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f'(x)为f(x)的导函数.若f'(1)=3,则a的值为.9.(2022广东,10,5分)曲线y=e-5x+2在点(0,3)处的切线方程为.10.(2021课标Ⅰ,14,5分)已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a= .11.(2021河北石家庄一模,14)已知点P为曲线C:f(x)=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为,则点P横坐标的取值范围为.12.(2021课标Ⅱ,16,5分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a= .13.(2021浙江温州十校联考,03(2))已知函数f(x)=(x2+ax+2)e x(a∈R).(1)当a=0时,求函数f(x)的图象在点A(1,f(1))处的切线方程;(2)若函数f(x)为单调函数,求实数a的取值范围.14.(2021浙江冲刺卷五,03(2))已知函数f(x)=x3-12x+2,其图象过原点的切线与函数g(x)=m-lnx的图象有两个交点,试求m的取值范围.B组提升题组1.(2022课标Ⅱ,8,5分)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=( )A.0B.1C.2D.32.(2021浙江丽水二模,6)设曲线y=x2+alnx(a>0)上任意一点处的切线斜率为k,若k的最小值为4,则此时该切点的坐标为( )A.(1,1)B.(2,3)C.(3,1)D.(1,4)3.(2021江西九校联考)等比数列{a n}中,a1=2,a8=4,函数f(x)=x(x-a1)(x-a2)…(x-a8),则f'(0)=( )A.26B.29C.212D.2154.(2021河南新乡质检,12)过点A(2,-1)作曲线f(x)=x3-3x的切线最多有( )A.3条B.2条C.1条D.0条5.(2022山东淄博摸底,10,5分)已知y=f(x)是定义在R上的偶函数,且当x>0时不等式f(x)+xf'(x)<0成立,若a=30.3·f(30.3),b=logπ3·f(logπ3),c=log3·f,则a,b,c的大小关系是( )A.a>b>cB.c>a>bC.a>c>bD.c>b>a6.(2022江西,13,5分)若曲线y=e-x上点P处的切线平行于直线2x+y+1=0,则点P的坐标是.7.(2021浙江温州十校联合体联考)与直线2x-6y+1=0垂直,且与曲线f(x)=x3+3x2-1相切的直线方程是.8.(2021浙江台州椒江一中段考)设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为.9.(2021陕西,15,5分)函数y=xe x在其极值点处的切线方程为.10.(2022江苏,11,5分)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b的值是.11.(2022安徽,15,5分)若直线l与曲线C满足下列两个条件:(i)直线l在点P(x0,y0)处与曲线C相切;(ii)曲线C在点P四周位于直线l的两侧,则称直线l在点P处“切过”曲线C.下列命题正确的是(写出全部正确命题的编号).①直线l:y=0在点P(0,0)处“切过”曲线C:y=x3②直线l:x=-1在点P(-1,0)处“切过”曲线C:y=(x+1)2③直线l:y=x在点P(0,0)处“切过”曲线C:y=sinx④直线l:y=x在点P(0,0)处“切过”曲线C:y=tanx⑤直线l:y=x-1在点P(1,0)处“切过”曲线C:y=lnx12.(2021河北唐山二模,20,12分)已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线m:y=kx+9,且f'(-1)=0.(1)求a的值;(2)是否存在k的值,使直线m既是曲线y=f(x)的切线,又是y=g(x)的切线?假如存在,求出k的值;假如不存在,说明理由.13.(2022北京,20,13分)已知函数f(x)=2x3-3x.(1)求f(x)在区间[-2,1]上的最大值;(2)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(3)问过点A(-1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论) A组基础题组1.C 由f'(x)=3x2得f'(0)=0,所以f(x)的图象在原点处的切线方程为y=0,故选C.2.C ∵f'(x)=(x+1)e x,∴f'(0)=1,即所求切线的斜率为1.3.D 设P(x0,y0),由题意知,函数f(x)=x4-x在点P处的切线的斜率等于3,即f'(x0)=4-1=3,∴x0=1,将其代入f(x)中可得P(1,0).故选D.4.C 由于A(2,1)在直线2x-y+a=0上,所以4-1+a=0,a=-3,又由于f'(x)=3x2+2ax+b,f'(2)=2,所以12+4a+b=2,得b=2.将A(2,1)代入f(x)=x3-3x2+2x+c中,得8-12+4+c=1,得c=1,所以a+b+c=0,故选C.5.D 若f(x)=sinx+cosx,则f″(x)=-sinx-cosx,在x∈上,恒有f″(x)<0;若f(x)=lnx-2x,则f″(x)=-,在x ∈上,恒有f″(x)<0;若f(x)=-x3+2x-1,则f″(x)=-6x,在x∈上,恒有f″(x)<0;若f(x)=-xe-x,则f″(x)=2e-x-xe-x=(2-x)e-x,在x∈上,恒有f″(x)>0,故选D.6.D 令f(x)=g(x)-h(x),x∈[a,b],则f'(x)=g'(x)-h'(x)>0,所以f(x)为增函数,所以f(b)>f(x)>f(a),即g(b)-h(b)>g(x)-h(x)>g(a)-h(a),故选D.7.A 设三次函数的解析式为y=ax3+bx2+cx+d(a≠0),则y'=3ax2+2bx+c.由已知得y=-x是曲线y=ax3+bx2+cx+d 在点(0,0)处的切线,则y'|x=0=-1⇒c=-1,排解选项B、D.又y=3x-6是该曲线在点(2,0)处的切线,则y'|x=2=3⇒12a+4b+c=3⇒12a+4b-1=3⇒3a+b=1.只有A选项中的函数符合,故选A.8.答案 3解析∵f'(x)=alnx+a,∴f'(1)=aln1+a=3,解得a=3.9.答案5x+y-3=0解析y'=-5e-5x,曲线在点(0,3)处的切线斜率k=y'|x=0=-5,故切线方程为y-3=-5(x-0),即5x+y-3=0.10.答案 1解析由题意可得f'(x)=3ax2+1,∴f'(1)=3a+1,又f(1)=a+2,∴f(x)=ax3+x+1的图象在点(1,f(1))处的切线方程为y-(a+2)=(3a+1)(x-1),又此切线过点(2,7),∴7-(a+2)=(3a+1)(2-1),解得a=1.11.答案解析设P(x0,y0),P点处切线倾斜角为α,则0≤tanα≤1,由f(x)=x2+2x+3,得f'(x)=2x+2,令0≤2x0+2≤1,得-1≤x0≤-.12.答案8解析令f(x)=y=x+lnx,求导得f'(x)=1+,f'(1)=2,又f(1)=1,所以曲线y=x+lnx在点(1,1)处的切线方程为y-1=2(x-1),即y=2x-1.设直线y=2x-1与曲线y=ax2+(a+2)x+1的切点为P(x0,y0),则y'=2ax0+a+2=2,得a(2x0+1)=0,∴a=0或x0=-,又a+(a+2)x0+1=2x0-1,即a+ax0+2=0,当a=0时,明显不满足此方程,∴x0=-,此时a=8.13.解析(1)f'(x)=e x[x2+(a+2)x+a+2].当a=0时,f'(x)=e x(x2+2x+2).f(1)=3e,f'(1)=5e,∴切线方程为y-3e=5e(x-1),即5ex-y-2e=0.(2)f'(x)=e x[x2+(a+2)x+a+2],∵e x>0恒成立,且x2的系数为正,∴f(x)在R上单调等价于x2+(a+2)x+a+2≥0恒成立,∴(a+2)2-4(a+2)≤0,解得-2≤a≤2.∴a∈[-2,2].14.解析设切点为(x0,-12x0+2),则切线斜率为f'(x0)=3-12,所以切线方程为y-+12x0-2=(3-12)(x-x0),将原点坐标代入上式得x0=1,所以切线方程为y=-9x.由得lnx-9x-m=0,设h(x)=lnx-9x-m,则h'(x)=,令h'(x)=>0,得0<x<,所以h(x)在上单调递增,在上单调递减,所以h(x)最大值=h=-ln9-1-m. 若lnx-9x-m=0有两个解,则h(x)最大值>0.∴m<-ln9-1.B组提升题组1.D y'=a-,x=0时,y'=a-1=2,∴a=3,故选D.2.A y=x2+alnx的定义域为(0,+∞),y'=2x+≥2=4,即a=2,当且仅当x=1时等号成立,此时y=1,故所求的切点坐标是(1,1).3.C 函数f(x)的开放式含x项的系数为a1·a2·…·a8=(a1·a8)4=84=212,而f'(0)=a1·a2·…·a8=212,故选C.4.A 由题意得,f'(x)=3x2-3,设切点为(x0,-3x0),那么切线的斜率为k=3-3,利用点斜式方程可知切线方程为y-(-3x0)=(3-3)(x-x0),将点A(2,-1)代入可得关于x0的一元三次方程2-6+5=0.令y=2-6+5,则y'=6-12x0.由y'=0得x0=0或x0=2.当x0=0时,y=5>0;x0=2时,y=-3<0.所以方程2-6+5=0有3个解.故过点A(2,-1)作曲线f(x)=x3-3x的切线最多有3条,故选A.5.D 令g(x)=xf(x),则g'(x)=f(x)+xf'(x),由题意知g(x)在(0,+∞)内递减,由于f(x)为偶函数,所以g(x)为奇函数,故g(x)在R上为减函数,又log3<logπ3<30.3,所以c>b>a.故选D.6.答案(-ln2,2)解析令f(x)=y=e-x,则f'(x)=-e-x.令P(x0,y0),则f'(x0)=-=-2,解得x0=-ln2,所以y0==e ln2=2,所以点P的坐标为(-ln2,2).7.答案3x+y+2=0解析设切点的坐标为(x0,+3-1),由切线与直线2x-6y+1=0垂直,可得切线的斜率为-3,又f'(x)=3x2+6x,故3+6x0=-3,解得x0=-1,于是切点坐标为(-1,1),从而得切线的方程为3x+y+2=0.8.答案 4解析∵g(x)=f(x)-x2,∴g'(x)=f'(x)-2x,由题意知g'(1)=2,∴g'(1)=f'(1)-2=2,∴f'(1)=4.9.答案y=-解析由y=xe x可得y'=e x+xe x=e x(x+1),从而可得y=xe x在(-∞,-1)上递减,在(-1,+∞)上递增,所以当x=-1时,y=xe x取得微小值-e-1,由于y'|x=-1=0,故切线方程为y=-e-1,即y=-.10.答案-3解析∵y=ax2+,∴y'=2ax-,由题意可得解得∴a+b=-3.11.答案①③④解析①直线l:y=0在P(0,0)处与曲线C:y=x3相切,且曲线C在点P(0,0)四周位于直线l的两侧,①对;②直线l:x=-1不是曲线C:y=(x+1)2在P(-1,0)处的切线,②错;③中y'=cosx,cos0=1,因此曲线C:y=sinx在P(0,0)处的切线为l:y=x,设f(x)=x-sinx,则f'(x)=1-cosx≥0,即f(x)是增函数,又f(0)=0,从而当x<0时,f(x)<0⇒x<sinx,当x>0时,f(x)>0⇒x>sinx,即曲线C:y=sinx在P(0,0)四周位于直线l的两侧,③正确;④中y'='=,=1,因此曲线C:y=tanx在P(0,0)处的切线为l:y=x,设g(x)=x-tanx,则g'(x)=1-≤0,即g(x)在上是减函数,且g(0)=0,同③得④正确;⑤中y'=,=1,因此曲线C:y=lnx在P(1,0)处的切线为l:y=x-1,设h(x)=x-1-lnx(x>0),则h'(x)=1-=,当0<x<1时,h'(x)<0,当x>1时,h'(x)>0,因此当x=1时,h(x)min=h(1)=0,因此曲线C在P(1,0)四周位于直线l的一侧,故⑤错误.因此答案为①③④.12.解析(1)f'(x)=3ax2+6x-6a,由于f'(-1)=0,所以a=-2.(2)存在.由题意得直线m恒过点(0,9).先求直线m是曲线y=g(x)的切线.设切点为(x0,3+6x0+12),∵g'(x0)=6x0+6.∴切线方程为y-(3+6x0+12)=(6x0+6)(x-x0),将点(0,9)代入得x0=±1.当x0=-1时,切线方程为y=9,当x0=1时,切线方程为y=12x+9.由f'(x)=0得-6x2+6x+12=0,即有x=-1或x=2,当x=-1时,y=f(x)的切线方程为y=-18,当x=2时,y=f(x)的切线方程为y=9,∴y=9是公切线.又由f'(x)=12得-6x2+6x+12=12,∴x=0或x=1.当x=0时,y=f(x)的切线方程为y=12x-11,当x=1时,y=f(x)的切线方程为y=12x-10,∴y=12x+9不是公切线.综上所述,k=0时,y=9是两曲线的公切线.13.解析(1)由f(x)=2x3-3x得f'(x)=6x2-3.令f'(x)=0,得x=-或x=.由于f(-2)=-10,f=,f=-,f(1)=-1,所以f(x)在区间[-2,1]上的最大值为f=.(2)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y0),则y0=2-3x0,且切线斜率为k=6-3,所以切线方程为y-y0=(6-3)(x-x0),因此t-y0=(6-3)(1-x0).整理得4-6+t+3=0.设g(x)=4x3-6x2+t+3,则“过点P(1,t)存在3条直线与曲线y=f(x)相切”等价于“g(x)有3个不同零点”.g'(x)=12x2-12x=12x(x-1).g(x)与g'(x)的变化状况如下表:x (-∞,0)0 (0,1) 1 (1,+∞)g'(x) + 0 - 0 +g(x) ↗t+3 ↘t+1 ↗所以,g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的微小值.当g(0)=t+3≤0,即t≤-3时,此时g(x)在区间(-∞,1]和(1,+∞)上分别至多有1个零点,所以g(x)至多有2个零点.当g(1)=t+1≥0,即t≥-1时,此时g(x)在区间(-∞,0)和[0,+∞)上分别至多有1个零点,所以g(x)至多有2个零点. 当g(0)>0且g(1)<0,即-3<t<-1时,由于g(-1)=t-7<0,g(2)=t+11>0,所以g(x)分别在区间[-1,0),[0,1)和[1,2)上恰有1个零点.由于g(x)在区间(-∞,0)和(1,+∞)上单调,所以g(x)分别在区间(-∞,0)和[1,+∞)上恰有1个零点.综上可知,当过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值范围是(-3,-1).(3)过点A(-1,2)存在3条直线与曲线y=f(x)相切;过点B(2,10)存在2条直线与曲线y=f(x)相切;过点C(0,2)存在1条直线与曲线y=f(x)相切.。
专题3-2 导数的应用-3年高考2年模拟1年备战2018高考系
第三章导数专题2 导数的应用【三年高考】1.【2017江苏,20】已知函数有极值,且导函数的极值点是的零点.(极值点是指函数取极值时对应的自变量的值)(1)求关于的函数关系式,并写出定义域;(2)证明:;(3)若,这两个函数的所有极值之和不小于,求的取值范围.【答案】(1)(2)见解析(3)列表如下故的极值点是.从而,因此,定义域为.(2)由(1)知,.设,则.当时,,从而在上单调递增. 因为,所以,故,即. 因此.因此a的取值范围为.【考点】利用导数研究函数单调性、极值及零点【名师点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.2.【2016高考江苏,19】已知函数(1)设.①求方程=2的根;②若对任意,不等式恒成立,求实数m的最大值;(2)若,函数有且只有1个零点,求ab的值.【答案】(1)①0 ②4 (2)1【解析】试题分析:(1)①根据指数间倒数关系转化为一元二次方程,求方程根;②根据指数间平方关系,将不等式转化为一元不等式,再利用变量分离转化为对应函数最值,最后根据基本不等式求最值;(2)根据导函数零点情况,确定函数单调变化趋势,结合图象确定唯一零点必在极值点取得,从而建立等量关系,求出ab的值.试题解析:(1)因为,所以.①方程,即,亦即,所以,于是,解得.②由条件知.因为对于恒成立,且,所以对于恒成立.而,且,所以,故实数的最大值为4.(2)因为函数只有1个零点,而,所以0是函数的唯一零点.因为,又由知,所以有唯一解.令,则,从而对任意,,所以是上的单调增函数,于是当,;当时,.因而函数在上是单调减函数,在上是单调增函数.下证.若,则,于是,又,且函数在以和为端点的闭区间上的图象不间断,所以在和之间存在的零点,记为. 因为,所以,又,所以与“0是函数的唯一零点”矛盾.若,同理可得,在和之间存在的非0的零点,矛盾.因此,.于是,故,所以.【考点】指数函数、基本不等式、利用导数研究函数单调性及零点【名师点睛】对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图等确定其中参数的范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.3.【2015高考江苏,19】已知函数.(1)试讨论的单调性;(2)若(实数c是a与无关的常数),当函数有三个不同的零点时,a 的取值范围恰好是,求c的值.【答案】(1)当时,在上单调递增;当时,在,上单调递增,在上单调递减;当时,在,上单调递增,在上单调递减.(2)【解析】(1),令,解得,.当时,因为(),所以函数在上单调递增;当时,时,,时,,所以函数在,上单调递增,在上单调递减;当时,时,,时,,所以函数在,上单调递增,在上单调递减.(2)由(1)知,函数的两个极值为,,则函数有三个零点等价于,从而或.又,所以当时,或当时,.设,因为函数有三个零点时,的取值范围恰好是,则在上,且在上均恒成立,从而,且,因此.此时,,因函数有三个零点,则有两个异于的不等实根,所以,且,解得.综上.【考点定位】利用导数求函数单调性、极值、函数零点4.【2017课标1,理21】已知函数.(1)讨论的单调性;(2)若有两个零点,求a的取值范围.【解析】试题分析:(1)讨论单调性,首先进行求导,发现式子特点后要及时进行因式分解,在对按,进行讨论,写出单调区间;(2)根据第(1)题,若,至多有一个零点.若,当时,取得最小值,求出最小值,根据,,进行讨论,可知当有2个零点,设正整数满足,则.由于,因此在有一个零点.所以的取值范围为.【考点】含参函数的单调性,利用函数零点求参数取值范围.【名师点睛】研究函数零点问题常常与研究对应方程的实根问题相互转化.已知函数有2个零点求参数取值范围,第一种方法是分离参数,构造不含参数的函数,研究其单调性、极值、最值,判断与其交点的个数,从而求出a的范围;第二种方法是直接对含参函数进行研究,研究其单调性、极值、最值,注意点是若有2个零点,且函数先减后增,则只需其最小值小于0,且后面还需验证有最小值两边存在大于0的点.5.【2017课标II,理】已知函数,且。
《三年高考两年模拟》数学(理科)汇编专题:3.1导数的概念及运算(含答案解析)
第一节 导数的概念及运算A 组 三年高考真题(2016~2014年)1.(2014·大纲全国,7)曲线y =xe x-1在点(1,1)处切线的斜率等于( )A.2eB.eC.2D.12.(2014·新课标全国Ⅱ,8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A.0B.1C.2D.3 3.(2014·陕西,3)定积分⎠⎛01(2x +e x )dx 的值为( )A.e +2B.e +1C.eD.e -1 4.(2014·江西,8)若f(x)=x 2+2⎠⎛01f(x)dx ,则⎠⎛01f(x)dx =( )A.-1B.-13C.13D.15.(2014·山东,6)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A.2 2 B.4 2 C.2 D.46.(2014·湖南,9)已知函数f(x)=sin(x -φ),且2π30()d f x x ⎰=0,则函数f(x)的图象的一条对称轴是( )A.x =5π6B.x =7π12C.x =π3D.x =π67.(2014·湖北,6)若函数f(x),g(x)满足11()()d f x g x x -⎰=0,则称f(x),g(x)为区间[-1,1]上的一组正交函数.给出三组函数:①f(x)=sin 12x ,g(x)=cos 12x ;②f(x)=x +1,g(x)=x -1;③f(x)=x ,g(x)=x 2.其中为区间[-1,1]上的正交函数的组数是( )A.0B.1C.2D.38.(2016·全国Ⅲ,15)已知f(x)为偶函数,当x <0时,f(x)=ln(-x)+3x ,则曲线y =f(x)在点(1,-3)处的切线方程是________.9.(2016·全国Ⅱ,16)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.10.(2015·陕西,15)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.11.(2015·湖南,11) ⎠⎛02(x -1)dx =________.12.(2015·天津,11)曲线y =x 2与直线y =x 所围成的封闭图形的面积为________.13.(2015·陕西,16)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为________.14.(2014·江西,13)若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.B 组 两年模拟精选(2016~2015年)1.(2016·陕西安康模拟)设f(x)=xln x ,若f′(x 0)=2,则x 0=( ) A.e 2B.eC.ln 22D.ln 22.(2016·广东惠州模拟)过点(1,-1)且与曲线y =x 3-2x 相切的切线方程为( ) A. x -y -2=0或5x +4y -1=0 B. x -y -2=0C. x -y +2=0D. x -y -2=0或4x +5y +1=0 3.(2016·贵州模拟)若函数f(x)满足f(x)=13x 3-f′(1)x 2-x ,则f′(1)的值为( )A.0B.2C.1D.-14.(2015·山东潍坊模拟)已知f(x)=14x 2+sin ⎝⎛⎭⎫π2+x ,f′(x)为f(x)的导函数,f′(x)的图象是( )5.(2015·陕西西安模拟)曲线f(x)=x 3+x -2在p 0处的切线平行于直线y =4x -1,则p 0点的坐标为( )A.(1,0)B.(2,8)C.(1,0)和(-1,-4)D.(2,8)和(-1,-4) 6.(2016·河北沧州高三上学期质量检测)已知函数f(x)=x 33-b 2x 2+ax +1(a >0,b >0),则函数g(x)=aln x +f′(x)a在点(b ,g(b))处切线的斜率的最小值是______.7.(2016·山东师大附中10月第二次模拟)设f(x)=⎩⎪⎨⎪⎧x 2,x ∈[0,1],1x ,x ∈(1,e].(其中e 为自然对数的底数),则⎠⎛0e f(x)dx 的值为________.8.(2015·广东模拟)设球的半径为时间t 的函数R(t),若球的体积以均匀速度12增长,则球的表面积的增长速度与球半径的乘积为________.9.(2015·绵阳诊断)已知函数f(x)=x 3+(1-a)x 2-a(a +2)x +b(a ,b ∈R). (1)若函数f(x)的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f(x)存在两条垂直于y 轴的切线,求a 的取值范围.10.(2015·湖南十二校联考)已知函数f(x)=x 3-ax 2+10. (1)当a =1时,求曲线y =f(x)在点(2,f(2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f(x)<0成立,求实数a 的取值范围.答案精析A 组 三年高考真题(2016~2014年)1.C [由题意可得y′=e x -1+xe x -1,所以曲线在点(1,1)处切线的斜率等于2,故选C.]2.D [y′=a -1x +1,由题意得y′|x =0=2,即a -1=2,所以a =3.] 3.C [∫10(2x +e x )dx =(x 2+e x )|10=(1+e)-(0+e 0)=e ,因此选C.]4.B [因为∫10f(x)dx 是常数,所以f′(x)=2x ,所以可设f(x)=x 2+c(c 为常数),所以x 2+c =x 2+2(13x 3+cx)|10,解得c =-23,∫10f(x)dx =∫10(x 2+c)dx =∫10(x 2-23)dx =⎝⎛⎭⎫13x 3-23x |10=-13.]5.D [由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为∫20(4x -x 3)dx =⎝⎛⎭⎫2x 2-14x 4|20=4.] 6.A [由定积分∫2π30sin(x -φ)dx =-cos(x -φ)|2π30=12cos φ-32sin φ+cos φ=0,得tan φ=3,所以φ=π3+kπ(k ∈Z),所以f(x)=sin(x -π3-kπ)(k ∈Z),由正弦函数的性质知y =sin(x-π3-kπ)与y =sin(x -π3)的图象的对称轴相同,令x -π3=kπ+π2,则x =kπ+5π6(k ∈Z),所以函数f(x)的图象的对称轴为x =kπ+56π(k ∈Z),当k =0,得x =5π6,选A.]7.C [对于①,∫1-1sin 12xcos 12xdx =∫1-112sin xdx =0,所以①是一组正交函数;对于②,∫1-1(x +1)(x -1)dx =∫1-1(x 2-1)dx≠0,所以②不是一组正交函数;对于③, ∫1-1x·x 2dx =∫1-1x 3dx =0,所以③是一组正交函数.选C.]8. 2x +y +1=0 [设x >0,则-x <0,f(-x)=ln x -3x,又f(x)为偶函数,f(x)=ln x -3x , f′(x)=1x-3,f′(1)=-2,切线方程为y =-2x -1.]9. 1-ln 2 [y =ln x +2的切线为:y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x +1)的切线为:y =1x 2+1x +ln(x 2+1)-x 2x 2+1,(设切点横坐标为x 2). ∴⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.]10.(1,1) [∵(e x )′|x =0=e 0=1,设P(x 0,y 0),有⎪⎪⎝⎛⎭⎫1x ′x =x 0=-1x 20=-1,又∵x 0>0,∴x 0=1,故x P (1,1).] 11.0[∫20(x -1)dx =⎝⎛⎪⎪⎭⎫12x 2-x 20=12×22-2=0.]12.16 [曲线y =x 2与直线y =x 所围成的封闭图形如图,由⎩⎪⎨⎪⎧y =x 2,y =x ,得A(1,1),面积S =∫10xdx -∫10x 2dx =12x 2⎪⎪⎪⎪10-13x210=12-13=16.] 13.1.2 [由题意可知最大流量的比即为横截面面积的比,建立以抛物线顶点为原点的直角坐标系,设抛物线方程为y =ax 2,将点(5,2)代入抛物线方程得a =225,故抛物线方程为y =225x 2,抛物线的横截面面积为S 1=2∫50⎝⎛⎭⎫2-225x 2dx =2⎝⎛⎭⎫2x -275x 3⎪⎪⎪50=403(m 2), 而原梯形上底为10-2tan 45°×2=6(m),故原梯形面积为S 2=12(10+6)×2=16,S 2S 1=16403=1.2.]14.(-ln 2,2) [由题意有y′=-e -x ,设P(m ,n),直线2x +y +1=0的斜率为-2,则由题意得-e -m=-2,解得m =-ln 2,所以n =e-(-ln 2)=2.]B 组 两年模拟精选(2016~2015年)1.B [f′(x)=ln x +x·1x =ln x +1.∴ln x 0+1=2,得ln x 0=1,即x 0=e.]2.A [由于点(1,-1)在y =x 3-2x 上,当(1,-1)为切点时,切线斜率为 y′|x =1=1,切线方程为y =x -2.当(1,-1)不是切点时,设切点为(x 0,x 30-2x 0),可得切线方程为y -x 30+2x 0=(3x 20-2)·(x -x 0), 又切线过点(1,-1),可得x 0=-12,故切线方程为5x +4y =1.]3.A [因为f′(x)=x 2-2f′(1)x -1,令x =1得f′(1)=1-2f′(1)-1.所以f′(1)=0,故选A.]4.A [因为f(x)=14x 2+sin ⎝⎛⎭⎫π2+x =14x 2+cos x ,所以f′(x)=12x -sin x 为奇函数,且f′⎝⎛⎭⎫π6<0,故选A.]5.C [设p 0(x 0,y 0),则3x 20+1=4,所以x 0=±1,所以p 0点的坐标为(1,0)和(-1,-4).故选C.]6.2 [因为a >0,b >0,又g′(x)=a x +2x -b a ,则g′(b)=a b +2b -b a =a b +b a ≥2,所以斜率的最小值为2.]7.-23 [⎠⎛0e f(x)dx =⎠⎛01x 2dx +⎠⎛1e 1xdx =13x 3|10-ln x|e1=13-1=-23.] 8.1 [设球的体积以均匀速度c 增长,由题意可知球的体积为V(t)=43πR 3(t),则c =4πR 2(t)R′(t),则cR (t )R′(t )=4πR(t),则球的表面积的增长速度为V表=S′(t)=(4πR 2(t))′=8πR(t)R′(t)=2cR (t ),即球的表面积的增长速度与球的半径的乘积为V 表·R(t)=2c =1.]9.解 f′(x)=3x 2+2(1-a)x -a(a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f′(0)=-a (a +2)=-3,解得b =0,a =-3或1.(2)∵曲线y =f(x)存在两条垂直于y 轴的切线,∴关于x 的方程f′(x)=3x 2+2(1-a)x -a(a +2)=0有两个不相等的实数根, ∴Δ=4(1-a)2+12a(a +2)>0, 即4a 2+4a +1>0,∴a≠-12.∴a 的取值范围是⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞. 10.解 (1)当a =1时,f′(x)=3x 2-2x ,f(2)=14, 曲线y =f(x)在点(2,f(2))处的切线斜率k =f′(2)=8,∴曲线y =f(x)在点(2,f(2))处的切线方程为y -14=8(x -2),即8x -y -2=0. (2)由已知得a>x 3+10x 2=x +10x 2,设g(x)=x +10x 2(1≤x≤2),g′(x)=1-20x 3,∵1≤x≤2,∴g′(x)<0,∴g(x)在[1,2]上是减函数.g(x)min =g(2)=92,∴a>92,即实数a 的取值范围是⎝⎛⎭⎫92,+∞.。
专题02 函数的概念与基本初等函数(解析版)-三年(2022–2024)高考数学真题分类汇编(通用)
专题02函数的概念与基本初等函数I 考点三年考情(2022-2024)命题趋势考点1:已知奇偶性求参数2023年全国Ⅱ卷2023年全国乙卷(理)2024年上海卷2022年全国乙卷(文)2023年全国甲卷(理)从近三年高考命题来看,本节是高考的一个重点,函数的单调性、奇偶性、对称性、周期性是高考的必考内容,重点关注周期性、对称性、奇偶性结合在一起,与函数图像、函数零点和不等式相结合进行考查.考点2:函数图像的识别2022年天津卷2023年天津卷2024年全国甲卷(理)2024年全国Ⅰ卷2022年全国乙卷(文)2022年全国甲卷(理)考点3:函数模型及应用2022年北京卷2024年北京卷2023年全国Ⅰ卷考点4:基本初等函数的性质:单调性、奇偶性2023年全国乙卷(理)2022年北京卷2023年北京卷2024年全国Ⅰ卷2024年天津卷2023年全国Ⅰ卷考点5:分段函数问题2022年浙江卷2024年上海夏季考点6:函数的定义域、值域、最值问题2022年北京卷2022年北京卷考点7:函数性质(对称性、周期性、奇偶性)的综合运用2023年全国Ⅰ卷2022年全国I卷2024年全国Ⅰ卷2022年全国II卷考点8:指对幂运算2022年天津卷2022年浙江卷2024年全国甲卷(理)2023年北京卷考点1:已知奇偶性求参数1.(2023年新课标全国Ⅱ卷数学真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ().A .1-B .0C .12D .1【答案】B【解析】因为()f x 为偶函数,则1(1)(1)(1)ln (1)ln 33f f a a =-∴+=-+,,解得0a =,当0a =时,()21ln21x x x f x -=+,()()21210x x -+>,解得12x >或12x <-,则其定义域为12x x ⎧⎨⎩或12x ⎫<-⎬⎭,关于原点对称.()()()()()()()121212121ln ln ln ln 21212121f x x x x x x x x x f x x x x x ---+⎫-=---⎛==== ⎪-+-++⎝-⎭-,故此时()f x 为偶函数.故选:B.2.(2023年高考全国乙卷数学(理)真题)已知e ()e 1xax x f x =-是偶函数,则=a ()A .2-B .1-C .1D .2【答案】D【解析】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax axx x x f x f x ---⎡⎤--⎣⎦--=-==---,又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=,则()1x a x =-,即11a =-,解得2a =.故选:D.3.(2024年上海夏季高考数学真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .【答案】0【解析】因为()f x 是奇函数,故()()0f x f x -+=即()330x a x a ++-+=,故0a =,故答案为:0.4.(2022年高考全国乙卷数学(文)真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b =.【答案】12-;ln 2.【解析】[方法一]:奇函数定义域的对称性若0a =,则()f x 的定义域为{|1}x x ≠,不关于原点对称a ∴≠若奇函数的1()||1f x ln a b x =++-有意义,则1x ≠且101a x+≠-1x ∴≠且11x a≠+,函数()f x 为奇函数,定义域关于原点对称,111a ∴+=-,解得12a =-,由(0)0f =得,102ln b +=,2b ln ∴=,故答案为:12-;2ln .[方法二]:函数的奇偶性求参111()111a ax ax a f x ln a b ln b ln b x x x-+--=++=+=+---1()1ax a f x lnbx++-=++ 函数()f x 为奇函数11()()2011ax a ax a f x f x lnln b x x--++∴+-=++=-+2222(1)201a x a lnb x -+∴+=-22(1)1210112a a a a +∴=⇒+=⇒=-1222241,22b ln b ln a b ln ln -==-⇒=∴=-=[方法三]:因为函数()1ln 1f x a b x++-=为奇函数,所以其定义域关于原点对称.由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211xf x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意.故答案为:12-;ln 2.5.(2023年高考全国甲卷数学(理)真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .【答案】2【解析】因为()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭为偶函数,定义域为R ,所以ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s a a ⎛⎫⎛⎫⎛⎫-+=+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭,则22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝,故2a =,此时()()2212cos 1cos f x x x x x x =-++=++,所以()()()()221cos s 1co f x x x x x f x -=-++++-==,又定义域为R ,故()f x 为偶函数,所以2a =.故答案为:2.考点2:函数图像的识别6.(2022年新高考天津数学高考真题)函数()21x f x x-=的图像为()A .B .C .D .【答案】D【解析】函数()21x f x x-=的定义域为{}0x x ≠,且()()()2211x x f x f x xx----==-=--,函数()f x 为奇函数,A 选项错误;又当0x <时,()210x f x x -=≤,C 选项错误;当1x >时,()22111x x f x x xx x--===-函数单调递增,故B 选项错误;故选:D.7.(2023年天津高考数学真题)已知函数()f x 的部分图象如下图所示,则()f x 的解析式可能为()A .25e 5e 2x xx --+B .25sin 1x x +C .25e 5e 2x xx -++D .25cos 1x x +【答案】D【解析】由图知:函数图象关于y 轴对称,其为偶函数,且(2)(2)0f f -=<,由225sin()5sin ()11x xx x -=--++且定义域为R ,即B 中函数为奇函数,排除;当0x >时25(e e )02x x x -->+、25(e e )02x x x -+>+,即A 、C 中(0,)+∞上函数值为正,排除;故选:D8.(2024年高考全国甲卷数学(理)真题)函数()()2e e sin x xf x x x -=-+-在区间[2.8,2.8]-的图象大致为()A .B .C .D .【答案】B【解析】()()()()()22e e sin e e sin x x x xf x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.9.(2024年新课标全国Ⅰ卷数学真题)当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A .3B .4C .6D .8【答案】C【解析】因为函数sin y x =的的最小正周期为2πT =,函数π2sin 36y x ⎛⎫=- ⎪⎝⎭的最小正周期为2π3T =,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=- ⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C10.(2022年高考全国乙卷数学(文)真题)如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是()A .3231x xy x -+=+B .321x xy x -=+C .22cos 1x x y x =+D .22sin 1x y x =+【答案】A【解析】设()321x x f xx -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x xh x x x =<≤++,故排除C;设()22sin 1xg x x =+,则()2sin 33010g =>,故排除D.故选:A.11.(2022年高考全国甲卷数学(理)真题)函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A .B .C .D .【答案】A【解析】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.考点3:函数的实际应用12.(2022年新高考北京数学高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T 和lg P 的关系,其中T 表示温度,单位是K ;P 表示压强,单位是bar .下列结论中正确的是()A .当220T =,1026P =时,二氧化碳处于液态B .当270T =,128P =时,二氧化碳处于气态C .当300T =,9987P =时,二氧化碳处于超临界状态D .当360T =,729P =时,二氧化碳处于超临界状态【答案】D【解析】当220T =,1026P =时,lg 3P >,此时二氧化碳处于固态,故A 错误.当270T =,128P =时,2lg 3P <<,此时二氧化碳处于液态,故B 错误.当300T =,9987P =时,lg P 与4非常接近,故此时二氧化碳处于固态,对应的是非超临界状态,故C 错误.当360T =,729P =时,因2lg 3P <<,故此时二氧化碳处于超临界状态,故D 正确.故选:D13.(2024年北京高考数学真题)生物丰富度指数1ln S d N-=是河流水质的一个评价指标,其中,S N 分别表示河流中的生物种类数与生物个体总数.生物丰富度指数d 越大,水质越好.如果某河流治理前后的生物种类数S 没有变化,生物个体总数由1N 变为2N ,生物丰富度指数由2.1提高到3.15,则()A .2132N N =B .2123N N =C .2321N N =D .3221N N =【答案】D 【解析】由题意得12112.1, 3.15ln ln S S N N --==,则122.1ln 3.15ln N N =,即122ln 3ln N N =,所以3221N N =.故选:D.14.(多选题)(2023年新课标全国Ⅰ卷数学真题)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级020lg p pL p =⨯,其中常数()000p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB 燃油汽车1060~90混合动力汽车105060电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为123,,p p p ,则().A .12p p ≥B .2310p p >C .30100p p =D .12100p p ≤【答案】ACD【解析】由题意可知:[][]12360,90,50,60,40p p p L L L ∈∈=,对于选项A :可得1212100220lg 20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯,因为12p p L L ≥,则121220lg 0p p p L L p =-⨯≥,即12lg 0pp ≥,所以121p p ≥且12,0p p >,可得12p p ≥,故A 正确;对于选项B :可得2332200320lg20lg 20lg p p p p pL L p p p =-⨯=⨯-⨯,因为2324010p p p L L L -=-≥,则2320lg10p p ⨯≥,即231lg 2p p ≥,所以2310p p ≥且23,0p p >,可得2310p ≥,当且仅当250p L =时,等号成立,故B 错误;对于选项C :因为33020lg 40p p L p =⨯=,即30lg 2pp =,可得3100p p =,即30100p p =,故C 正确;对于选项D :由选项A 可知:121220lg p p p L L p =-⨯,且12905040p p L L ≤-=-,则1220lg 40p p ⨯≤,即12lg2p p ≤,可得12100pp ≤,且12,0p p >,所以12100p p ≤,故D 正确;故选:ACD.考点4:基本初等函数的性质:单调性、奇偶性15.(2023年高考全国乙卷数学(理)真题)设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是.【答案】512⎡⎫-⎪⎢⎪⎣⎭【解析】由函数的解析式可得()()()ln 1ln 10xx f x a a a a '=+++≥在区间()0,∞+上恒成立,则()()1ln 1ln xxa a a a ++≥-,即()1ln ln 1xa a a a +⎛⎫≥-⎪+⎝⎭在区间()0,∞+上恒成立,故()01ln 1ln 1a a a a +⎛⎫=≥- ⎪+⎝⎭,而()11,2a +∈,故()ln 10a +>,故()ln 1ln 01a a a ⎧+≥-⎨<<⎩即()1101a a a ⎧+≥⎨<<⎩,故5112a ≤<,结合题意可得实数a 的取值范围是512⎫-⎪⎪⎣⎭.故答案为:512⎡⎫-⎪⎢⎪⎣⎭.16.(2022年新高考北京数学高考真题)已知函数1()12xf x =+,则对任意实数x ,有()A .()()0f x f x -+=B .()()0f x f x --=C .()()1f x f x -+=D .1()()3f x f x --=【答案】C【解析】()()1121112121212x x x x xf x f x --+=+=+=++++,故A 错误,C 正确;()()11212121121212122121x x x x x x x xf x f x ----=-=-==-++++++,不是常数,故BD 错误;故选:C .17.(2023年北京高考数学真题)下列函数中,在区间(0,)+∞上单调递增的是()A .()ln f x x =-B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=【答案】C【解析】对于A ,因为ln y x =在()0,∞+上单调递增,y x =-在()0,∞+上单调递减,所以()ln f x x =-在()0,∞+上单调递减,故A 错误;对于B ,因为2x y =在()0,∞+上单调递增,1y x=在()0,∞+上单调递减,所以()12xf x =在()0,∞+上单调递减,故B 错误;对于C ,因为1y x=在()0,∞+上单调递减,y x =-在()0,∞+上单调递减,所以()1f x x=-在()0,∞+上单调递增,故C 正确;对于D ,因为1112213332f -⎛⎫=== ⎪⎝⎭()()112101331,233f f --=====,显然()13x f x -=在()0,∞+上不单调,D 错误.故选:C.18.(2024年新课标全国Ⅰ卷数学真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是()A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞【答案】B【解析】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤,即a 的范围是[1,0]-.故选:B.19.(2024年天津高考数学真题)下列函数是偶函数的是()A .22e 1x x y x -=+B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x x y +=【答案】B【解析】对A ,设()22e 1x x f x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R ,且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称,则()h x 不是偶函数,故C 错误;对D ,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141e ϕ+=,()sin141eϕ---=,则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误.故选:B.20.(2023年新课标全国Ⅰ卷数学真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是()A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞【答案】D【解析】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞.故选:D考点5:分段函数问题21.(2022年新高考浙江数学高考真题)已知函数()22,1,11,1,x x f x x x x ⎧-+≤⎪=⎨+->⎪⎩则12f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;若当[,]x a b ∈时,1()3f x ≤≤,则b a -的最大值是.【答案】37283333+【解析】由已知2117(2224f ⎛⎫=-+= ⎪⎝⎭,77437()144728f =+-=,所以137()228f f ⎡⎤=⎢⎥⎣⎦,当1x ≤时,由1()3f x ≤≤可得2123x ≤-+≤,所以11x -≤≤,当1x >时,由1()3f x ≤≤可得1113x x≤+-≤,所以123x <≤+1()3f x ≤≤等价于123x -≤≤[,][1,23]a b ⊆-,所以b a -的最大值为33故答案为:3728,3322.(2024年上海夏季高考数学真题)已知(),0,1,0x x f x x >=≤⎪⎩则()3f =.3【解析】因为()0,1,0x x f x x >=≤⎪⎩故()33f =3考点6:函数的定义域、值域、最值问题23.(2022年新高考北京数学高考真题)函数1()1f x x x=-的定义域是.【答案】()(],00,1-∞⋃【解析】因为()11f x x x =-100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠,故函数的定义域为()(],00,1-∞⋃;故答案为:()(],00,1-∞⋃24.(2022年新高考北京数学高考真题)设函数()()21,,2,.ax x a f x x x a -+<⎧⎪=⎨-≥⎪⎩若()f x 存在最小值,则a 的一个取值为;a 的最大值为.【答案】0(答案不唯一)1【解析】若0a =时,21,0(){(2),0x f x x x <=-≥,∴min ()0f x =;若a<0时,当x a <时,()1f x ax =-+单调递增,当x →-∞时,()f x →-∞,故()f x 没有最小值,不符合题目要求;若0a >时,当x a <时,()1f x ax =-+单调递减,2()()1f x f a a >=-+,当x a >时,min 20(02)(){(2)(2)a f x a a <<=-≥∴210a -+≥或2212a a -+≥-(),解得01a <≤,综上可得01a ≤≤;故答案为:0(答案不唯一),1考点7:函数性质(对称性、周期性、奇偶性)的综合运用25.(多选题)(2023年新课标全国Ⅰ卷数学真题)已知函数()f x 的定义域为R ,()()()22f xy y f x x f y =+,则().A .()00f =B .()10f =C .()f x 是偶函数D .0x =为()f x 的极小值点【答案】ABC 【解析】方法一:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确.对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=,令21,()()(1)()y f x f x x f f x =--=+-=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,不妨令()0f x =,显然符合题设条件,此时()f x 无极值,故D 错误.方法二:因为22()()()f xy y f x x f y =+,对于A ,令0x y ==,(0)0(0)0(0)0f f f =+=,故A 正确.对于B ,令1x y ==,(1)1(1)1(1)f f f =+,则(1)0f =,故B 正确.对于C ,令1x y ==-,(1)(1)(1)2(1)f f f f =-+-=-,则(1)0f -=,令21,()()(1)()y f x f x x f f x =--=+-=,又函数()f x 的定义域为R ,所以()f x 为偶函数,故C 正确,对于D ,当220x y ≠时,对22()()()f xy y f x x f y =+两边同时除以22x y ,得到2222()()()f xy f x f y x y x y=+,故可以设2()ln (0)f x x x x =≠,则2ln ,0()0,0x x x f x x ⎧≠=⎨=⎩,当0x >肘,2()ln f x x x =,则()212ln (2ln 1)x x x x xf x x =+⋅=+',令()0f x '<,得120e x -<<;令()0f x ¢>,得12e x ->;故()f x 在120,e -⎛⎫ ⎪⎝⎭上单调递减,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递增,因为()f x 为偶函数,所以()f x 在12,0e -⎛⎫- ⎪⎝⎭上单调递增,在12,e -⎛⎫ ⎪⎝∞⎭-上单调递减,显然,此时0x =是()f x 的极大值,故D 错误.故选:ABC .26.(多选题)(2022年新高考全国I 卷数学真题)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则()A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【解析】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确;对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222fx f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC.故选:BC.[方法三]:因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-,所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.27.(2024年新课标全国Ⅰ卷数学真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <【答案】B【解析】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.28.(2022年新高考全国II 卷数学真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑()A .3-B .2-C .0D .1【答案】A【解析】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=,所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++-=++-== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x xπ=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =-=-=-==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=,由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;29.(2022年高考全国乙卷数学(理)真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑()A .21-B .22-C .23-D .24-【答案】D【解析】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D考点8:指对幂运算30.(2022年新高考天津数学高考真题)化简()()48392log 3log 3log 2log 2++的值为()A .1B .2C .4D .6【答案】B【解析】原式2233111(2log 3log 3)(log 2log 2)232=⨯++2343log 3log 2232=⨯=,故选:B31.(2022年新高考浙江数学高考真题)已知825,log 3ab ==,则34a b -=()A .25B .5C .259D .53【答案】C【解析】因为25a=,821log 3log 33b ==,即323b=,所以()()22323232452544392a aa b b b -====.故选:C.32.(2024年高考全国甲卷数学(理)真题)已知1a >且8115log log 42a a -=-,则=a .【答案】64【解析】由题28211315log log log 4log 22a a a a -=-=-,整理得()2225log 60log a a --=,2log 1a ⇒=-或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==故答案为:64.33.(2023年北京高考数学真题)已知函数2()4log x f x x =+,则12f ⎛⎫= ⎪⎝⎭.【答案】1【解析】函数2()4log xf x x =+,所以12211()4log 21122f =+=-=.故答案为:1。
2019版5年高考3年模拟文数A版文档:§3-2 导数的应用 含答案 精品
§3.2导数的应用考纲解读分析解读函数的单调性是函数的一条重要性质,也是高中阶段研究的重点.一是直接用导数研究函数的单调性、求函数的最值与极值,以及实际问题中的优化问题等,这是新课标的一个新要求.二是把导数与函数、方程、不等式、数列等知识相联系,综合考查函数的最值与参数的取值,常以解答题的形式出现.本节内容在高考中分值为17分左右,属难度较大题.1)函数f(x)的定义域为(-∞,+∞), f '(x)=2e2x-ae x-a2=(2e x+a)(e x-a).①若a=0,则f(x)=e2x,在(-∞,+∞)上单调递增.②若a>0,则由f '(x)=0得x=ln a.当x∈(-∞,ln a)时, f '(x)<0;当x∈(ln a,+∞)时, f '(x)>0.故f(x)在(-∞,ln a)上单调递减,在(ln a,+∞)上单调递增.③若a<0,则由f '(x)=0得x=ln-.当x∈-∞-时, f '(x)<0;当x∈-∞时, f '(x)>0.故f(x)在-∞-上单调递减,在-∞上单调递增.(2)①若a=0,则f(x)=e2x,所以f(x)≥0.②若a>0,则由(1)得,当x=ln a时, f(x)取得最小值,最小值为f(ln a)=-a2ln a,从而当且仅当-a2ln a≥0,即a≤1时, f(x)≥0.③若a<0,则由(1)得,当x=ln-时, f(x)取得最小值,最小值为f-=a2--.从而当且仅当a2--≥0,综上,a的取值范围是[-2,1].即a≥-2时, f(x)≥0.五年高考考点一利用导数研究函数的单调性1.(2017山东,10,5分)若函数e x f(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质.下列函数中具有M性质的是()A.f(x)=2-xB.f(x)=x2C.f(x)=3-xD.f(x)=cos x答案A2.(2016课标全国Ⅰ,12,5分)若函数f(x)=x-sin 2x+asin x在(-∞,+∞)单调递增,则a的取值范围是()A.[-1,1]B.-C.-D.--答案C3.(2015课标Ⅱ,12,5分)设函数f(x)=ln(1+|x|)-,则使得f(x)>f(2x-1)成立的x的取值范围是()A. B.-∞∪(1,+∞)C.-D.-∞-∪∞答案A4.(2014课标Ⅱ,11,5分)若函数f(x)=kx-ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)答案D5.(2017江苏,11,5分)已知函数f(x)=x3-2x+e x-,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0,则实数a的取值范围是.答案-6.(2017课标全国Ⅱ,21,12分)设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x≥0时, f(x)≤ax+1,求a的取值范围.解析(1)f '(x)=(1-2x-x2)e x.令f '(x)=0,得x=-1-或x=-1+.当x∈(-∞,-1-)时, f '(x)<0;当x∈(-1-,-1+)时, f '(x)>0;当x∈(-1+,+∞)时, f '(x)<0.所以f(x)在(-∞,-1-),(-1+,+∞)上单调递减,在(-1-,-1+)上单调递增.(2)f(x)=(1+x)(1-x)e x.当a≥1时,设函数h(x)=(1-x)e x,h'(x)=-xe x<0(x>0),因此h(x)在[0,+∞)上单调递减,而h(0)=1,故h(x)≤1,所以f(x)=(x+1)h(x)≤x+1≤ax+1.当0<a<1时,设函数g(x)=e x-x-1,g'(x)=e x-1>0(x>0),所以g(x)在[0,+∞)上单调递增,而g(0)=0,故e x≥x+1. 当0<x<1时, f(x)>(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2),取x0=-,则x0∈(0,1),(1-x0)(1+x0)2-ax0-1=0,故f(x0)>ax0+1.当a≤0时,取x0=-,则x0∈(0,1), f(x0)>(1-x0)(1+x0)2=1≥ax0+1.综上,a的取值范围是[1,+∞).7.(2017课标全国Ⅲ,21,12分)已知函数f(x)=ln x+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤--2.解析(1)f(x)的定义域为(0,+∞), f '(x)=+2ax+2a+1=.若a≥0,则当x∈(0,+∞)时, f '(x)>0,故f(x)在(0,+∞)上单调递增.若a<0,则当x∈时, f '(x)>0;当x∈-∞时, f '(x)<0,故f(x)在上单调递增,在-∞上单调递减.(2)由(1)知,当a<0时, f(x)在x=-处取得最大值,最大值为f-=ln--1-.所以f(x)≤--2等价于ln--1-≤--2,即ln-++1≤0.设g(x)=ln x-x+1,则g'(x)=-1.当x∈(0,1)时,g'(x)>0;当x∈(1,+∞)时,g'(x)<0.所以g(x)在(0,1)上单调递增,在(1,+∞)上单调递减.故当x=1时,g(x)取得最大值,最大值为g(1)=0.所以当x>0时,g(x)≤0.从而当a<0时,ln-++1≤0,即f(x)≤--2.8.(2016课标全国Ⅲ,21,12分)设函数f(x)=ln x-x+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<-<x;(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>c x.解析(1)由题设知, f(x)的定义域为(0,+∞), f '(x)=-1,令f '(x)=0,解得x=1.当0<x<1时, f '(x)>0, f(x)单调递增;当x>1时, f '(x)<0, f(x)单调递减.(4分)(2)证明:由(1)知f(x)在x=1处取得最大值,最大值为f(1)=0.所以当x≠1时,ln x<x-1.故当x∈(1,+∞)时,ln x<x-1,ln<-1,即1<-<x.(7分)(3)证明:由题设c>1,设g(x)=1+(c-1)x-c x,则g'(x)=c-1-c x ln c,令g'(x)=0,解得x0=-.当x<x0时,g'(x)>0,g(x)单调递增;当x>x0时,g'(x)<0,g(x)单调递减.(9分)由(2)知1<-<c,故0<x0<1.又g(0)=g(1)=0,故当0<x<1时,g(x)>0.所以当x∈(0,1)时,1+(c-1)x>c x.(12分)教师用书专用(9—24)9.(2013浙江,8,5分)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f '(x)的图象如图所示,则该函数的图象是()答案B10.(2015四川,21,14分)已知函数f(x)=-2xln x+x2-2ax+a2,其中a>0.(1)设g(x)是f(x)的导函数,讨论g(x)的单调性;(2)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.解析(1)由已知,得函数f(x)的定义域为(0,+∞),g(x)=f '(x)=2(x-1-ln x-a),所以g'(x)=2-=-.当x∈(0,1)时,g'(x)<0,g(x)单调递减;当x∈(1,+∞)时,g'(x)>0,g(x)单调递增.(2)证明:由f '(x)=2(x-1-ln x-a)=0,解得a=x-1-ln x.令φ(x)=-2xln x+x2-2x(x-1-ln x)+(x-1-ln x)2=(1+ln x)2-2xln x,则φ(1)=1>0,φ(e)=2(2-e)<0.于是,存在x0∈(1,e),使得φ(x0)=0.令a0=x0-1-ln x0=u(x0),其中u(x)=x-1-ln x(x≥1).由u'(x)=1-≥0知,函数u(x)在区间(1,+∞)上单调递增.故0=u(1)<a0=u(x0)<u(e)=e-2<1.即a0∈(0,1).当a=a0时,有f '(x0)=0, f(x0)=φ(x0)=0.再由(1)知, f '(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时, f '(x)<0,从而f(x)>f(x0)=0;当x∈(x0,+∞)时, f '(x)>0,从而f(x)>f(x0)=0;又当x∈(0,1]时, f(x)=(x-a0)2-2xln x>0.故x∈(0,+∞)时, f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.11.(2015天津,20,14分)已知函数f(x)=4x-x4,x∈R.(1)求f(x)的单调区间;(2)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的实数x,都有f(x)≤g(x);(3)若方程f(x)=a(a为实数)有两个实数根x1,x2,且x1<x2,求证:x2-x1≤-+.解析(1)由f(x)=4x-x4,可得f '(x)=4-4x3.当f '(x)>0,即x<1时,函数f(x)单调递增;当f '(x)<0,即x>1时,函数f(x)单调递减.所以, f(x)的单调递增区间为(-∞,1),单调递减区间为(1,+∞).(2)证明:设点P的坐标为(x0,0),则x0=, f '(x0)=-12.曲线y=f(x)在点P处的切线方程为y=f '(x0)(x-x0),即g(x)=f '(x0)(x-x0).令函数F(x)=f(x)-g(x),即F(x)=f(x)-f '(x0)(x-x0),则F'(x)=f '(x)-f '(x0).由于f '(x)=-4x3+4在(-∞,+∞)上单调递减,故F'(x)在(-∞,+∞)上单调递减.又因为F'(x0)=0,所以当x∈(-∞,x0)时,F'(x)>0,当x∈(x0,+∞)时,F'(x)<0,所以F(x)在(-∞,x0)上单调递增,在(x0,+∞)上单调递减,所以对于任意的实数x,F(x)≤F(x0)=0,即对于任意的实数x,都有f(x)≤g(x).(3)证明:由(2)知g(x)=-12(x-).设方程g(x)=a的根为x2',可得x2'=-+.因为g(x)在(-∞,+∞)上单调递减,又由(2)知g(x2)≥f(x2)=a=g(x2'),因此x2≤x2'.类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=4x.对于任意的x∈(-∞,+∞),有f(x)-h(x)=-x4≤0,即f(x)≤h(x).设方程h(x)=a的根为x1',可得x1'=.因为h(x)=4x在(-∞,+∞)上单调递增,且h(x1')=a=f(x1)≤h(x1),因此x1'≤x1.由此可得x2-x1≤x2'-x1'=-+.12.(2015福建,22,14分)已知函数f(x)=ln x--.(1)求函数f(x)的单调递增区间;(2)证明:当x>1时, f(x)<x-1;(3)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x-1). 解析(1)f '(x)=-x+1=-,x∈(0,+∞).由f '(x)>0得解得0<x<.-故f(x)的单调递增区间是.(2)证明:令F(x)=f(x)-(x-1),x∈(0,+∞).则有F'(x)=.当x∈(1,+∞)时,F'(x)<0,所以F(x)在[1,+∞)上单调递减,故当x>1时,F(x)<F(1)=0,即当x>1时, f(x)<x-1.(3)由(2)知,当k=1时,不存在x0>1满足题意.当k>1时,对于x>1,有f(x)<x-1<k(x-1),则f(x)<k(x-1),从而不存在x0>1满足题意.当k<1时,令G(x)=f(x)-k(x-1),x∈(0,+∞),则有G'(x)=-x+1-k=-.由G'(x)=0得,-x2+(1-k)x+1=0.解得x1=--<0,x2=->1.当x∈(1,x2)时,G'(x)>0,故G(x)在[1,x2)内单调递增.从而当x∈(1,x2)时,G(x)>G(1)=0,即f(x)>k(x-1),综上,k的取值范围是(-∞,1).13.(2015重庆,19,12分)已知函数f(x)=ax3+x2(a∈R)在x=-处取得极值.(1)确定a的值;(2)若g(x)=f(x)e x,讨论g(x)的单调性.解析(1)对f(x)求导得f '(x)=3ax2+2x,因为f(x)在x=-处取得极值,所以f '-=0,即3a·+2·-=-=0,解得a=.(2)由(1)得g(x)=e x,故g'(x)=e x+e x=e x=x(x+1)(x+4)e x.令g'(x)=0,解得x=0,x=-1或x=-4.当x<-4时,g'(x)<0,故g(x)为减函数;当-4<x<-1时,g'(x)>0,故g(x)为增函数;当-1<x<0时,g'(x)<0,故g(x)为减函数;当x>0时,g'(x)>0,故g(x)为增函数.综上,知g(x)在(-∞,-4)和(-1,0)内为减函数,在(-4,-1)和(0,+∞)内为增函数.14.(2014安徽,20,13分)设函数f(x)=1+(1+a)x-x2-x3,其中a>0.(1)讨论f(x)在其定义域上的单调性;(2)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.解析(1)f(x)的定义域为(-∞,+∞), f '(x)=1+a-2x-3x2.令f '(x)=0,得x1=--,x2=-,x1<x2,所以f '(x)=-3(x-x1)(x-x2).当x<x1或x>x2时, f '(x)<0;当x1<x<x2时, f '(x)>0.故f(x)在(-∞,x1)和(x2,+∞)内单调递减,在[x1,x2]内单调递增.(2)因为a>0,所以x1<0,x2>0.(i)当a≥4时,x2≥1,由(1)知, f(x)在[0,1]上单调递增,所以f(x)在x=0和x=1处分别取得最小值和最大值.(ii)当0<a<4时,x2<1.由(1)知, f(x)在[0,x2]上单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=-处取得最大值.又f(0)=1, f(1)=a,所以当0<a<1时, f(x)在x=1处取得最小值;当a=1时, f(x)在x=0和x=1处同时取得最小值;当1<a<4时, f(x)在x=0处取得最小值.15.(2014重庆,19,12分)已知函数f(x)=+-ln x-,其中a∈R,且曲线y=f(x)在点(1, f(1))处的切线垂直于直线y=x.(1)求a的值;(2)求函数f(x)的单调区间与极值.解析(1)对f(x)求导得f '(x)=--,由f(x)在点(1, f(1))处的切线垂直于直线y=x知f '(1)=--a=-2,解得a=.(2)由(1)知f(x)=+-ln x-,则f '(x)=--,令f '(x)=0,解得x=-1或x=5.因x=-1不在f(x)的定义域(0,+∞)内,故舍去.当x∈(0,5)时, f '(x)<0,故f(x)在(0,5)内为减函数;当x∈(5,+∞)时, f '(x)>0,故f(x)在(5,+∞)内为增函数.由此知函数f(x)在x=5时取得极小值f(5)=-ln 5.16.(2014湖北,21,14分)π为圆周率,e=2.718 28…为自然对数的底数.(1)求函数f(x)=的单调区间;(2)求e3,3e,eπ,πe,3π,π3这6个数中的最大数与最小数.解析(1)函数f(x)的定义域为(0,+∞).因为f(x)=,所以f '(x)=.当f '(x)>0,即0<x<e时,函数f(x)单调递增;当f '(x)<0,即x>e时,函数f(x)单调递减.故函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).(2)因为e<3<π,所以eln 3<eln π,πln e<πln 3,即ln 3e<ln πe,ln eπ<ln 3π.于是根据函数y=ln x,y=e x,y=πx在定义域上单调递增,可得3e<πe<π3,e3<eπ<3π.故这6个数的最大数在π3与3π之中,最小数在3e与e3之中.由e<3<π及(1)的结论,得f(π)<f(3)<f(e),即<<.由<,得ln π3<ln 3π,所以3π>π3;由<,得ln 3e<ln e3,所以3e<e3.综上,6个数中的最大数是3π,最小数是3e.17.(2014湖南,21,13分)已知函数f(x)=xcos x-sin x+1(x>0).(1)求f(x)的单调区间;(2)记x i为f(x)的从小到大的第i(i∈N*)个零点,证明:对一切n∈N*,有++…+<.解析(1)f '(x)=cos x-xsin x-cos x=-xsin x.令f '(x)=0,得x=kπ(k∈N*).当x∈(2kπ,(2k+1)π)(k∈N)时,sin x>0,此时f '(x)<0;当x∈((2k+1)π,(2k+2)π)(k∈N)时,sin x<0,此时f '(x)>0,故f(x)的单调递减区间为(2kπ,(2k+1)π)(k∈N),单调递增区间为((2k+1)π,(2k+2)π)(k∈N).(2)由(1)知, f(x)在区间(0,π)上单调递减,又f=0,故x1=,当n∈N*时,因为f(nπ)f((n+1)π)=[(-1)n nπ+1]·[(-1)n+1(n+1)n+1]<0,且函数f(x)的图象是连续不断的,所以f(x)在区间(nπ,(n+1)π)内至少存在一个零点.又f(x)在区间(nπ,(n+1)π)上是单调的,故nπ<x n+1<(n+1)π.因此当n=1时,=<;当n=2时,+<(4+1)<;当n≥3时,++…+<-<--=----=-<<.综上所述,对一切n∈N*,++…+<.18.(2014江西,18,12分)已知函数f(x)=(4x2+4ax+a2),其中a<0.(1)当a=-4时,求f(x)的单调递增区间;(2)若f(x)在区间[1,4]上的最小值为8,求a的值.解析(1)f(x)的定义域为[0,+∞).当a=-4时,由f '(x)==0得x=或x=2,由f '(x)>0得x∈或x∈(2,+∞),故函数f(x)的单调递增区间为和(2,+∞).(2)f '(x)=,a<0,由f '(x)=0得x=-或x=-.当x∈时,f(x)单调递增;当x∈--时,f(x)单调递减;当x∈-∞时,f(x)单调递增.易知 f(x)=(2x+a)2≥0,且f-=0.①当-≤1,即-2≤a<0时,f(x)在[1,4]上的最小值为f(1),由f(1)=4+4a+a2=8,得a=±2-2,均不符合题意.②当1<-≤4,即-8≤a<-2时, f(x)在[1,4]上的最小值为f-=0,不符合题意.③当->4,即a<-8时,f(x)在[1,4]上的最小值可能在x=1或x=4处取得,而f(1)≠8,由f(4)=2(64+16a+a2)=8得a=-10或a=-6(舍去),当a=-10时,f(x)在(1,4)上单调递减, f(x)在[1,4]上的最小值为f(4)=8,符合题意.综上,a=-10.19.(2013课标全国Ⅰ,20,12分)已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0, f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.解析(1)f '(x)=e x(ax+a+b)-2x-4.由已知得f(0)=4, f '(0)=4.故b=4,a+b=8.从而a=4,b=4.(2)由(1)知f(x)=4e x(x+1)-x2-4x,f '(x)=4e x(x+2)-2x-4=4(x+2)-.令f '(x)=0,得x=-ln 2或x=-2.从而当x∈(-∞,-2)∪(-ln 2,+∞)时, f '(x)>0;当x∈(-2,-ln 2)时, f '(x)<0.故f(x)在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.当x=-2时,函数f(x)取得极大值,极大值为f(-2)=4(1-e-2).20.(2013大纲全国,21,12分)已知函数f(x)=x3+3ax2+3x+1.(1)当a=-时,讨论f(x)的单调性;(2)若x∈[2,+∞)时, f(x)≥0,求a的取值范围.解析(1)当a=-时, f(x)=x3-3x2+3x+1,f '(x)=3x2-6x+3.令f '(x)=0,得x1=-1,x2=+1.(3分)当x∈(-∞,-1)时, f '(x)>0, f(x)在(-∞,-1)上是增函数;当x∈(-1,+1)时, f '(x)<0, f(x)在(-1,+1)上是减函数; 当x∈(+1,+∞)时, f '(x)>0, f(x)在(+1,+∞)上是增函数.(6分) (2)由f(2)≥0得a≥-.(8分)当a≥-,x∈(2,+∞)时,f '(x)=3(x2+2ax+1)≥3-=3-(x-2)>0,所以f(x)在(2,+∞)上是增函数,于是当x∈[2,+∞)时,f(x)≥f(2)≥0. 综上,a的取值范围是-∞.(12分)21.(2013山东,21,12分)已知函数f(x)=ax2+bx-ln x(a,b∈R).(1)设a≥0,求f(x)的单调区间;(2)设a>0,且对任意x>0, f(x)≥f(1).试比较ln a与-2b的大小.解析(1)由f(x)=ax2+bx-ln x,x∈(0,+∞),得f '(x)=-.①当a=0时, f '(x)=-.(i)若b≤0,当x>0时, f '(x)<0恒成立,所以函数f(x)的单调递减区间是(0,+∞).(ii)若b>0,当0<x<时, f '(x)<0,函数f(x)单调递减,当x>时, f '(x)>0,函数f(x)单调递增.所以函数f(x)的单调递减区间是,单调递增区间是∞.②当a>0时,令f '(x)=0,得2ax2+bx-1=0.由Δ=b2+8a>0得x1=--,x2=-.显然,x1<0,x2>0.当0<x<x2时, f '(x)<0,函数f(x)单调递减;当x>x2时, f '(x)>0,函数f(x)单调递增.所以函数f(x)的单调递减区间是-,单调递增区间是-∞.综上所述,当a=0,b≤0时,函数f(x)的单调递减区间是(0,+∞);当a=0,b>0时,函数f(x)的单调递减区间是,单调递增区间是∞; 当a>0时,函数f(x)的单调递减区间是-,单调递增区间是-∞.(2)由题意,函数f(x)在x=1处取得最小值,由(1)知-是f(x)的唯一极小值点,故-=1,整理得2a+b=1,即b=1-2a.令g(x)=2-4x+ln x.则g'(x)=.令g'(x)=0,得x=.当0<x<时,g'(x)>0,g(x)单调递增;当x>时,g'(x)<0,g(x)单调递减.因此g(x)≤g=1+ln=1-ln 4<0.故g(a)<0,即2-4a+ln a=2b+ln a<0,即ln a<-2b.22.(2013天津,20,14分)设a∈[-2,0],已知函数f(x)=--(1)证明f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;(2)设曲线y=f(x)在点P i(x i, f(x i))(i=1,2,3)处的切线相互平行,且x1x2x3≠0.证明x1+x2+x3>-.证明(1)设函数f1(x)=x3-(a+5)x(x≤0),f2(x)=x3-x2+ax(x≥0),① f '1(x)=3x2-(a+5),由a∈[-2,0],从而当-1<x<0时,f '1(x)=3x2-(a+5)<3-a-5≤0,所以函数f1(x)在区间(-1,0]内单调递减.② f '2(x)=3x2-(a+3)x+a=(3x-a)(x-1),由于a∈[-2,0],所以当0<x<1时, f '2(x)<0;当x>1时, f '2(x)>0.即函数f2(x)在区间[0,1)内单调递减,在区间(1,+∞)内单调递增.综合①,②及f1(0)=f2(0),可知函数f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增.(2)由(1)知f '(x)在区间(-∞,0)内单调递减,在区间内单调递减,在区间∞内单调递增.因为曲线y=f(x)在点P i(x i, f(x i))(i=1,2,3)处的切线相互平行,从而x1,x2,x3互不相等,且f '(x1)=f '(x2)=f '(x3).不妨设x1<0<x2<x3,由3-(a+5)=3-(a+3)x2+a=3-(a+3)x3+a,可得3-3-(a+3)(x2-x3)=0,解得x2+x3=,从而0<x2<<x3.设g(x)=3x2-(a+3)x+a,则g<g(x2)<g(0)=a.由3-(a+5)=g(x2)<a,解得-<x1<0,所以x1+x2+x3>-+,设t=,则a=-,因为a∈[-2,0],所以t∈,故x1+x2+x3>-t+=(t-1)2-≥-,即x1+x2+x3>-.23.(2013湖北,21,13分)设a>0,b>0,已知函数f(x)=.(1)当a≠b时,讨论函数f(x)的单调性;(2)当x>0时,称f(x)为a、b关于x的加权平均数.(i)判断f(1),f ,f 是否成等比数列,并证明f ≤f ;(ii)a、b的几何平均数记为G.称为a、b的调和平均数,记为H.若H≤f(x)≤G,求x的取值范围. 解析(1)f(x)的定义域为(-∞,-1)∪(-1,+∞),f '(x)==-.当a>b时, f '(x)>0,函数f(x)在(-∞,-1),(-1,+∞)上单调递增;当a<b时, f '(x)<0,函数f(x)在(-∞,-1),(-1,+∞)上单调递减.(2)(i)计算得f(1)=>0, f=>0,f =>0,故f(1)f=·=ab=,即f(1)f=.①所以f(1),f ,f 成等比数列.因为≥,所以f(1)≥f .由①得f ≤f .(ii)由(i)知f =H,f =G.故由H≤f(x)≤G,得f ≤f(x)≤f .②当a=b时,f =f(x)=f =a.这时,x的取值范围为(0,+∞);当a>b时,0<<1,从而<,由f(x)在(0,+∞)上单调递增与②式,得≤x≤,即x的取值范围为;当a<b时,>1,从而>,由f(x)在(0,+∞)上单调递减与②式,得≤x≤,即x的取值范围为.24.(2013江苏,20,16分)设函数f(x)=ln x-ax,g(x)=e x-ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(-1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.解析(1)令f '(x)=-a=<0,考虑到f(x)的定义域为(0,+∞),故a>0,进而解得x>a-1,即f(x)在(a-1,+∞)上是单调减函数. 同理, f(x)在(0,a-1)上是单调增函数.由于f(x)在(1,+∞)上是单调减函数,故(1,+∞)⊆(a-1,+∞),从而a-1≤1,即a≥1.令g'(x)=e x-a=0,得x=ln a.当x<ln a时,g'(x)<0;当x>ln a时,g'(x)>0.又g(x)在(1,+∞)上有最小值,所以ln a>1,即a>e.综上,有a∈(e,+∞).(2)当a≤0时,g(x)必为单调增函数;当a>0时,令g'(x)=e x-a>0,解得a<e x,即x>ln a,因为g(x)在(-1,+∞)上是单调增函数,类似(1)有ln a≤-1,即0<a≤e-1.结合上述两种情况,有a≤e-1.(i)当a=0时,由f(1)=0以及f '(x)=>0,得f(x)存在唯一的零点.(ii)当a<0时,由于f(e a)=a-ae a=a(1-e a)<0, f(1)=-a>0,且函数f(x)在[e a,1]上的图象不间断,所以f(x)在(e a,1)上存在零点.另外,当x>0时, f '(x)=-a>0,故f(x)在(0,+∞)上是单调增函数,所以f(x)只有一个零点.(iii)当0<a≤e-1时,令f '(x)=-a=0,解得x=a-1.当0<x<a-1时, f '(x)>0,当x>a-1时, f '(x)<0,所以,x=a-1是f(x)的最大值点,且最大值为f(a-1)=-ln a-1.①当-ln a-1=0,即a=e-1时, f(x)有一个零点x=e.②当-ln a-1>0,即0<a<e-1时, f(x)有两个零点.实际上,对于0<a<e-1,由于f(e-1)=-1-ae-1<0, f(a-1)>0,且函数f(x)在[e-1,a-1]上的图象不间断,所以f(x)在(e-1,a-1)上存在零点.另外,当x∈(0,a-1)时, f '(x)=-a>0,故f(x)在(0,a-1)上是单调增函数,所以f(x)在(0,a-1)上只有一个零点. 下面考虑f(x)在(a-1,+∞)上的情况.先证f(e a-1)=a(a-2-e a-1)<0.为此,我们要证明:当x>e时,e x>x2.设h(x)=e x-x2,则h'(x)=e x-2x,再设l(x)=h'(x)=e x-2x,则l'(x)=e x-2.当x>1时,l'(x)=e x-2>e-2>0,所以l(x)=h'(x)在(1,+∞)上是单调增函数.故当x>2时,h'(x)=e x-2x>h'(2)=e2-4>0,从而h(x)在(2,+∞)上是单调增函数,进而当x>e时,h(x)=e x-x2>h(e)=e e-e2>0.即当x>e时,e x>x2.当0<a<e-1,即a-1>e时, f(e a-1)=a-1-ae a-1=a(a-2-e a-1)<0,又f(a-1)>0,且函数f(x)在[a-1,e a-1]上的图象不间断,所以f(x)在(a-1,e a-1)上存在零点.又当x>a-1时, f '(x)=-a<0,故f(x)在(a-1,+∞)上是单调减函数,所以f(x)在(a-1,+∞)上只有一个零点.综合(i),(ii),(iii),当a≤0或a=e-1时, f(x)的零点个数为1,当0<a<e-1时,f(x)的零点个数为2.考点二利用导数研究函数的极值与最值1.(2016四川,6,5分)已知a为函数f(x)=x3-12x的极小值点,则a=()A.-4B.-2C.4D.2答案D2.(2014辽宁,12,5分)当x∈[-2,1]时,不等式ax3-x2+4x+3≥0恒成立,则实数a的取值范围是()A.[-5,-3]B.--C.[-6,-2]D.[-4,-3]答案C3.(2015陕西,15,5分)函数y=xe x在其极值点处的切线方程为.答案y=-4.(2017北京,20,13分)已知函数f(x)=e x cos x-x.(1)求曲线y=f(x)在点(0, f(0))处的切线方程;(2)求函数f(x)在区间上的最大值和最小值.解析(1)因为f(x)=e x cos x-x,所以f '(x)=e x(cos x-sin x)-1, f '(0)=0.又因为f(0)=1,所以曲线y=f(x)在点(0, f(0))处的切线方程为y=1.(2)设h(x)=e x(cos x-sin x)-1,则h'(x)=e x(cos x-sin x-sin x-cos x)=-2e x sin x.当x∈时,h'(x)<0,所以h(x)在区间上单调递减.所以对任意x∈,有h(x)<h(0)=0,即f '(x)<0.所以函数f(x)在区间上单调递减.因此f(x)在区间上的最大值为f(0)=1,最小值为f=-.5.(2017江苏,20,16分)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f '(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b2>3a;(3)若f(x), f '(x)这两个函数的所有极值之和不小于-,求a的取值范围.解析(1)由f(x)=x3+ax2+bx+1,得f '(x)=3x2+2ax+b=3+b-.当x=-时, f '(x)有极小值b-.因为f '(x)的极值点是f(x)的零点,所以f -=-+-+1=0,又a>0,故b=+.因为f(x)有极值,故f '(x)=0有实根,从而b-=(27-a3)≤0,即a≥3. 当a=3时, f '(x)>0(x≠-1),故f(x)在R上是增函数, f(x)没有极值; 当a>3时, f '(x)=0有两个相异的实根x1=---,x2=--.列表如下:故f(x)的极值点是x1,x2.从而a>3.因此b=+,定义域为(3,+∞).(2)证明:由(1)知,=+.设g(t)=+,则g'(t)=-=-.当t∈∞时,g'(t)>0,从而g(t)在∞上单调递增.因为a>3,所以a>3,故g(a )>g(3)=,即>.因此b2>3a.(3)由(1)知, f(x)的极值点是x1,x2,且x1+x2=-a,+=-.从而f(x1)+f(x2)=+a+bx1+1++a+bx2+1=(3+2ax1+b)+(3+2ax2+b)+a(+)+b(x1+x2)+2=--+2=0. 记f(x), f '(x)所有极值之和为h(a),因为f '(x)的极值为b-=-a2+,所以h(a)=-a2+,a>3.因为h'(a)=-a-<0,于是h(a)在(3,+∞)上单调递减.因为h(6)=-,于是h(a)≥h(6),故a≤6.因此a的取值范围为(3,6].6.(2015安徽,21,13分)已知函数f(x)=(a>0,r>0).(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+∞)内的极值.解析(1)由题意知x≠-r,所求的定义域为(-∞,-r)∪(-r,+∞).f(x)==,f '(x)=-=-,所以当x<-r或x>r时,f '(x)<0,当-r<x<r时,f '(x)>0,因此,f(x)的单调递减区间为(-∞,-r),(r,+∞);f(x)的单调递增区间为(-r,r).(2)由(1)的解答可知f '(r)=0,f(x)在(0,r)上单调递增,在(r,+∞)上单调递减.因此,x=r是f(x)的极大值点,所以f(x)在(0,+∞)内的极大值为f(r)====100.教师用书专用(7—15)7.(2013福建,12,5分)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是()A.∀x∈R, f(x)≤f(x0)B.-x0是f(-x)的极小值点C.-x0是-f(x)的极小值点D.-x0是-f(-x)的极小值点答案D8.(2016天津,20,14分)设函数f(x)=x3-ax-b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;.(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[-1,1]上的最大值不小于···解析(1)由f(x)=x3-ax-b,可得f '(x)=3x2-a.下面分两种情况讨论:①当a≤0时,有f '(x)=3x2-a≥0恒成立,所以f(x)的单调递增区间为(-∞,+∞).②当a>0时,令f '(x)=0,解得x=,或x=-.当x变化时, f '(x), f(x)的变化情况如下表:所以f(x)的单调递减区间为-,单调递增区间为-∞-,∞.(2)证明:因为f(x)存在极值点,所以由(1)知a>0,且x0≠0.由题意,得f '(x0)=3-a=0,即=,进而f(x0)=-ax0-b=-x0-b.又f(-2x0)=-8+2ax0-b=-x0+2ax0-b=-x0-b=f(x0),且-2x0≠x0,由题意及(1)知,存在唯一实数x1满足 f(x1)=f(x0),且x1≠x0,因此x1=-2x0.所以x1+2x0=0.(3)证明:设g(x)在区间[-1,1]上的最大值为M,max{x,y}表示x,y两数的最大值.下面分三种情况讨论:①当a≥3时,-≤-1<1≤,由(1)知, f(x)在区间[-1,1]上单调递减,所以f(x)在区间[-1,1]上的取值范围为[f(1), f(-1)],因此M=max{|f(1)|,|f(-1)|}=max{|1-a-b|,|-1+a-b|}=max{|a-1+b|,|a-1-b|}=---所以M=a-1+|b|≥2.②当≤a<3时,-≤-1<-<<1≤,由(1)和(2)知f(-1)≥f -=f , f(1)≤f =f -,所以f(x)在区间[-1,1]上的取值范围为 f , f -,因此M=max,-=max---=max-=+|b|≥××=.③当0<a<时,-1<-<<1,由(1)和(2)知f(-1)<f -=f , f(1)>f =f -, 所以f(x)在区间[-1,1]上的取值范围为[f(-1), f(1)],因此M=max{|f(-1)|,|f(1)|}=max{|-1+a-b|,|1-a-b|}=max{|1-a+b|,|1-a-b|}=1-a+|b|>.综上所述,当a>0时,g(x)在区间[-1,1]上的最大值不小于.9.(2014天津,19,14分)已知函数f(x)=x2-ax3(a>0),x∈R.(1)求f(x)的单调区间和极值;(2)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1.求a的取值范围.解析(1)由已知,有f '(x)=2x-2ax2(a>0).令f '(x)=0,解得x=0或x=.当x变化时, f '(x), f(x)的变化情况如下表:所以, f(x)的单调递增区间是;单调递减区间是(-∞,0),∞.当x=0时, f(x)有极小值,且极小值f(0)=0;当x=时,f(x)有极大值,且极大值f=.(2)由f(0)=f=0及(1)知,当x∈时, f(x)>0;当x∈∞时, f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B=∈∞≠.则“对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)·f(x2)=1”等价于A⊆B.显然,0∉B.下面分三种情况讨论:①当>2,即0<a<时,由f=0可知,0∈A,而0∉B,所以A不是B的子集.②当1≤≤2,即≤a≤时,有f(2)≤0,且此时f(x)在(2,+∞)上单调递减,故A=(-∞, f(2)),因而A⊆(-∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(-∞,0),则(-∞,0)⊆B.所以,A⊆B.③当<1,即a>时,有f(1)<0,且此时f(x)在(1,+∞)上单调递减,故B=,A=(-∞,f(2)),所以A不是B的子集.综上,a的取值范围是.10.(2014浙江,21,15分)已知函数f(x)=x3+3|x-a|(a>0).若f(x)在[-1,1]上的最小值记为g(a).(1)求g(a);(2)证明:当x∈[-1,1]时,恒有f(x)≤g(a)+4.解析(1)因为a>0,-1≤x≤1,所以(i)当0<a<1时,若x∈[-1,a],则f(x)=x3-3x+3a, f '(x)=3x2-3<0,故f(x)在(-1,a)上是减函数;若x∈[a,1],则f(x)=x3+3x-3a, f '(x)=3x2+3>0,故f(x)在(a,1)上是增函数.所以g(a)=f(a)=a3.(ii)当a≥1时,有x≤a,则f(x)=x3-3x+3a, f '(x)=3x2-3<0,故f(x)在(-1,1)上是减函数,所以g(a)=f(1)=-2+3a.综上,g(a)=-(2)令h(x)=f(x)-g(a),(i)当0<a<1时,g(a)=a3,若x∈[a,1],h(x)=x3+3x-3a-a3,得h'(x)=3x2+3,则h(x)在(a,1)上是增函数,所以,h(x)在[a,1]上的最大值是h(1)=4-3a-a3,且0<a<1,所以h(1)≤4.故f(x)≤g(a)+4;若x∈[-1,a],h(x)=x3-3x+3a-a3,得h'(x)=3x2-3,则h(x)在(-1,a)上是减函数,所以,h(x)在[-1,a]上的最大值是h(-1)=2+3a-a3.令t(a)=2+3a-a3,则t'(a)=3-3a2>0,知t(a)在(0,1)上是增函数,所以,t(a)<t(1)=4,即h(-1)<4.故f(x)≤g(a)+4.(ii)当a≥1时,g(a)=-2+3a,故h(x)=x3-3x+2,得h'(x)=3x2-3,此时h(x)在(-1,1)上是减函数,因此h(x)在[-1,1]上的最大值是h(-1)=4.故f(x)≤g(a)+4.综上,当x∈[-1,1]时,恒有f(x)≤g(a)+4.11.(2014四川,21,14分)已知函数f(x)=e x-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1.解析(1)由f(x)=e x-ax2-bx-1,有g(x)=f '(x)=e x-2ax-b,所以g'(x)=e x-2a.当x∈[0,1]时,g'(x)∈[1-2a,e-2a],当a≤时,g'(x)≥0,所以g(x)在[0,1]上单调递增,因此g(x)在[0,1]上的最小值是g(0)=1-b;当a≥时,g'(x)≤0,所以g(x)在[0,1]上单调递减.因此g(x)在[0,1]上的最小值是g(1)=e-2a-b;当<a<时,令g'(x)=0,得x=ln(2a)∈(0,1).所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增.于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b.综上所述,当a≤时,g(x)在[0,1]上的最小值是g(0)=1-b;当<a<时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b;当a≥时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.(2)设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.则g(x)不可能恒为正,也不可能恒为负.故g(x)在区间(0,x0)内存在零点x1,同理,g(x)在区间(x0,1)内存在零点x2,所以g(x)在区间(0,1)内至少有两个零点.由(1)知,当a≤时,g(x)在[0,1]上单调递增,故g(x)在(0,1)内至多有一个零点.当a≥时,g(x)在[0,1]上单调递减,故g(x)在(0,1)内至多有一个零点,所以<a<.此时g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,因此x1∈(0,ln(2a)],x2∈(ln(2a),1),必有g(0)=1-b>0,g(1)=e-2a-b>0.由f(1)=0有a+b=e-1<2,有g(0)=a-e+2>0,g(1)=1-a>0,解得e-2<a<1.所以函数f(x)在区间(0,1)内有零点时,e-2<a<1.12.(2014陕西,21,14分)设函数f(x)=ln x+,m∈R.(1)当m=e(e为自然对数的底数)时,求f(x)的极小值;(2)讨论函数g(x)=f '(x)-零点的个数;<1恒成立,求m的取值范围.(3)若对任意b>a>0,--解析(1)当m=e时, f(x)=ln x+,则 f '(x)=-,∴当x∈(0,e)时, f '(x)<0, f(x)在(0,e)上单调递减;当x∈(e,+∞)时, f '(x)>0, f(x)在(e,+∞)上单调递增.∴当x=e时, f(x)取得极小值f(e)=ln e+=2,∴f(x)的极小值为2.(2)由题设知,g(x)=f '(x)-=--(x>0),令g(x)=0,得m=-x3+x(x>0).设φ(x)=-x3+x(x≥0),则φ'(x)=-x2+1=-(x-1)(x+1),当x∈(0,1)时,φ'(x)>0,∴φ(x)在(0,1)上单调递增;当x∈(1,+∞)时,φ'(x)<0,∴φ(x)在(1,+∞)上单调递减.∴x=1是φ(x)的唯一极值点,且是极大值点,因此x=1也是φ(x)的最大值点, ∴φ(x)的最大值为φ(1)=.又φ(0)=0,结合y=φ(x)的图象(如图),可知①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点.综上所述,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点.(3)对任意的b>a>0,-<1恒成立,-等价于f(b)-b<f(a)-a恒成立.(*)设h(x)=f(x)-x=ln x+-x(x>0),∴(*)等价于h(x)在(0,+∞)上单调递减.由h'(x)=--1≤0在(0,+∞)上恒成立,得m≥-x2+x=--+(x>0)恒成立,∴m≥对仅在时成立,∴m的取值范围是∞.13.(2013广东,21,14分)设函数f(x)=x3-kx2+x(k∈R).(1)当k=1时,求函数f(x)的单调区间;(2)当k<0时,求函数f(x)在[k,-k]上的最小值m和最大值M.解析 f '(x)=3x2-2kx+1.(1)当k=1时, f '(x)=3x2-2x+1,Δ=4-12=-8<0,∴f '(x)>0, f(x)在R上单调递增.(2)当k<0时, f '(x)=3x2-2kx+1,其图象开口向上,对称轴为直线x=,且过(0,1).(i)当Δ=4k2-12=4(k+)≤0,即-k<0时, f '(x)≥0, f(x)在[k,-k]上单调递增,从而当x=k时, f(x)取得最小值m=f(k)=k,当x=-k时, f(x)取得最大值M=f(-k)=-k3-k3-k=-2k3-k.(ii)当Δ=4k2-12=4(k+)(k-即k<-时,令f '(x)=3x2-2kx+1=0,解得x1=-,x2=--,注意到k<x2<x1<0,∴m=min{f(k), f(x1)},M=max{f(-k), f(x2)}. ∵f(x1)-f(k)=-k+x1-k=(x1-k)(+1)>0,∴f(x)的最小值m=f(k)=k.∵f(x2)-f(-k)=-k+x2-(-k3-k·k2-k)=(x2+k)[(x2-k)2+k2+1]<0,∴f(x)的最大值M=f(-k)=-2k3-k.综上所述,当k<0时, f(x)的最小值m=f(k)=k,最大值M=f(-k)=-2k 3-k.14.(2013浙江,21,15分)已知a ∈R,函数f(x)=2x 3-3(a+1)x 2+6ax. (1)若a=1,求曲线y=f(x)在点(2, f(2))处的切线方程; (2)若|a|>1,求f(x)在闭区间[0,2|a|]上的最小值. 解析 (1)当a=1时, f '(x)=6x 2-12x+6,所以f '(2)=6.又因为f(2)=4,所以切线方程为y=6x-8.(2)记g(a)为f(x)在闭区间[0,2|a|]上的最小值. f '(x)=6x 2-6(a+1)x+6a=6(x-1)(x-a). 令f '(x)=0,得到x 1=1,x 2=a. 当a>1时,比较f(0)=0和f(a)=a 2(3-a)的大小可得g(a)= -当a<-1时,得g(a)=3a-1.综上所述, f(x)在闭区间[0,2|a|]上的最小值为 g(a)= --15.(2013重庆,20,12分)某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.解析(1)因为蓄水池侧面的建造成本为100·2πrh=200πrh元,底面的建造成本为160πr2元,所以蓄水池的总建造成本为(200πrh+160πr2)元.所以200πrh+160πr2=12 000π,所以h=(300-4r2),从而V(r)=πr2h=(300r-4r3).因为r>0,h>0,所以0<r<5,故函数V(r)的定义域为(0,5).(2)因为V(r)=(300r-4r3),故V'(r)=(300-12r2).令V'(r)=0,解得r1=5,r2=-5(r2=-5不在定义域内,舍去).当r∈(0,5)时,V'(r)>0,故V(r)在(0,5)上为增函数;当r∈(5,5)时,V'(r)<0,故V(r)在(5,5)上为减函数. 由此可知,V(r)在r=5处取得最大值,此时h=8.即当r=5,h=8时,该蓄水池的体积最大.考点三导数的综合应用1.(2015安徽,10,5分)函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是()A.a>0,b<0,c>0,d>0B.a>0,b<0,c<0,d>0C.a<0,b<0,c>0,d>0D.a>0,b>0,c>0,d<0答案A2.(2014课标Ⅰ,12,5分)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(2,+∞)B.(1,+∞)C.(-∞,-2)D.(-∞,-1)答案C3.(2017山东,20,13分)已知函数f(x)=x3-ax2,a∈R.(1)当a=2时,求曲线y=f(x)在点(3, f(3))处的切线方程;(2)设函数g(x)=f(x)+(x-a)cos x-sin x,讨论g(x)的单调性并判断有无极值,有极值时求出极值.解析(1)由题意得f '(x)=x2-ax,所以当a=2时, f(3)=0, f '(x)=x2-2x,所以f '(3)=3,因此,当a=2时,曲线y=f(x)在点(3, f(3))处的切线方程是y=3(x-3),即3x-y-9=0.(2)因为g(x)=f(x)+(x-a)cos x-sin x,所以g'(x)=f '(x)+cos x-(x-a)sin x-cos x=x(x-a)-(x-a)sin x=(x-a)(x-sin x),令h(x)=x-sin x,则h'(x)=1-cos x≥0,所以h(x)在R上单调递增.因为h(0)=0,所以当x>0时,h(x)>0;当x<0时,h(x)<0.①当a<0时,g'(x)=(x-a)(x-sin x),当x∈(-∞,a)时,x-a<0,g'(x)>0,g(x)单调递增;当x∈(a,0)时,x-a>0,g'(x)<0,g(x)单调递减;当x∈(0,+∞)时,x-a>0,g'(x)>0,g(x)单调递增.所以当x=a时g(x)取到极大值,极大值是g(a)=-a3-sin a,当x=0时g(x)取到极小值,极小值是g(0)=-a.②当a=0时,g'(x)=x(x-sin x),当x∈(-∞,+∞)时,g'(x)≥0,g(x)单调递增;所以g(x)在(-∞,+∞)上单调递增,g(x)无极大值也无极小值.③当a>0时,g'(x)=(x-a)(x-sin x),当x∈(-∞,0)时,x-a<0,g'(x)>0,g(x)单调递增;当x∈(0,a)时,x-a<0,g'(x)<0,g(x)单调递减;当x∈(a,+∞)时,x-a>0,g'(x)>0,g(x)单调递增.所以当x=0时g(x)取到极大值,极大值是g(0)=-a;当x=a时g(x)取到极小值,极小值是g(a)=-a3-sin a.综上所述:当a<0时,函数g(x)在(-∞,a)和(0,+∞)上单调递增,在(a,0)上单调递减,函数既有极大值,又有极小值,极大值是g(a)=-a3-sin a,极小值是g(0)=-a;当a=0时,函数g(x)在(-∞,+∞)上单调递增,无极值;当a>0时,函数g(x)在(-∞,0)和(a,+∞)上单调递增,在(0,a)上单调递减,函数既有极大值,又有极小值,极大值是g(0)=-a,极小值是g(a)=-a3-sin a.4.(2017天津,19,14分)设a,b∈R,|a|≤1.已知函数f(x)=x3-6x2-3a(a-4)x+b,g(x)=e x f(x).(1)求f(x)的单调区间;(2)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0-1,x0+1]上恒成立,求b的取值范围.解析(1)由f(x)=x3-6x2-3a(a-4)x+b,可得f '(x)=3x2-12x-3a(a-4)=3(x-a)[x-(4-a)].令f '(x)=0,解得x=a,或x=4-a.由|a|≤1,得a<4-a.当x变化时, f '(x), f(x)的变化情况如下表:所以, f(x)的单调递增区间为(-∞,a),(4-a,+∞),单调递减区间为(a,4-a).(2)(i)证明:因为g'(x)=e x[f(x)+f '(x)],由题意知所以解得所以, f(x)在x=x0处的导数等于0.(ii)因为g(x)≤e x,x∈[x0-1,x0+1],g(x)=e x f(x),所以由e x>0,可得f(x)≤1.又因为f(x0)=1, f '(x0)=0,故x0为f(x)的极大值点,由(1)知x0=a.由于|a|≤1,故a+1<4-a,由(1)知f(x)在(a-1,a)内单调递增,在(a,a+1)内单调递减,故当x0=a时, f(x)≤f(a)=1在[a-1,a+1]上恒成立,从而g(x)≤e x在[x0-1,x0+1]上恒成立.由f(a)=a3-6a2-3a(a-4)a+b=1,得b=2a3-6a2+1,-1≤a≤1.令t(x)=2x3-6x2+1,x∈[-1,1],所以t'(x)=6x2-12x,令t'(x)=0,解得x=2(舍去),或x=0.因为t(-1)=-7,t(1)=-3,t(0)=1,因此,t(x)的值域为[-7,1].所以,b的取值范围是[-7,1].5.(2015课标Ⅰ,21,12分)设函数f(x)=e2x-aln x.(1)讨论f(x)的导函数f '(x)零点的个数;(2)证明:当a>0时, f(x)≥2a+aln.解析(1)f(x)的定义域为(0,+∞), f '(x)=2e2x-(x>0).当a≤0时, f '(x)>0, f '(x)没有零点;当a>0时,因为y=e2x单调递增,y=-单调递增,所以f '(x)在(0,+∞)上单调递增.又f '(a)>0,当b满足0<b<且b<时, f '(b)<0,故当a>0时, f '(x)存在唯一零点. (6分)(2)证明:由(1),可设f '(x)在(0,+∞)上的唯一零点为x0,当x∈(0,x0)时, f '(x)<0;当x∈(x0,+∞)时, f '(x)>0. 故f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,所以当x=x0时, f(x)取得最小值,最小值为f(x0).由于2-=0,所以f(x0)=+2ax0+aln≥2a+aln.故当a>0时, f(x)≥2a+aln.(12分)教师用书专用(6—19)6.(2014湖南,9,5分)若0<x1<x2<1,则()A.->ln x2-ln x1B.-<ln x2-ln x1C.x2>x1D.x2<x1答案C7.(2013课标全国Ⅱ,11,5分)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R, f(x0)=0B.函数y=f(x)的图象是中心对称图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 组 专项基础测试三年模拟精选一、选择题1.(2015·唐山一中高三检测)如果f ′(x )是二次函数,且f ′(x )的图象开口向上,顶点坐标为(1,3),那么曲线y =f (x )上任一点的切线的倾斜角α的取值范围是( )A.⎝⎛⎦⎥⎤0,π3 B.⎣⎢⎡⎭⎪⎫π3,π2 C.⎝ ⎛⎦⎥⎤π2,2π3 D.⎣⎢⎡⎭⎪⎫π3,π 解析 由题意可得f ′(x )=a (x -1)2+3,∵a >0,∴f ′(x )≥ 3.故α∈⎣⎢⎡⎭⎪⎫π3,π2. 答案 B2.(2015·浙江金华十校联考)设函数y =x sin x +cos x ,且在f (x )图象上点(x 0,y 0)处的切线的斜率为k ,若k =g (x 0),则函数k =g (x 0)的图象大致为( )解析 y ′=x cos x ,k =g (x 0)=x 0cos x 0,由于它是奇函数,排除B ,C ;当0<x <π4时,k >0,排除D ,答案为A.答案 A3.(2015·赣州市十二县联考)函数f (x )=3ln x +x 2-3x +3在点(3,f (3))处的切线斜率是( )A .-2 3 B. 3 C .2 3 D .4 3解析 ∵f ′(x )=3x +2x -3,∴f ′(3)=33+23-3=2 3. 答案 C4.(2014·烟台期末考试)若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2解析 依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b ,于是有f ′(0)=g ′(0),即-a sin 0=2×0+b ,b =0,m =f (0)=g (0),即m =a =1,因此a +b =1,选C.答案 C5.(2014·湖南衡阳联考)已知函数f (x )=x 3+ax 2-2ax +3a 2,且在f (x )图象上点(1,f (1))处的切线在y 轴上的截距小于0,则a 的取值范围是( )A .(-1,1)B.⎝ ⎛⎭⎪⎫23,1C.⎝ ⎛⎭⎪⎫-23,1D.⎝ ⎛⎭⎪⎫-1,23 解析 ∵f ′(x )=3x 2+2ax -2a ,∴f ′(1)=3,又f (1)=1-a +3a 2,∴在点(1,f (1))处的切线为y =3(x -1)+1-a +3a 2,则可得3a 2-a -2<0,解得-23<a <1.答案 C二、填空题6.(2015·豫南九校二联)若函数f (x )=cos x +2xf ′⎝ ⎛⎭⎪⎫π6,则f (x )在点(0,f (0))处的切线方程是________.解析 f ′(x )=-sin x +2f ′⎝ ⎛⎭⎪⎫π6,令x =π6,得f ′⎝ ⎛⎭⎪⎫π6=12,得f (x )=cos x +x , f ′(0)=1,f (0)=1,故在(0,1)处的切线方程为y -1=1(x -0),即x -y +1=0. 答案 x -y +1=07.(2015·江西省监测)对于三次函数f (x )=ax 3+bx 2+cx +d ,有同学发现:若f (x )的导函数图象的对称轴是直线:x =x 0,则函数f (x )图象的对称中心是点(x 0,f (x 0)).根据这一发现,对于函数g (x )=x 3-3x 2+3x +1+a sin(x -1)(a ∈R 且a 为常数),则g (-2 012)+g (-2 010)+g (-2 008)+g (-2 006)+…+g (2 012)+g (2 014)的值为________.解析 令f (x )=x 3-3x 2+3x +1,h (x )=a sin(x -1)由f ′(x )=3x 2-6x +3,f ′(x )图象的对称轴是x =1,所以函数f (x )的对称中心为(1,2),于是点(-2 012,f -2 012)与点(2 014,f (2 014))关于点(1,2)对称,即f (-2 012)+f (2 014)2=2⇒f (-2 012)+f (2 014)=4.同理可得f (-2 010)+f (2 012)=f (-2 008)+f (2 010)=…=f (0)+f (2)=4;而h (x )=a sin(x -1)=0图象关于点(1,0)对称,所以h (-2 012)+h (2 014)=0,h (-2 010)+h (2 012)=h (-2 008)+h (2 010)=…=h (0)+h (2)=0,故g (-2 012)+g (-2 010)+…+g (2 014)=2 014×2=4 028.答案 4 028一年创新演练8.已知函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x -1,x ≤0,f (x -1),x >0,y =g (x )为曲线h (x )=ln x +a +1在x =1处的切线方程,若方程f (x )=g (x )有两个不同实根,则实数a 的取值范围是( )A .(-∞,1)B .(-∞,1]C .(0,1)D .[0,+∞) 解析 h ′(x )=1x ,h ′(1)=1,故切线方程为y -(a +1)=(x -1),即g (x )=x +a ,方程f (x )=g (x )有两个不同实根,即:y =f (x )与y =g (x )图象有两个交点,由题意f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1,x ≤0,⎝ ⎛⎭⎪⎫12x -n -1,x ∈(n -1,n ], n ∈N *其图象如下图,g (x )=x +a 表示与y =x 平行的直线束,由图可得a ∈(-∞,1).答案 AB 组 专项提升测试三年模拟精选一、选择题9.(2015·昆明三中模拟)设函数f (x )=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎢⎡⎦⎥⎤0,5π12,则导数f ′(1)的取值范围是( ) A .[-2,2]B .[2,3]C .[3,2]D .[2,2]解析 f ′(x )=x 2sin θ+3x cos θ,∴f ′(1)=sin θ+3cos θ=2⎝ ⎛⎭⎪⎫12sin θ+32cos θ=2sin ⎝ ⎛⎭⎪⎫θ+π3, ∵0≤θ≤5π12,∴π3≤θ+π3≤3π4,∴2≤2sin ⎝⎛⎭⎪⎫θ+π3≤2, 即2≤f ′(1)≤2,即导数f ′(1)的取值范围是[2,2],选D.答案 D二、填空题10.(2015·黄冈中学高三期中)定义运算=a 1b 2-a 2b 1,则函数f (x )=⎪⎪⎪⎪⎪⎪⎪⎪x 2+3x 1x 13x 的图象在点⎝ ⎛⎭⎪⎫1,13处的切线方程是________. 解析 由定义可知f (x )=⎪⎪⎪⎪⎪⎪⎪⎪x 2+3x1x 13x =13x 3+x 2-x ,故f ′(x )=x 2+2x -1,则f ′(1)=2,所以函数f (x )在点⎝ ⎛⎭⎪⎫1,13处的切线方程为y -13=2(x -1),化为一般式为6x -3y -5=0.答案 6x -3y -5=011.(2013·山西大学附中4月模拟)已知函数f (x )=(x +1)2+sin x x 2+1,其导函数记为f ′(x ),则f (2 012)+f ′(2 012)+f (-2 012)-f ′(-2 012)=________.解析 由已知得f (x )=1+2x +sin x x 2+1, 则f ′(x )=(2+cos x )(x 2+1)-(2x +sin x )·2x (x 2+1)2, 令g (x )=f (x )-1=1sin 22++x x x , 显然g (x )为奇函数,f ′(x )为偶函数,所以f ′(2 012)-f ′(-2 012)=0,f (2 012)+f (-2 012)=g (2 012)+1+g (-2 012)+1=2,所以f (2 012)+f ′(2 012)+f (-2 012)-f ′(-2 012)=2.答案 212.(2014·山东滨州模拟)已知函数f (x )=x 3-3x ,过点P (-2,-2)作曲线y =f (x )的切线,则切线的方程为________.解析 (1)当P (-2,-2)为切点时,切线方程为y =9x +16;(2)当P (-2,-2)不是切点时,设切点为(a ,b ),则b =a 3-3a ,由于f ′(x )=3x 2-3,所以切线的斜率k =3a 2-3,故切线方程为y -b =(3a 2-3)(x -a ),又切线过点(-2,-2),所以-2-b =(3a 2-3)(-2-a ),解得⎩⎨⎧a =1,b =-2或⎩⎨⎧a =-2,b =-2(舍去), 所以切线方程为y =-2.综上,所求的切线方程为y =9x +16或y =-2.答案 y =9x +16或y =-2一年创新演练13.设f (x )在区间(-∞,+∞)可导,其导数为f ′(x ),给出下列四组条件,正确的为( )①p :f (x )是奇函数,q :f ′(x )是偶函数;②p :f (x )是以T 为周期的函数,q :f ′(x )是以T 为周期的函数;③p :f (x )在区间(-∞,+∞)上为增函数,q :f ′(x )>0在(-∞,+∞)恒成立;④p:f(x)在x0处取得极值,q:f′(x0)=0.A.①②③B.①②④C.①③④D.②③④解析①②④正确,③错误,例如f(x)=x3在(-∞,+∞)上为增函数,但f′(x)=3x2≥0在(-∞,+∞)上恒成立,故选B.答案 B14.已知偶函数f(x)在R上的任一取值都有导数,且f′(1)=1,f(x+2)=f(x-2),则曲线y=f(x)在x=-5处的切线斜率为()A.2 B.-2C.1 D.-1解析f(x+2)=f(x-2)⇒f(x+4)=f(x),可知f(x)的周期为4,又函数f(x)为偶函数,所以f(x+2)=f(x-2)=f(2-x),即函数的对称轴为x=2,所以f′(-5)=f′(3)=-f′(1),所以函数在x=-5处的切线的斜率k=f′(-5)=-f′(1)=-1,选D.答案 D。