数列常考点及易错点 -学生版
学生利用等比数列求和公式解题时的易错点和解答对策 李军祥

学生利用等比数列求和公式解题时的易错点和解答对策 李军祥
学生在学习等比数列求和公式应用时,普变存在着漏掉公比为1的特殊情况。
比如:在求和23...n n S a a a a =++++时,他们只知道由公式1(1)1n n a S q q =--得(1)1n n a S a a
=--,而漏掉公比为a=1的特殊情况,从而导致解答不严密,出现了严重的解题错误,在考试时失掉不该失的分数。
分析学生解错原因,在于平时学习思考问题不严密,只知乱套公式,恰恰漏掉公式成立的特殊条件,不能准确用分类讨论法解题。
殊不知,用分类讨论法分析问题的思想方法在我们的学习中比比皆是:数学必修1在学习指数函数和对数函数的图像和性质时,就用分类讨论法将常数a 分为a >1和0<a <1两种情况进行讨论,从而才能掌握它们的图像特征和单调性等性质。
同样地,在学习函数和不等式时,有这样一个问题:已知22,(1)10x R a x ∈+--≤不等式(a -1)x 都成立,求a 的取
值范围?此题要用判别式法解答,就必须有2a-1≠0,但问题并无此条件,解答时就要分2a-1≠0和2a-1=0两种情况讨论解答,否则将出现错误。
因此,在今后的教学中,应培养学生良好的思维品质和学习习惯,认真分析问题,当涉及的参量范围不明确时,合理分类,利用分类讨论法正确解题。
2015/1/13。
数列专题复习(等差与等比、数列求和、奇偶项问题、不动点法求通项)(刘蒋巍讲义)

数列专题复习(等差与等比、数列求和、奇偶项问题、不动点法求通项)专题1 等差数列与等比数列[考情分析] 1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现. 2.数列求和及数列的综合问题是高考考查的重点. 考点一 等差数列、等比数列的基本运算 核心提炼等差数列、等比数列的基本公式(n ∈N *) (1)等差数列的通项公式:a n =a 1+(n -1)d ; (2)等比数列的通项公式:a n =a 1·q n -1.(3)等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;(4)等比数列的求和公式:S n =⎩⎪⎨⎪⎧a 1(1-q n)1-q =a 1-a n q 1-q ,q ≠1,na 1,q =1.例1 (1)《周髀算经》中有一个问题:从冬至日起,小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气的日影长依次成等差数列,若冬至、立春、春分的日影长的和为37.5尺,芒种的日影长为4.5尺,则冬至的日影长为( ) A .15.5尺 B .12.5尺 C .10.5尺 D .9.5尺(2)已知点(n ,a n )在函数f (x )=2x-1的图象上(n ∈N *).数列{a n }的前n 项和为S n ,设b n =264n ,数列{b n }的前n 项和为T n .则T n 的最小值为________.规律方法 等差数列、等比数列问题的求解策略 (1)抓住基本量,首项a 1、公差d 或公比q .(2)熟悉一些结构特征,如前n 项和为S n =an 2+bn (a ,b 是常数)的形式的数列为等差数列,通项公式为a n =p ·q n -1(p ,q ≠0)的形式的数列为等比数列.(3)由于等比数列的通项公式、前n 项和公式中变量n 在指数位置,所以常用两式相除(即比值的方式)进行相关计算.跟踪演练1 (1)(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n ,若a k +1+a k +2+…+a k +10=215-25,则k 等于( ) A .2 B .3 C .4 D .5(2)(多选)(2020·威海模拟)等差数列{a n }的前n 项和记为S n ,若a 1>0,S 10=S 20,则( ) A .d <0 B .a 16<0 C .S n ≤S 15D .当且仅当n ≥32时,S n <0考点二 等差数列、等比数列的性质 核心提炼1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列有a m a n =a p a q =a 2k . 2.前n 项和的性质:(1)对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外). (2)对于等差数列,有S 2n -1=(2n -1)a n .例2 (1)已知正项等差数列{a n }的前n 项和为S n (n ∈N *),若a 5+a 7-a 26=0,则S 11的值为( )A .11B .12C .20D .22(2)已知函数f (x )=21+x 2(x ∈R ),若等比数列{a n }满足a 1a 2 020=1,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2 020)等于( )A .2 020B .1 010C .2 D.12规律方法 等差、等比数列的性质问题的求解策略(1)抓关系,抓住项与项之间的关系及项的序号之间的关系,从这些特点入手,选择恰当的性质进行求解.(2)用性质,数列是一种特殊的函数,具有函数的一些性质,如单调性、周期性等,可利用函数的性质解题.跟踪演练2 (1)(2020·全国Ⅰ)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8等于( )A .12B .24C .30D .32(2)已知正项等比数列{a n }的前n 项和为S n ,且S 10=10,S 30=130,则S 40等于( ) A .-510 B .400 C .400或-510 D .30或40考点三 等差数列、等比数列的探索与证明 核心提炼等差数列 等比数列 定义法 a n +1-a n =d a n +1a n=q (q ≠0) 通项法 a n =a 1+(n -1)d a n =a 1·q n -1 中项法2a n =a n -1+a n +1(n ≥2) a 2n =a n -1a n +1 (n ≥2,a n ≠0) 前n 项和法S n =an 2+bn (a ,b 为常数)S n =kq n -k (k ≠0,q ≠0,1)证明数列为等差(比)数列一般使用定义法.例3 (2019·全国Ⅱ)已知数列{a n }和{b n }满足a 1=1,b 1=0,4a n +1=3a n -b n +4,4b n +1=3b n -a n -4.(1)证明:{a n +b n }是等比数列,{a n -b n }是等差数列; (2)求{a n }和{b n }的通项公式.易错提醒 a 2n =a n -1a n +1(n ≥2,n ∈N *)是{a n }为等比数列的必要不充分条件,也就是判断一个数列是等比数列时,要注意各项不为0.跟踪演练3 已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n.(1)求b 1,b 2,b 3;(2)判断数列{b n }是不是等比数列,并说明理由; (3)求{a n }的通项公式.专题2 数列求和及其综合应用[考情分析] 数列求和常与数列的综合应用一起考查,常以解答题的形式出现,有时与函数、不等式综合在一起考查,难度中等偏上. 考点一 数列求和 核心提炼1.裂项相消法就是把数列的每一项分解,使得相加后项与项之间能够相互抵消,但在抵消的过程中,有的是依次项抵消,有的是间隔项抵消.常见的裂项方式有:1n (n +1)=1n -1n +1;1n (n +k )=1k ⎝⎛⎭⎫1n -1n +k ;1n 2-1=12⎝⎛⎭⎫1n -1-1n +1;14n 2-1=12⎝⎛⎭⎫12n -1-12n +1.2.如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用错位相减法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写出“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.考向1 分组转化法求和例1 已知在等比数列{a n }中,a 1=2,且a 1,a 2,a 3-2成等差数列. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1a n +2log 2a n -1,求数列{b n }的前n 项和S n .考向2 裂项相消法求和例2 (2020·莆田市第一联盟体学年联考)设数列{a n }的前n 项和为S n ,且S n =n 2-2n ,{b n }为正项等比数列,且b 1=a 1+3,b 3=6a 4+2. (1)求数列{a n }和{b n }的通项公式;(2)设c n =1a n +1·log 2b n +1,求{c n }的前n 项和T n .考向3 错位相减法求和例3 已知数列{a n }的前n 项和为S n ,a 1=2,a n >0,且a 2n +1-2a n +1a n -3a 2n =0.(1)求数列{a n }的通项公式;(2)设b n =log 3(1+S n ),求数列{a n b n }的前n 项和T n .规律方法 (1)分组转化法求和的关键是将数列通项转化为若干个可求和的数列通项的和差.(2)裂项相消法的基本思路是将通项拆分,可以产生相互抵消的项.(3)错位相减法求和,主要用于求{a n b n }的前n 项和,其中{a n },{b n }分别为等差数列和等比数列.跟踪演练1 (1)已知函数f (n )=⎩⎪⎨⎪⎧n 2,n 为奇数,-n 2,n 为偶数,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 8等于( )A .-16B .-8C .8D .16(2)(2020·武汉江夏一中、汉阳一中联考)若首项为23的数列{a n }满足2(2n +1)a n a n +1+a n +1=a n ,则a 1+a 2+a 3+…+a 2 020等于( ) A.8 0804 041 B.4 0784 040 C.4 0404 041 D.4 0394 040(3)已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1n b n =b n +1-1(n ∈N *).①求数列{a n }与{b n }的通项公式; ②记数列{a n b n }的前n 项和为T n ,求T n .考点二 数列的综合问题 核心提炼数列与函数、不等式的综合问题是高考命题的一个方向,此类问题突破的关键在于通过函数关系寻找数列的递推关系,通过放缩进行等式的证明.例4 (1)(2020·日照模拟)如图,在直角坐标系xOy 中,一个质点从A (a 1,a 2)出发沿图中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,按此规律一直运动下去,则a 2 017+a 2 018+a 2 019+a 2 020等于( )A .2 017B .2 018C .2 019D .2 020(2)(2020·洛阳第一高级中学月考)已知数列{a n }满足a 1+12a 2+…+1n a n =n 2+n (n ∈N *),设数列{b n }满足b n =2n +1a n a n +1,数列{b n }的前n 项和为T n ,若T n <nn +1λ(n ∈N *)恒成立,则λ的取值范围是( ) A.⎝⎛⎭⎫14,+∞ B.⎣⎡⎭⎫14,+∞ C.⎣⎡⎭⎫38,+∞ D.⎝⎛⎭⎫38,+∞易错提醒 (1)公式a n =S n -S n -1适用于所有数列,但易忽略n ≥2这个前提.(2)数列和不等式的综合问题,要注意条件n ∈N *,求最值要注意等号成立的条件,放缩不等式要适度.跟踪演练2 (1)(2020·中国人民大学附属中学模拟)在数列{a n }中,已知a n =n 2+λn ,n ∈N *,则“a 1<a 2”是“{a n }是单调递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件专题3 数列中的奇、偶项问题数列中的奇、偶项问题是对一个数列分成两个新数列进行单独研究,利用新数列的特征(等差、等比数列或其他特征)求解原数列.例 已知数列{a n }满足a 1=1,a 2=12,[3+(-1)n ]a n +2-2a n +2[(-1)n -1]=0,n ∈N *.(1)令b n =a 2n -1,判断{b n }是否为等差数列,并求数列{b n }的通项公式; (2)记数列{a n }的前2n 项和为T 2n ,求T 2n .(1)数列中的奇、偶项问题的常见题型①数列中连续两项和或积的问题(a n +a n +1=f (n )或a n ·a n +1=f (n )); ②含有(-1)n 的类型;③含有{a 2n },{a 2n -1}的类型; ④已知条件明确的奇偶项问题.(2)对于通项公式分奇、偶不同的数列{a n }求S n 时,我们可以分别求出奇数项的和与偶数项的和,也可以把a 2k -1+a 2k 看作一项,求出S 2k ,再求S 2k -1=S 2k -a 2k .1.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-4002.已知数列{a n }的前n 项和S n =(-1)n ·n ,若对任意的正整数n ,使得(a n +1-p )·(a n -p )<0恒成立,则实数p 的取值范围是________.3.在数列{a n }中,已知a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记S n 为{a n }的前n 项和,b n =a 2n +a 2n -1,n ∈N *. (1)判断数列{b n }是否为等比数列,并写出其通项公式; (2)求数列{a n }的通项公式; (3)求S n .专题4 用“不动点法”求数列的通项公式对于一个函数f (x ),我们把满足f (m )=m 的值x =m 称为函数f (x )的“不动点”.利用“不动点法”可以构造新数列,求数列的通项公式.例 (1)在数列{a n }中,a 1=1, a n +1=12a n +1,求数列{a n }的通项公式.解 设f (x )=12x +1,令f (x )=x ,即12x +1=x ,得x =2,∴x =2是函数f (x )=12x +1的不动点,∴a n +1-2=12(a n -2),∴数列{a n -2}是以-1为首项,以12为公比的等比数列,∴a n -2=-1×⎝⎛⎭⎫12n -1, ∴a n =2-⎝⎛⎭⎫12n -1,n ∈N *.(2)已知数列{a n }满足a 1=3,a n +1=7a n -2a n +4,求该数列的通项公式.解 由方程x =7x -2x +4,得数列{a n }的不动点为1和2,a n +1-1a n +1-2=7a n -2a n +4-17a n -2a n +4-2=7a n -2-(a n +4)7a n -2-2(a n +4)=65·a n -1a n -2,所以⎩⎨⎧⎭⎬⎫a n -1a n -2是首项为a 1-1a 1-2=2,公比为65的等比数列,所以a n -1a n -2=2·⎝⎛⎭⎫65n -1, 解得a n =12·⎝⎛⎭⎫65n -1-1+2=4·6n -1-5n -12·6n -1-5n -1,n ∈N *.(1)若f (x )=ax +b (a ≠0,1),p 是f (x )的不动点.数列{a n }满足a n +1=f (a n ),则a n +1-p =a (a n -p ),即{a n -p }是公比为a 的等比数列.(2)设f (x )=ax +bcx +d (c ≠0,ad -bc ≠0),数列{a n }满足a n +1=f (a n ),a 1≠f (a 1).若f (x )有两个相异的不动点p ,q ,则a n +1-p a n +1-q =k ·a n -p a n -q ⎝ ⎛⎭⎪⎫此处k =a -pc a -qc .1.已知数列{a n }满足a n +1=-13a n -2,a 1=4,求数列{a n }的通项公式.2.已知数列{a n }满足a 1=2,a n =a n -1+22a n -1+1(n ≥2),求数列{a n }的通项公式.3.设数列{a n }满足8a n +1a n -16a n +1+2a n +5=0(n ≥1,n ∈N *),且a 1=1,记b n =1a n -12(n ≥1).求数列{b n }的通项公式.。
高中数学数列知识点精华总结

数 列 专 题考点一:求数列的通项公式1. 由a n 与S n 的关系求通项公式由S n 与a n 的递推关系求a n 的常用思路有:①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式;数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2.当n =1时,a 1若适合S n-S n -1,则n =1的情况可并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n .}2.由递推关系式求数列的通项公式由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解.累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; 累乘法:递推关系形如a n +1a n=f(n),常用累乘法求通项;构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列;2)递推关系形如“a n +1=pa n +q n(q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n转化为类型(4),或同除以p n +1转为用迭加法求解.3)(倒数变形3.数列函数性质的应用数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.;(3)数列{a n }的最大(小)项的求法可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.[例3] 已知数列{a n }.(1)若a n =n 2-5n +4,①数列中有多少项是负数②n 为何值时,a n 有最小值并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围.考点二:等差数列和等比数列等差数列 等比数列 【定义 a n -a n -1=常数(n≥2) a na n -1=常数(n≥2) 通项公式a n =a 1+(n -1)da n =a 1qn -1(q≠0)…也是等差数列,(1)若m 、n 、p 、q∈N *,且m +n =p +q ,则a m ·a n =a p ·a q特别地,若m +n =2p ,则a m ·a n =a 2p . (2)a n =a m qn -m(3) 若等比数列前n 项和为S n 则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m -S 2m )(m ∈N *,公比q≠-1). ,S n =na 1+a n 2=na 1+n n -12d(1)q≠1,S n =a 11-qn1-q =a 1-a n q 1-q(2)q =1,S n =na 11n n 个.解这类问题时,一般是转化为首项a 1和公差d(公比q)这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.用函数的观点理解等差数列、等比数列(1)对于等差数列a n =a 1+(n -1)d =dn +(a 1-d),当d≠0时,a n 是关于n 的一次函数,对应的点(n ,a n )是位于直线上的若干个离散的点;当d >0时,函数是单调增函数,对应的数列是单调递增数列,S n 有最小值;:当d =0时,函数是常数函数,对应的数列是常数列,S n =na 1;当d <0时,函数是减函数,对应的数列是单调递减数列,S n 有最大值.若等差数列的前n 项和为S n ,则S n =pn 2+qn(p ,q∈R ).当p =0时,{a n }为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列a n =a 1qn -1,可用指数函数的性质来理解.当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }是单调递增数列;当a 1>0,0<q <1或a 1<0,q >1时,等比数列{a n }是单调递减数列;当q =1时,是一个常数列;当q <0时,无法判断数列的单调性,它是一个摆动数列. 4.常用结论—(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n}等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1qa 2-a 1=q .(4)等比数列(q≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公比为q k.等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d.5)>5.易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2时,一定要注意分n =1,n≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的必要条件是b 2=ac. 6.等差数列的判定方法(1)定义法:对于n≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn.%注意:在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断. 7.等比数列的判定方法(1)定义法:若a n +1a n =q(q 为非零常数,n ∈N *)或a n a n -1=q(q 为非零常数且n≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k·q n -k(k 为常数且k≠0,q≠0,1),则{a n }是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.考点三:数列求和中应用转化与化归思想的常见类型:]1.公式法——直接利用等差数列、等比数列的前n 项和公式求和(1)等差数列的前n 项和公式:S n =na 1+a n 2=na 1+n n -12d ; (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 11-q n1-q ,q≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. 3.错位相减法这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.求a 1b 1+a 2b 2+…+a n b n 的和就适用此法.做法是先将和的形式写出,再给式子两边同乘或同除以公比q ,然后将两式相减,相减后以“q n”为同类项进行合并得到一个可求和的数列(注意合并后有两项不能构成等比数列中的项,不要遗漏掉). 4.裂项相消法(注重积累!!!))利用通项变形,将通项分裂成两项或n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n +1的数列的前n 项和,其中{a n }若为等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1.利用裂项相消法求和时应注意哪些问题(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项.常见的拆项公式(1)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; (2) 12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(3) 1nn +1=1n -1n +1; (4) 1n +n +1=n +1-n ;(5)n +n +k =1k(n +k -n).5.分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf(n)类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 7.放缩法是证明数列型不等式的压轴题的最重要的方法,放缩法的注意问题以及解题策略(1)明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。
2024年高考数学数列易错知识点总结

2024年高考数学数列易错知识点总结高考数学中的数列作为重要考点之一,经常涉及到的知识点较多且易错。
在2024年高考数学考试中,以下是数列的易错知识点总结:一、数列的基本概念与性质1. 数列的概念:数列是由一系列按照一定规律排列的数字组成的序列。
需要区分数列的元素与项,元素是指数列中的具体数字,而项是指元素所在的位置。
2. 等差数列与等差中项:等差数列是指数列中相邻两项之间的差值相等的数列。
等差中项是指位于等差数列中的任意一项。
3. 等差数列的通项公式:对于等差数列${a_1, a_2,a_3, ..., a_n}$,其通项公式为$a_n = a_1 + (n-1)d$,其中$a_n$表示第n项,$a_1$表示首项,d表示公差。
4. 等比数列与等比中项:等比数列是指数列中相邻两项之间的比值相等的数列。
等比中项是指位于等比数列中的任意一项。
5. 等比数列的通项公式:对于等比数列${a_1, a_2,a_3, ..., a_n}$,其通项公式为$a_n = a_1r^{n-1}$,其中$a_n$表示第n项,$a_1$表示首项,r表示公比。
6. 等差数列与等比数列的前n项和公式:等差数列的前n项和公式为$S_n = \\frac{n}{2}(a_1 + a_n)$,等比数列的前n项和公式为$S_n = \\frac{a_1(1 - r^n)}{1 - r}$。
7. 数列的性质:数列的奇数项和与偶数项和的关系,数列的倒数项和与首项和的关系。
如等差数列中的奇数项和是首项和的一半,倒数项和是首项和的倒数。
二、数列的综合应用1. 数列的增长率与减少率:通过对序列中的元素进行操作,可以计算出数列的增长率与减少率。
如等差数列中,相邻元素的增长率是公差d;等比数列中,相邻元素的增长率是公比r。
2. 数列的问题转化:将数列问题转化为方程或等价式,从而找到解题的方法。
如通过设置未知数,将一个复杂的数列问题转化为简单的方程求解。
专题2-1 数列重难点、易错点突破

专题2-1 数列重难点、易错点突破(建议用时:120分钟) 1 求数列通项的四大法宝1.公式法题设中有a n 与S n 的关系式时,常用公式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2来求解.例1 已知数列{a n }的前n 项和S n =3n -2,求其通项公式a n . 2.累加法若数列{a n }满足a n -a n -1=f (n -1)(n ≥2),且f (1)+f (2)+…+f (n -1)可求,则可用累加法求通项. 例2 已知数列{a n }满足a 1=1,a n =3n -1+a n -1(n ≥2),求其通项公式a n . 3.叠乘法若数列{a n }满足a na n -1=f (n -1)(n ≥2),其中f (1)·f (2)·…·f (n -1)可求,则可用叠乘法求通项.例3 已知数列{a n }中,a 1=3,a n =3n -43n -1a n -1(a n ≠0,n ≥2),求其通项公式a n .4.构造法当题中出现a n +1=pa n +q (pq ≠0且p ≠1)的形式时,把a n +1=pa n +q 变形为a n +1+λ=p (a n +λ),即a n +1=pa n +λ(p -1),令λ(p -1)=q ,解得λ=qp -1,从而构造出等比数列{a n +λ}. 例4 数列{a n }满足a 1=1,a n +1=14a n +3(n ∈N *),求其通项公式a n .2提高运算速度七妙招数列问题的灵活性、技巧性较强,因此,在解数列问题时必须研究技巧与策略,以求做到:选择捷径、合理解题,本文归纳了七种常见策略.第一招活用概念数列的概念是求解数列问题的基础,灵活运用数列的概念,往往能出奇制胜.例1已知{a n}是公差为2的等差数列,若a1+a4+a7+…+a97=100,那么a2+a5+a8+…+a98等于() A.166 B.66 C.34 D.100第二招巧用性质数列的性质是数列的升华,巧妙运用数列的性质,往往可以使问题简单明了,解题更快捷方便.例2各项均为正数的等比数列{a n}中,若a7a8=9,则log3a1+log3a2+…+log3a14等于()A.12B.14C.10D.10+log32第三招灵用变式在求解数列问题过程中,可以利用等差或等比数列的变形公式来处理有关问题.例3已知等差数列{a n}中,a3=3,a10=388,则该数列的通项a n=________.第四招整体考虑通过研究问题的整体形式、整体结构,避免局部运算的困扰,达到简捷解决问题的目的.例4设S n表示等差数列{a n}的前n项和,且S9=18,S n=240,若a n-4=30,试求n的值.第五招数形结合数列是一类特殊的函数,所以可以借助函数的图象,通过数形结合解数列问题.例5在公差d<0的等差数列{a n}中,已知S8=S18,则此数列的前多少项的和最大?第六招分解重组在处理数列求和问题时,若数列的通项公式可分解为几个容易求和的部分,则对数列的前n项和进行重新分解,分别求和.例6 在数列{a n }中,已知a 1=56,a 2=1936,且{b n }是公差为-1的等差数列,b n =log 2⎪⎭⎫ ⎝⎛-+n n a a 311,{c n }是公比为13的等比数列,c n =a n +1-12a n ,求数列{a n }的通项公式a n 及前n 项和S n .第七招 合理化归化归意识是把待解决的问题转化为已有知识范围内问题的一种数学意识,包括将复杂式子化简、为达某一目的对数学表达式进行变形、从目标入手进行分析等. 例7 数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n (n =1,2,3,…),证明:数列⎭⎬⎫⎩⎨⎧n S n 是等比数列.3 盘点数列中的易错问题1.对数列的概念理解不准而致错例1 已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________. 2.忽视数列与函数的区别而致错例2 设函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7,数列{a n }满足a n =f (n ),n ∈N *,且数列{a n }是递增数列,则实数a的取值范围是________.3.公式使用条件考虑不周全而致错例3 已知数列{a n }的前n 项和为S n =3n +2n +1,求a n .4.审题不细心,忽略细节而致错例4首项为9的等差数列,从第7项起开始为负数,求公差d的取值范围.5.忽略概念中的隐含条件而致错例5一个凸n边形的各内角度数成等差数列,其最小角为120°,公差为5°,求凸n边形的边数.6.忽视等差数列前n项和公式的基本特征而致错例6已知两个等差数列{a n}和{b n}的前n项和分别为S n和T n,且对一切正整数n都有S nT n=5n+32n+7,试求a9b9的值.7.等差数列的特点考虑不周全而致错例7在等差数列{a n}中,已知a1=20,前n项和为S n,且S10=S15,求当n取何值时,S n有最大值,并求出它的最大值.8.忽略题目中的隐含条件而致错例8 已知数列-1,a 1,a 2,-4成等差数列,-1,b 1,b 2,b 3,-4成等比数列,求a 2-a 1b 2的值.9.求和时项数不清而致错例9 已知点(1,2)是函数f (x )=a x (a >0且a ≠1)的图象上一点,数列{a n }的前n 项和S n =f (n )-1.(1)求数列{a n }的通项公式;(2)若b n =log a a n +1,求数列{a n b n }的前n 项和T n .10.利用等比数列求和公式忽视q =1的情形而致错例10 已知等比数列{a n }中,a 3=4,S 3=12,求数列{a n }的通项公式.专题2-1 数列重难点、易错点突破参考答案1 求数列通项的四大法宝例1 解 当n =1时,a 1=S 1=31-2=1;当n ≥2时,a n =S n -S n -1=3n -2-(3n -1-2)=3n -3n -1=2×3n -1, 又a 1=1≠2×31-1,所以数列{an }的通项公式a n =⎩⎪⎨⎪⎧1,n =1,2×3n -1,n ≥2. 例2 解 由已知,得a n -a n -1=3n -1(n ≥2),所以a 2-a 1=3,a 3-a 2=32,a 4-a 3=33,…,a n -a n -1=3n -1, 以上各式左右两边分别相加,得a n -a 1=3+32+33+…+3n -1, 所以a n =3(1-3n -1)1-3+1=3n -12(n ≥2),又n =1时,a 1=1=31-12,所以a n =3n -12(n ∈N *).例3 解 由a 1=3,a n =3n -43n -1a n -1,得a n a n -1=3n -43n -1,所以a 2a 1=25,a 3a 2=58,a 4a 3=811,a 5a 4=1114,…,a n a n -1=3n -43n -1(n ≥2),以上各式左右两边分别相乘,得a n a 1=23n -1,所以a n =63n -1(n ≥2), 又a 1=3=63×1-1,所以a n =63n -1(n ∈N *).例4 解 设a n +1+t =14(a n +t ),则a n +1=14a n -34t ,与已知比较,得-34t =3,所以t =-4,故a n +1-4=14(a n -4),又a 1-4=1-4=-3≠0,故数列{a n -4}是首项为-3,公比为14的等比数列,因此a n -4=-3×141-⎪⎭⎫⎝⎛n ,即a n =4-3×141-⎪⎭⎫⎝⎛n (n ∈N *).2 提高运算速度七妙招例1 解析 若先求出a 1,再求和,运算较为繁琐.注意到两个和式中的项数相等,且均是等差数列.由于(a 2+a 5+a 8+…+a 98)-(a 1+a 4+a 7+…+a 97)=(a 2-a 1)+(a 5-a 4)+(a 8-a 7)+…+(a 98-a 97)=33d =66,所以a 2+a 5+a 8+…+a 98=100+66=166,故选A. 答案 A点评 活用等差、等比数列的概念,沟通有关元素间的内在联系,使运算得以简化.例2 解析 若设出a 1和q ,利用基本量法求解,显然运算量较大.若利用性质a 1a 14=a 2a 13=…=a 7a 8=9,则a 1a 2…a 14=(a 7a 8)7=97,所以log 3a 1+log 3a 2+…+log 3a 14=log 397=14,故选B. 答案 B点评 数列的性质是对数列内涵的揭示与显化,是求解数列问题的有力武器.例3 解析 利用等差数列的变形公式求得公差,再结合等差数列的变形公式求得通项.设等差数列{a n }的公差为d ,则d =a 10-a 310-3=388-37=55,a n =a 3+(n -3)d =3+(n -3)×55=55n -162.答案 55n -162点评 常规方法是联立方程组,求出首项与公差,再由数列的通项公式求解.而利用变形公式可以回避求解数列的首项,直接求解公差,再结合变形公式求得通项.例4 分析 常规解法是设出基本量a 1,d ,列方程组求解,但较繁琐;若能利用整体思维,则可少走弯路,使计算合理又迅速.解 由S 9=18,即9(a 1+a 9)2=18,则a 1+a 9=4=2a 5,故a 5=2,又S n =n (a 1+a n )2=n (a 5+a n -4)2=n (2+30)2=240,所以n =15.点评 本题解法不在a 1,d 上做文章,而是将S n 变形整理用a 5+a n -4表示,使解题过程大大简化. 例5 分析 用数形结合法解等差数列问题应抓住两个方面:①通项a n 联系一次函数,对于等差数列的有关问题通过构造点共线模型,可简化解题过程;②前n 项和S n 联系二次函数,利用二次函数的对称性及最值.解 设f (x )=xa 1+x (x -1)2d =d 2x 2+⎝⎛⎭⎫a 1-d2x , 则(n ,S n )在该二次函数的图象上,由于S 8=S 18,d <0, 所以y =f (x )的对称轴是x =8+182=13,且开口向下,故当n =13时,S n 取得最大值, 故数列{a n }的前13项的和最大.点评 从直观性角度研究数列问题,可使问题变得生动形象,易于求解.例6 分析 由已知条件,事先无法估计a n 解析式的结构,因此不能用待定系数法求a n .但是利用等差数列{b n }和等比数列{c n }可以得出关于a n +1和a n 的两个等式,消去a n +1,即可得a n .再根据a n 求解对应的前n 项和. 解 因为a 1=56,a 2=1936,所以b 1=log 2⎝⎛⎭⎫1936-13×56=-2, c 1=1936-12×56=132,又{b n }是公差为-1的等差数列, {c n }是公比为13的等比数列,所以⎩⎪⎨⎪⎧b n=-n -1,c n =⎝⎛⎭⎫13n +1,即⎩⎨⎧log 2⎝⎛⎭⎫a n +1-13a n =-n -1,an +1-12a n =⎝⎛⎭⎫13n +1,则⎩⎨⎧an +1-13a n =12n +1,an +1-12a n =13n +1,解得a n =32n -23n ,所以S n =3·⎝⎛⎭⎫12+122+…+12n -2·⎝⎛⎭⎫13+132+…+13n =2-32n +13n . 点评 通项虽不是等比数列,但可拆为两个等比数列的和的形式,再分别利用等比数列的求和公式求和. 例7 分析 要证明数列⎭⎬⎫⎩⎨⎧n S n 是等比数列,必须把问题化成与S n n 这个整体有关的问题,通过等比数列的定义加以证明.证明 由于a n +1=n +2n S n,a n +1=S n +1-S n ,则(n +2)S n =n (S n +1-S n ),整理得nS n +1=2(n +1)S n ,即S n +1n +1=2S nn, 又S n ≠0,所以数列⎭⎬⎫⎩⎨⎧n S n 是以1为首项,2为公比的等比数列. 点评 将数列中的复杂问题进行转化,关键是找准方向,再利用已知等差或等比数列的相关知识求解.3 盘点数列中的易错问题例1 [错解] 因为a n =n 2+λn 是关于n 的二次函数,且n ≥1,所以-λ2≤1,解得λ≥-2.[点拨] 数列是以正整数N *(或它的有限子集{1,2,…,n })为定义域的函数,因此它的图象只是一些孤立的点.[正解1] 设f (x )=x 2+λx ,则其图象的对称轴为x =-λ2,因为a n =n 2+λn ,所以点(n ,a n )在f (x )的图象上,由数列{a n }是递增数列可知,若-λ2≤1,得λ≥-2;如图所示,当2-⎝⎛⎭⎫-λ2>-λ2-1,即λ>-3时,数列{a n }也是单调递增的. 故λ的取值范围为(-3,+∞).[正解2] 因为数列{a n }是递增数列,所以a n +1-a n >0 (n ∈N *)恒成立.又a n =n 2+λn (n ∈N *),所以(n +1)2+λ(n +1)-(n 2+λn )>0恒成立,即2n +1+λ>0. 所以λ>-(2n +1) (n ∈N *)恒成立.而n ∈N *时,-(2n +1)的最大值为-3(n =1时),所以λ的取值范围是(-3,+∞).温馨点评 利用函数观点研究数列性质时,一定要注意数列定义域是{1,2,3,4,…,n ,…}或其子集这一特殊性,防止因扩大定义域而出错. 例2 [错解] 因为数列{a n }是递增数列,且点(n ,a n )在函数f (x )的图象上,所以分段函数f (x )是递增函数,故实数a 满足不等式组⎩⎪⎨⎪⎧3-a >0,a >1,7(3-a )-3<a ,解得94<a <3.[点拨] 上述解法把数列单调递增完全等同于所在的函数单调递增,忽视了二者的区别,事实上,数列是递增数列时,所在函数不一定单调递增. [正解] 由题意,得点(n ,a n )分布在分段函数f (x )=⎩⎪⎨⎪⎧(3-a )x -3,x ≤7,a x -6,x >7的图象上.因此当3-a >0时,a 1<a 2<a 3<…<a 7; 当a >1时,a 8<a 9<a 10<…; 为使数列{a n }递增还需a 7<a 8. 故实数a 满足条件⎩⎪⎨⎪⎧3-a >0,a >1,f (7)<f (8),解得2<a <3,故实数a 的取值范围是(2,3).例3 [错解] a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2.[点拨] 公式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2是分段的,因为n =1时,S n -1无意义.在上述解答中,应加上限制条件n ≥2,然后验证n =1时的值是否适合n ≥2时的表达式. [正解] a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2.由于a 1不适合此式,故a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.例4 [错解] a 7=a 1+6d =9+6d <0,∴d <-32.[点拨] 忽略了“开始”一词的含义,题目强调了第7项是该等差数列中的第一个负项,应有a 6≥0. [正解] 设a n =9+(n -1)d ,由⎩⎪⎨⎪⎧a 6=9+5d ≥0,a 7=9+6d <0,得-95≤d <-32.温馨点评 审题时要细心,包括问题的细节,有时细节决定解题的成败. 例5 [错解] 一方面凸n 边形的内角和为S n ,S n =120°n +n (n -1)2×5°. 另一方面,凸n 边形内角和为(n -2)×180°.所以120n +n (n -1)2×5=(n -2)×180.化简整理得n 2-25n +144=0,所以n =9或n =16. 即凸n 边形的边数为9或16.[点拨] 凸n 边形的每个内角都小于180°.当n =16时,最大内角为120°+15×5°=195°>180°应该舍掉. [正解] 凸n 边形内角和为(n -2)×180°,所以120n +n (n -1)2×5=(n -2)×180, 解得n =9或n =16.当n =9时,最大内角为120°+8×5°=160°<180°; 当n =16时,最大内角为120°+15×5°=195°>180°舍去. 所以凸n 边形的边数为9.例6[错解] 设S n =(5n +3)k ,T n =(2n +7)k ,k ≠0,则a 9=S 9-S 8=(5×9+3)k -(5×8+3)k =5k ,b 9=T 9-T 8=(2×9+7)k -(2×8+7)k =2k , 所以a 9b 9=52.[点拨] 此解答错在根据条件S n T n =5n +32n +7,设S n =(5n +3)k ,T n =(2n +7)k ,这是把等差数列前n 项和误认为是关于n 的一次函数,没有准确把握前n 项和公式的特点. [正解] 因为{a n }和{b n }是公差不为0的等差数列, 故设S n =n (5n +3)k ,T n =n (2n +7)k ,k ≠0,则 a 9=S 9-S 8=9×(5×9+3)k -8×(5×8+3)k =88k , b 9=T 9-T 8=9×(2×9+7)k -8×(2×8+7)k =41k , 所以a 9b 9=8841.温馨点评 等差数列的前n 项和S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,当d ≠0时,点(n ,S n )在二次函数f (x )=d2x 2+⎝⎛⎭⎫a 1-d 2x 的图象上.当d =0时,S n =na 1,但是本题不属于这种情况⎝ ⎛⎭⎪⎫否则S n T n =na 1nb 1=a 1b 1与S n T n =5n +32n +7矛盾. 例7 [错解] 设公差为d ,∵S 10=S 15,∴10×20+10×92d =15×20+15×142d ,得120d =-200,即d =-53,∴a n =20-(n -1)·53,当a n >0时,20-(n -1)·53>0,∴n <13.∴n =12时,S n 最大,S 12=12×20+12×112×⎝⎛⎭⎫-53=130. ∴当n =12时,S n 有最大值S 12=130.[点拨] 解中仅解不等式a n >0是不正确的,事实上应解a n ≥0,a n +1≤0.[正解] 设等差数列{a n }的公差为d .由a 1=20,S 10=S 15,得10×20+10×92d =15×20+15×142d ,解得公差d =-53. ∵S 10=S 15,∴S 15-S 10=a 11+a 12+a 13+a 14+a 15=0,∵a 11+a 15=a 12+a 14=2a 13,∴a 13=0.∵公差d <0,a 1>0,∴a 1,a 2,…,a 11,a 12均为正数,而a 14及以后各项均为负数.∴当n =12或13时,S n 有最大值为S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130.例8 [错解] ∵-1,a 1,a 2,-4成等差数列,设公差为d ,则a 2-a 1=d =13[(-4)-(-1)]=-1. ∵-1,b 1,b 2,b 3,-4成等比数列,∴b 22=(-1)×(-4)=4,∴b 2=±2.当b 2=2时,a 2-a 1b 2=-12=-12, 当b 2=-2时,a 2-a 1b 2=-1-2=12. ∴a 2-a 1b 2=±12. [点拨] 注意b 2的符号已经确定,且b 2<0,忽视了这一隐含条件,就容易产生上面的错误.[正解] ∵-1,a 1,a 2,-4成等差数列,设公差为d ,则a 2-a 1=d =13[(-4)-(-1)]=-1, ∵-1,b 1,b 2,b 3,-4成等比数列,∴b 22=(-1)×(-4)=4,∴b 2=±2.若设公比为q ,则b 2=(-1)q 2, ∴b 2<0.∴b 2=-2,∴a 2-a 1b 2=-1-2=12.例9 [错解] 1+2+22+…+2n -1=21121---n =2n -1-1. [点拨] 错因在于没有搞清项数,首项为1=20,末项为2n -1,项数应为n .[正解] (1)把点(1,2)代入函数f (x )=a x 得a =2,所以数列{a n }的前n 项和为S n =f (n )-1=2n -1.当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=2n -2n -1=2n -1,对n =1时也适合,∴a n =2n -1.(2)由a =2,b n =log a a n +1得b n =n ,所以a n b n =n ·2n -1.T n =1·20+2·21+3·22+…+n ·2n -1, ∴2T n =1·21+2·22+3·23+…+(n -1)·2n -1+n ·2n . ∴由∴-∴得:-T n =20+21+22+…+2n -1-n ·2n ,所以T n =(n -1)2n +1.例10 [错解] 设等比数列的公比为q ,则⎩⎪⎨⎪⎧ a 3=a 1q 2=4,S 3=a 1(1-q 3)1-q =12,解得q =-12.所以a n =a 3q n -3=4·⎝⎛⎭⎫-12n -3=⎝⎛⎭⎫-12n -5. [点拨] 上述解法中忽视了等比数列前n 项和公式中q =1这一特殊情况.[正解] 当q =1时,a 3=4,a 1=a 2=a 3=4,S 3=a 1+a 2+a 3=12,所以q =1符合题意,a n =4.当q ≠1时,⎩⎪⎨⎪⎧a 3=a 1q 2=4,S 3=a 1(1-q 3)1-q =12,解得q =-12,a n =a 3q n -3=⎝⎛⎭⎫-12n -5. 故数列通项公式为a n =4或a n =⎝⎛⎭⎫-12n -5.。
高考数学数列易错知识点总结

高考数学数列易错知识点总结高考数学中,数列是一个重要的考点,也是学生易错的地方之一。
在解题过程中,经常会遇到一些易错的知识点。
下面总结了一些高考数学数列易错知识点,希望能够帮助到你:1. 数列的递推公式与通项公式的区别:很多学生容易混淆数列的递推公式和通项公式。
递推公式是用前一项的表达式来表示后一项的公式,通项公式是用项数n的表达式来表示第n项的公式。
在解题时,要明确区分递推公式和通项公式的用法和含义。
2. 数列的基本性质:数列的基本性质包括数列的有界性、单调性和有限性。
有界性指的是数列的项都在一定的范围内,可以是上界或下界;单调性指的是数列的项是递增或递减的;有限性指的是数列的项是有限的,不存在无限项。
在解题时,要注意数列的基本性质,根据题目中给出的条件判断数列的性质。
3. 等差数列和等差数列的前n项和公式:等差数列是指数列中相邻两项之间的差值相等的数列。
等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
等差数列的前n项和公式为Sn = (a1 + an)n/2,其中Sn为前n项和。
在解题时,要熟练掌握等差数列的相关公式,并进行灵活运用。
4. 等比数列和等比数列的前n项和公式:等比数列是指数列中相邻两项之间的比值相等的数列。
等比数列的通项公式为an = a1 *r^(n-1),其中a1为首项,r为公比,n为项数。
等比数列的前n项和公式为Sn = a1 * (1 - r^n)/(1 - r),其中Sn为前n项和。
在解题时,要熟练掌握等比数列的相关公式,并进行灵活运用。
5. 通项公式的证明与应用:在解题过程中,有时会遇到需要证明通项公式的问题。
要能够灵活运用数学归纳法和代数方法,进行通项公式的证明。
同时,要能够根据通项公式,求解具体的问题,包括求某一项的值、判断第n项的性质等。
6. 数列极限的计算与判断:数列极限是数列中项随着项数增大而趋于的值。
在解题过程中,要能够根据给定的数列,计算出数列的极限值,并进行判断。
等比数列高考重点题型及易错点提醒百度文库
一、等比数列选择题1.已知公比大于1的等比数列{}n a 满足2420a a +=,38a =.则数列(){}111n n n a a -+-的前n 项的和为( )A .()2382133n n +--B .()23182155n n +---C .()2382133n n ++-D .()23182155n n +-+-2.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:33.已知等比数列{}n a 的各项均为正数,公比为q ,11a >,676712a a a a +>+>,记{}n a 的前n 项积为nT,则下列选项错误的是( ) A .01q << B .61a >C .121T >D .131T >4.已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则数列{na n }的前n 项和为( )A .-3+(n +1)×2nB .3+(n +1)×2nC .1+(n +1)×2nD .1+(n -1)×2n5.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>06.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里B .86里C .90里D .96里7.等比数列{}n a 的各项均为正数,且101010113a a =.则313232020log log log a a a +++=( ) A .3B .505C .1010D .20208.记等比数列{}n a 的前n 项和为n S ,已知5=10S ,1050S =,则15=S ( ) A .180B .160C .210D .2509.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S =B .723S =C .7623S =D .71273S =10.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T11.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12612.公差不为0的等差数列{}n a 中,23711220a a a -+=,数列{}n b 是等比数列,且77b a =,则68b b =( )A .2B .4C .8D .1613.在数列{}n a 中,12a =,121n n a a +=-,若513n a >,则n 的最小值是( ) A .9B .10C .11D .1214.已知数列{}n a 的首项11a =,前n 项的和为n S ,且满足()*122n n a S n N ++=∈,则满足2100111100010n nS S 的n 的最大值为( ). A .7B .8C .9D .1015.设数列{}n a ,下列判断一定正确的是( )A .若对任意正整数n ,都有24nn a =成立,则{}n a 为等比数列B .若对任意正整数n ,都有12n n n a a a ++=⋅成立,则{}n a 为等比数列C .若对任意正整数m ,n ,都有2m nm n a a +⋅=成立,则{}n a 为等比数列D .若对任意正整数n ,都有31211n n n n a a a a +++=⋅⋅成立,则{}n a 为等比数列16.已知等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则该数列的公比是( )A .19B .9C .13D .317.在等比数列{}n a 中,12345634159,88a a a a a a a a +++++==-,则123456111111a a a a a a +++++=( ) A .35B .35C .53D .53-18.已知{}n a 为等比数列.下面结论中正确的是( ) A .1322a a a +≥B .若13a a =,则12a a =C .2221322a a a +≥ D .若31a a >,则42a a >19.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的中间一层共有灯( ) A .3盏B .9盏C .27盏D .81盏20.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=14,且a n =1n n b b +,则b 2020=( )A .22017B .22018C .22019D .22020二、多选题21.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的23再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤C .n S 的最小值为7003D .n S 的最大值为40022.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---23.已知1a ,2a ,3a ,4a 依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q 的值是( ) ABCD24.已知数列{}n a 是公比为q 的等比数列,4n n b a =+,若数列{}n b 有连续4项在集合{-50,-20,22,40,85}中,则公比q 的值可以是( ) A .34-B .23-C .43-D .32-25.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列 B .若4123,27,a a ==则89a =± C .若123,a a a <<则数列{}n a 是递增数列 D .若数列{}n a 的前n 和13,n n S r -=+则r =-126.关于递增等比数列{}n a ,下列说法不正确的是( ) A .10a >B .1q >C .11nn a a +< D .当10a >时,1q >27.记单调递增的等比数列{a n }的前n 项和为S n ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-= B .12n n aC .21nn S =-D .121n n S -=-28.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中正确的是( ) A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13n S n=C .13(1)n a n n =--D .{}3n S 是等比数列29.数列{}n a 对任意的正整数n 均有212n n n a a a ++=,若22a =,48a =,则10S 的可能值为( ) A .1023B .341C .1024D .34230.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正确的是( )A .数列{}2n a 是等比数列B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .数列{}2log n a 是等差数列 D .数列{}n a 中,10S ,20S ,30S 仍成等比数列31.已知数列{}n a 前n 项和为n S .且1a p =,122(2)n n S S p n --=≥(p 为非零常数)测下列结论中正确的是( ) A .数列{}n a 为等比数列 B .1p =时,41516S = C .当12p =时,()*,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+ 32.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-33.设数列{}n x ,若存在常数a ,对任意正数r ,总存在正整数N ,当n N ≥,有n x a r -<,则数列{}n x 为收敛数列.下列关于收敛数列正确的有( )A .等差数列不可能是收敛数列B .若等比数列{}n x 是收敛数列,则公比(]1,1q ∈-C .若数列{}n x 满足sin cos 22n x n n ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,则{}n x 是收敛数列 D .设公差不为0的等差数列{}n x 的前n 项和为()0n n S S ≠,则数列1n S ⎧⎫⎨⎬⎩⎭一定是收敛数列34.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列B .若32a =,732a =,则58a =±C .若123a a a <<,则数列{}n a 是递增数列D .若数列{}n a 的前n 和13n n S r -=+,则1r =-35.等差数列{}n a 的公差为d ,前n 项和为n S ,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( ) A .7aB .8aC .15SD .16S【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.D 【分析】根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入()111n n n a a -+-可知数列为等比数列,求和即可.【详解】因为公比大于1的等比数列{}n a 满足2420a a +=,38a =,所以31121208a q a q a q ⎧+=⎨=⎩,解得2q,12a =,所以1222n nn a -=⨯=,()()()111111222111n n n n n n n n a a ++-+--+=⋅⋅-=∴--,(){}111n n n a a -+∴-是以8为首项,4-为公比的等比数列,()23357921118[1(4)]8222222(1)1(4)155n n n n n n S -++---∴=-+--++⋅==+---, 故选:D 【点睛】关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可. 2.A 【分析】由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =, 所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论. 3.D 【分析】等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,可得67(1)(1)0a a --<,因此61a >,71a <,01q <<.进而判断出结论. 【详解】 解:等比数列{}n a 的各项均为正数,11a >,676712a a a a +>+>,67(1)(1)0a a ∴--<,11a >,若61a <,则一定有71a <,不符合由题意得61a >,71a <,01q ∴<<,故A 、B 正确. 6712a a +>,671a a ∴>,6121231267()1T a a a a a a =⋯=>,故C 正确,131371T a =<,故D 错误,∴满足1n T >的最大正整数n 的值为12.故选:D . 4.D 【分析】利用已知条件列出方程组求解即可得1,a q ,求出数列{a n }的通项公式,再利用错位相减法求和即可. 【详解】设等比数列{a n }的公比为q ,易知q ≠1,所以由题设得()()3136161711631a q S q a q S q ⎧-⎪==-⎪⎨-⎪==⎪-⎩, 两式相除得1+q 3=9,解得q =2, 进而可得a 1=1, 所以a n =a 1q n -1=2n -1, 所以na n =n ×2n -1.设数列{na n }的前n 项和为T n , 则T n =1×20+2×21+3×22+…+n ×2n -1, 2T n =1×21+2×22+3×23+…+n ×2n ,两式作差得-T n =1+2+22+…+2n -1-n ×2n=1212n---n ×2n =-1+(1-n )×2n , 故T n =1+(n -1)×2n . 故选:D. 【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的问题.属于较易题. 5.A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况. 6.D 【分析】由题意得每天行走的路程成等比数列{}n a 、且公比为12,由条件和等比数列的前项和公式求出1a ,由等比数列的通项公式求出答案即可. 【详解】由题意可知此人每天走的步数构成12为公比的等比数列, 由题意和等比数列的求和公式可得611[1()]2378112a -=-, 解得1192a =,∴此人第二天走1192962⨯=里, ∴第二天走了96里,故选:D . 7.C 【分析】利用等比数列的性质以及对数的运算即可求解. 【详解】由120202201932018101010113a a a a a a a a =====,所以313232020log log log a a a +++()10103101010113log log 31010a a ===.故选:C 8.C 【分析】首先根据题意得到5S ,105S S -,1510S S -构成等比数列,再利用等比中项的性质即可得到答案. 【详解】因为{}n a 为等比数列,所以5S ,105S S -,1510S S -构成等比数列. 所以()()2155010=1050S --,解得15210S =. 故选:C 9.D 【分析】利用等比数列前n 项和公式列出方程组,求出首项和公比,由此能求出这个数列的前7项和. 【详解】n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,∴21410(1)11(1)51q a q qa q q ⎧⎪>⎪⎪-⎪=⎨-⎪⎪-⎪=-⎪⎩,解得113a =,2q ,771(12)1273123S -∴==-.故选:D . 10.B 【分析】根据11a >,667711,01a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾, 若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与67101a a -<-矛盾, 所以01q <<,故B 正确;因为67101a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以111n n a q a S q q=---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】关键点点睛:本题的关键是通过穷举法确定01q <<. 11.D 【分析】根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=. ∴2260q q --=,∴2q 或32q =-(舍去),∵416a =,∴4132a a q ==, ∴6616(1)2(12)126112a q S q --===--, 故选:D. 12.D 【分析】根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.【详解】等差数列{}n a 中,31172a a a +=,故原式等价于27a -740a =解得70a =或74,a =各项不为0的等差数列{}n a ,故得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.故选:D. 13.C 【分析】根据递推关系可得数列{}1n a -是以1为首项,2为公比的等比数列,利用等比数列的通项公式可得121n n a -=+,即求.【详解】因为121n n a a +=-,所以()1121n n a a +-=-,即1121n n a a +-=-, 所以数列{}1n a -是以1为首项,2为公比的等比数列.则112n n a --=,即121n n a -=+.因为513n a >,所以121513n -+>,所以12512n ->,所以10n >. 故选:C 14.C根据()*122n n a S n N ++=∈可求出na的通项公式,然后利用求和公式求出2,n n S S ,结合不等式可求n 的最大值. 【详解】1122,22()2n n n n a S a S n +-+=+=≥相减得1(22)n n a a n +=≥,11a =,212a =;则{}n a 是首项为1,公比为12的等比数列,100111111000210n⎛⎫<+< ⎪⎝⎭,1111000210n⎛⎫<< ⎪⎝⎭,则n 的最大值为9. 故选:C 15.C 【分析】根据等比数列的定义和判定方法逐一判断. 【详解】对于A ,若24n n a =,则2nn a =±,+1+12n n a =±,则12n na a +=±,即后一项与前一项的比不一定是常数,故A 错误;对于B ,当0n a =时,满足12n n n a a a ++=⋅,但数列{}n a 不为等比数列,故B 错误; 对于C ,由2m nm n a a +⋅=可得0n a ≠,则+1+12m n m n a a +⋅=,所以1+1222n n m n m n a a +++==,故{}n a 为公比为2的等比数列,故C 正确;对于D ,由31211n n n n a a a a +++=⋅⋅可知0n a ≠,则312n n n n a a a a +++⋅=⋅,如1,2,6,12满足312n n n n a a a a +++⋅=⋅,但不是等比数列,故D 错误. 故选:C. 【点睛】方法点睛:证明或判断等比数列的方法,(1)定义法:对于数列{}n a ,若()10,0n n na q q a a +=≠≠,则数列{}n a 为等比数列; (2)等比中项法:对于数列{}n a ,若()2210n n n n a a a a ++=≠,则数列{}n a 为等比数列;(3)通项公式法:若n n a cq =(,c q 均是不为0的常数),则数列{}n a 为等比数列; (4)特殊值法:若是选择题、填空题可以用特殊值法判断,特别注意0n a =的判断. 16.D 【分析】利用等比数列的通项公式求出1a 和2a ,利用21a a 求出公比即可设公比为q ,等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则31327a ==,42381a ==,213a q a ∴==, 故选:D 17.D 【分析】利用等比数列下标和相等的性质有162534a a a a a a ==,而目标式可化为162534162534a a a a a a a a a a a a +++++结合已知条件即可求值. 【详解】162534123456162534111111a a a a a a a a a a a a a a a a a a ++++++++=++, ∵等比数列{}n a 中3498a a =-,而162534a a a a a a ==, ∴123456111111a a a a a a +++++=12345685()93a a a a a a -+++++=-, 故选:D 18.C 【分析】取特殊值可排除A ,根据等比数列性质与基本不等式即可得C 正确,B ,D 错误. 【详解】解:设等比数列的公比为q ,对于A 选项,设1231,2,4a a a =-==-,不满足1322a a a +≥,故错误;对于B 选项,若13a a =,则211a a q =,则1q =±,所以12a a =或12a a =-,故错误; 对于C 选项,由均值不等式可得2221313222a a a a a +≥⋅=,故正确;对于D 选项,若31a a >,则()2110a q ->,所以()14221a a a q q -=-,其正负由q 的符号确定,故D 不确定. 故选:C. 19.C 【分析】根据题意,设塔的底层共有x 盏灯,分析可得每层灯的数目构成以x 为首项,13为公比的等比数列,由等比数列的前n 项和公式可得x 的值,即可得答案. 【详解】根据题意,设塔的底层共有x 盏灯,则每层灯的数目构成以x 为首项,13为公比的等比数列,则有51(1)3363113x S ⨯-==-, 解可得:243x =,所以中间一层共有灯21243()273⨯=盏. 故选:C 【点睛】思路点睛:要求中间一层的灯的数量,只需求等比数列的首项,根据等比数列的和求出数列的首项即可. 20.A 【分析】根据已知条件计算12320182019a a a a a ⋅⋅⋅⋅的结果为20201b b ,再根据等比数列下标和性质求解出2020b 的结果. 【详解】 因为1n n nb a b +=,所以32019202020202412320182019123201820191b b b b b b a a a a a b b b b b b ⋅⋅⋅⋅=⋅⋅⋅⋅⋅=, 因为数列{}n a 为等比数列,且10102a =, 所以()()()123201820191201922018100910111010a a a a a a a a a a a a ⋅⋅⋅=⋅⋅⋅⋅⋅⋅22220192019101010101010101010102a a a a a =⋅⋅⋅==所以2019202012b b =,又114b =,所以201720202b =, 故选:A. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.二、多选题21.AC 【分析】由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】由题可知,第一次着地时,1100S =;第二次着地时,221002003S =+⨯;第三次着地时,232210020020033S ⎛⎫=+⨯+⨯ ⎪⎝⎭;……第n 次着地后,21222100200200200333n n S -⎛⎫⎛⎫=+⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭则211222210020010040013333n n n S --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,显然500n S <,又n S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为40070010033+=; 综上所述,AC 正确 故选:AC 22.BCD 【分析】由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D . 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题, 23.AB 【分析】因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d ,分类讨论,即可得到答案 【详解】解:因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d , ①若删去2a ,则有3142a a a =+,得231112a q a a q =+,即2321q q =+, 整理得()()()2111qq q q -=-+,因为1q ≠,所以21q q =+, 因为0q >,所以解得q =, ②若删去3a ,则2142a a a =+,得31112a q a a q =+,即321q q =+,整理得(1)(1)1q q q q -+=-,因为1q ≠,所以(1)1q q +=, 因为0q >,所以解得12q -+=,综上q =或q =, 故选:AB 24.BD 【分析】先分析得到数列{}n a 有连续四项在集合{54-,24-,18,36,81}中,再求等比数列的公比. 【详解】 4n n b a =+ 4n n a b ∴=-数列{}n b 有连续四项在集合{-50,-20,22,40,85}中∴数列{}n a 有连续四项在集合{54-,24-,18,36,81}中又数列{}n a 是公比为q 的等比数列,∴在集合{54-,24-,18,36,81}中,数列{}n a 的连续四项只能是:24-,36,54-,81或81,54-,36,24-.∴363242q ==--或243236q -==-.故选:BD 25.AC 【分析】根据等比数列定义判断A;根据等比数列通项公式判断B,C;根据等比数列求和公式求项判断D. 【详解】设等比数列{}n a 公比为,(0)q q ≠则222112()n n n na a q a a ++==,即数列2{}n a 是等比数列;即A 正确; 因为等比数列{}n a 中4812,,a a a 同号,而40,a > 所以80a >,即B 错误;若123,a a a <<则1211101a a a q a q q >⎧<<∴⎨>⎩或1001a q <⎧⎨<<⎩,即数列{}n a 是递增数列,C 正确;若数列{}n a 的前n 和13,n n S r -=+则111221313231,2,6a S r r a S S a S S -==+=+=-==-= 所以32211323(1),3a a q r r a a ===∴=+=-,即D 错误 故选:AC 【点睛】等比数列的判定方法(1)定义法:若1(n na q q a +=为非零常数),则{}n a 是等比数列; (2)等比中项法:在数列{}n a 中,0n a ≠且212n n a a a a ++=,则数列{}n a 是等比数列;(3)通项公式法:若数列通项公式可写成(,nn a cq c q =均是不为0的常数),则{}n a 是等比数列;(4)前n 项和公式法:若数列{}n a 的前n 项和(0,1,nn S kq k q q k =-≠≠为非零常数),则{}n a 是等比数列.26.ABC 【分析】由题意,设数列{}n a 的公比为q ,利用等比数列{}n a 单调递增,则111(1)0n n n a a a q q -+-=->,分两种情况讨论首项和公比,即可判断选项.【详解】由题意,设数列{}n a 的公比为q ,因为11n n a a q -=,可得111(1)0n n n a a a qq -+-=->,当10a >时,1q >,此时101nn a a +<<,当10a <时,101,1nn a q a +<<>, 故不正确的是ABC. 故选:ABC. 【点睛】本题主要考查了等比数列的单调性.属于较易题. 27.BC 【分析】根据数列的增减性由所给等式求出1a d 、,写出数列的通项公式及前n 项和公式,即可进行判断. 【详解】数列{a n }为单调递增的等比数列,且24100a a +=>,0n a ∴>23464a a a =,2364a ∴=,解得34a =,2410a a +=,4410q q∴+=即22520q q -+=,解得2q或12, 又数列{a n }为单调递增的等比数列,取2q,312414a a q ===, 12n na ,212121n n n S -==--,()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列通项公式基本量的求解、等比数列的增减性、等比数列求和公式,属于基础题. 28.ABD 【分析】由1(2)n n n a S S n -=-≥代入已知式,可得{}n S 的递推式,变形后可证1n S ⎧⎫⎨⎬⎩⎭是等差数列,从而可求得n S ,利用n S 求出n a ,并确定3n S 的表达式,判断D . 【详解】因为1(2)n n n a S S n -=-≥,1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确;公差为3,又11113S a ==,所以133(1)3n n n S =+-=,13n S n=.B 正确;2n ≥时,由1n n n a S S -=-求得13(1)n a n n =-,但13a =不适合此表达式,因此C 错;由13n S n =得1311333n n n S +==⨯,∴{}3n S 是等比数列,D 正确.故选:ABD . 【点睛】本题考查等差数列的证明与通项公式,考查等比数列的判断,解题关键由1(2)n n n a S S n -=-≥,化已知等式为{}n S 的递推关系,变形后根据定义证明等差数列.29.AB 【分析】首先可得数列{}n a 为等比数列,从而求出公比q 、1a ,再根据等比数列求和公式计算可得; 【详解】解:因为数列{}n a 对任意的正整数n 均有212n n n a a a ++=,所以数列{}n a 为等比数列,因为22a =,48a =,所以2424a q a ==,所以2q =±, 当2q时11a =,所以101012102312S -==-当2q =-时11a =-,所以()()()101011234112S -⨯--==--故选:AB 【点睛】本题考查等比数列的通项公式及求和公式的应用,属于基础题. 30.AC 【分析】 由已知得12n na 可得以2122n n a -=,可判断A ;又1111122n n n a --⎛⎫== ⎪⎝⎭,可判断B ;由122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.【详解】等比数列{}n a 中,满足11a =,2q,所以12n n a ,所以2122n n a -=,所以数列{}2n a 是等比数列,故A 正确;又1111122n n n a --⎛⎫== ⎪⎝⎭,所以数列1n a ⎧⎫⎨⎬⎩⎭是递减数列,故B 不正确; 因为122log log 21n n a n -==-,所以{}2log n a 是等差数列,故C 正确;数列{}n a 中,101010111222S -==--,202021S =-,303021S =-,10S ,20S ,30S 不成等比数列,故D 不正确; 故选:AC . 【点睛】本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 31.AC 【分析】由122(2)n n S S p n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 错误;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】由122(2)n n S S p n --=≥,得22p a =. 3n ≥时,1222n n S S p ---=,相减可得120n n a a --=,又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确; 由A 可得1p =时,44111521812S -==-,故B 错误; 由A 可得m n m n a a a +⋅=等价为2121122m n m n p p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭, 则3856a a a a +>+,即D 不正确; 故选:AC. 【点睛】本题考查等比数列的通项公式和求和公式,考查数列的递推关系式,考查学生的计算能力,属于中档题. 32.BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】由23464a a a =得3334a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q或12q =.又因为数列{}n a 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na ,()1122112n n n S ⨯-==--,所以()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.33.BCD 【分析】根据等差数列前n 和公式以及收敛数列的定义可判断A ;根据等比数列的通项公式以及收敛的定义可判断B ;根据收敛的定义可判断C ;根据等差数列前n 和公式以及收敛数列的定义可判断D. 【详解】当0n S >时,取2111222222n d d dd d d S n a n n n a n a ⎛⎫⎛⎫=+-=+-≥+- ⎪ ⎪⎝⎭⎝⎭, 为使得1n S r >,所以只需要1122d d n a r+->1112222da ra dr rn N d dr -+-+⇒>==. 对于A ,令1n x =,则存在1a =,使0n x a r -=<,故A 错; 对于B ,11n n x x q -=,若1q >,则对任意正数r ,当11log 1q r n x ⎛⎫+>+ ⎪⎪⎝⎭时, 1n x r >+,所以不存在正整数N 使得定义式成立, 若1q =,显然符合;若1q =-为摆动数列()111n n x x -=-,只有1x ±两个值,不会收敛于一个值,所以舍去;若()1,1q ∈-,取0a =,1log 11q rN x ⎡⎤=++⎢⎥⎣⎦,当n N >时,11110n n rx x q x r x --=<=,故B 正确; 对于C ,()1sin cos sin 0222n x n n n πππ⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭,符合; 对于D ,()11n x x n d =+-,2122n d d S n x n ⎛⎫=+- ⎪⎝⎭, 当0d >时,n S 单调递增并且可以取到比1r更大的正数,当n N >=时,110n n r S S -=<,同理0d <,所以D 正确. 故选:BCD【点睛】关键点点睛:解题的关键是理解收敛数列的定义,借助等差数列前n 和公式以及等比数列的通项公式求解,属于中档题.34.AC【分析】在A 中,数列{}2n a 是等比数列;在B 中,58a =;在C 中,若123a a a <<,则1q >,数列{}n a 是递增数列;在D 中,13r =-. 【详解】由数列{}n a 是等比数列,知:在A 中,22221n n a a q -=,22221122221nn n n a a q q a a q+-∴==是常数, ∴数列{}2n a 是等比数列,故A 正确; 在B 中,若32a =,732a =,则58a =,故B 错误;在C 中,若1230a a a <<<,则1q >,数列{}n a 是递增数列;若1230a a a <<<,则01q <<,数列{}n a 是递增数列,故C 正确;在D 中,若数列{}n a 的前n 和13n n S r -=+,则111a S r ==+,()()221312a S S r r =-=+-+=,()()332936a S S r r =-=+-+=,1a ,2a ,3a 成等比数列,2213a a a ∴=,()461r ∴=+, 解得13r =-,故D 错误. 故选:AC .【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.BC【分析】根据等差中项的性质和等差数列的求和公式可得出结果.【详解】由等差中项的性质可得381383a a a a ++=为定值,则8a 为定值,()11515815152a a S a +==为定值,但()()11616891682a a S a a +==+不是定值.故选:BC.【点睛】本题考查等差中项的基本性质和等差数列求和公式的应用,考查计算能力,属于基础题.。
数列中常见的几类易错题
3 2・
中学 数学 月刊
21 年第 1 01 期
数 列 中 常见 的几 类 易错题
万 园 ( 苏省盐城 市 明达 中学 2 4 0 ) 江 2 0 0
数列是 高 中数学 的重要 内容之 一 , 是高 考 也 考查重 点. 考查 的相关 内容 主要 有 : 数列 的概念 、 数列 的运算 与性质 、 数列 与 函数 、 不等式 知识 的综 合. 在解 数列 问题 时学生 常遇到一 些 问题 , 自己感 觉解题 过程是“ 无懈 可击”的 , 即使有 错 误也 发 现 不 出错 误 的原 因. 面就 常 见 的几 类 问题 作 一 错 下
( )如 图 1 , 求 反 比例 函 数 的 解 析 式 ; 1 4① ② 求 的 值 及 D 点 坐 标 ;
( ) 图 1 , 点 E在线 段 AD 上运 动 , 2如 5若 连结
C , E 作 C F 一 4 。E 交 AC 于 F 点 . E 5,F ① 试 说明 △C DE ∽ △ E AF;
因分析 . 1 列 { a }满 足 a = 1 。 a , 一 +
一 …
②, ② 一 ① , 。 一 : 。 得 ,
因 此 一 ③.
由 乘 署 ・ … ・ 1旱 号 鲁 叠 知I a ‘ 』 ・ 以 a 景= J 2 “ ・ ・以 4
’
故 一 对 一 l 成 立 . 也
“ + n + … +— 口 ( 2 ∈ N* , 2 。 十 以 十 十 。 以 。≥z n 扎 ’ , ) 若 ’ 右
a 1 0 则 是一 一 0 , 错 解 .
又“ 一 1 0, 是: 1 0 0 故 0.
故
十 o o .
D1 D
数列易错题分析
数列易错题分析作者:***来源:《中学生数理化·高考数学》2019年第01期易错点1:求通项公式时,弄错首项致错例1设数列{an}的前n项和为Sn,a1=1,3an+1=Sn(n∈N*),求数列{an}的通项公式。
错解:由3an+1=Sn,可得3an=Sn-1(n≥2),两式相减可得所以数列{an}是以1为首项,4/3为公比的等比数列,所以an=。
正解:由上述分析可得,又,所以数列{an}从第二项起是以4/3为公比的等比数列,即首项为,所以当n≥2时,an=。
分析:本题易忽视首项与所有项的整体关系,事实,上,数列{an}从第二项起,以后各项组成等比数列,而{an}不是等比数列,因此等比数列的首项不是an。
易错点2:忽略数列与函数的区别致错例2设函数f(x)=,若数列{an}满足an=f(n)(n∈N*),且{an}是递增数列,则实数a的取值范围是()。
A.B.C.D.错解:因为{an}是递增数列,所以解得a∈正解:因为{an}是递增数列,所以解得2<a<3。
分析:实际上,数列可以看成是特殊的函数,它的定义域是自然数集,图像是一系列孤立的点,所以该题不能直接按照函数的方法处理。
易错点3:忽略等比数列中的隐含条件致错例3 已知数列{an}满足a1=1,an+1=2an+λ(λ为常数),试探究{an+λ}是不是等比数列,并求an。
错解:因正解:例4 已知等差数列{an}中,a1=2,a1,a2,a3+2成等比数列,则等差数列{an}的前10项和等于____。
错解:设数列{an}的公差为d,由a1,a2,a3+2成等比数列,可得正解:当d=-2时,a2=0,a1,a2,a3+2不能构成等比数列,故分析:两题的易错点相同,同学们易忽略等比数列中的隐含条件“各项均不为0”,做题时要注意检验。
例5 已知数列{an}满足an=0,an+1=npn+an,求数列{an}的通项公式。
错解:正解:分析:本題p=0时,{an}是各项均为0的常数列,而p≠0时,在利用错位相减乘公比时,公比不能为1,因此要讨论p=0,p=1,p≠0且p≠1三种情况。
高考数学复习易做易错题选 数列部分
高考数学复习易做易错题选 数列部分一、选择题:1.设s n 是等差数列{a n }的前n 项和,已知s 6=36, s n =324, s 6-n =144 (n >6),则n=( )A 15B 16C 17D 18正确答案:D 错因:学生不能运用数列的性质计算a 1+a n =614432436-+2.已知s n 是等差数列{a n }的前n 项和,若a 2+a 4+a 15是一个确定的常数,则数列{s n }中是常数的项是( )A s 7B s 8C s 11D s 13正确答案: D 错因:学生对等差数列通项公式的逆向使用和等差数列的性质不能灵活应用。
3.设{a n }是等差数列,{b n }为等比数列,其公比q ≠1, 且b i >0(i=1、2、3 …n) 若a 1=b 1,a 11=b 11则 ( )A a 6=b 6B a 6>b 6C a 6<b 6D a 6>b 6或 a 6<b 6 正确答案 B 错因:学生不能灵活运用等差中项和等比中项的定义及基本不等式。
4.已知非常数数列{a n },满足 a 21+i -a i a 1+i +a 2i =0且a 1+i ≠a 1-i , i=1、2、3、…n,对于给定的正整数n,a 1=a 1+i ,则∑-=11n i ia等于 )A 2B -1C 1D 0正确答案:D 错因:学生看不懂题目,不能挖掘题目的隐含条件,{a n }的项具有周期性。
5.某人为了观看2008年奥运会,从2001年起每年5月10日到银行存入a 元定期储蓄,若年利率为p 且保持不变,并且每年到期的存款及利息均自动转为新一年定期,到2008年将所有的存款和利息全部取回,则可取回的钱的总数(元)为( ). A a(1+p)7B a(1+p)8C)]1()1[(7p p p a +-+ D )1()1[(8p p pa+-+] 正确答案:D 错因: 学生对存款利息的计算方法没掌握。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列常考点及易错点考点等差数列的判定或证明例题、已知数列{}na的前n项和为nS且满足a n+2S n·S n-1=0(n≥2),a1=12.(1)求证:1nS⎧⎫⎨⎬⎩⎭是等差数列;(2)求{}n a的通项公式.[审题视点] (1)化简所给式子,然后利用定义证明.(2)根据S n与a n之间关系求a n.等差数列主要的判定方法是定义法和等差中项法,而对于通项公式法和前n项和公式法主要适合在选择题中简单判断.【训练】已知数列{a n}的前n项和S n是n的二次函数,且a1=-2,a2=2,S3=6.(1)求S n;(2)证明:数列{a n}是等差数列.考点 等比数列的判定或证明例题、(2012·长沙模拟)已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式.[审题视点] 第(1)问把b n =a n +1-a n 中a n +1换为a n -1+a n2整理可证;第(2)问可用叠加法求a n .证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.【训练】(2011四川)设d 为非零实数a n =1n[C 1n d +2C 2nd 2+…+(n -1)11n n n C d --+n C n n d n ](n ∈N *). (1)写出a 1,a 2,a 3并判断{a n }是否为等比数列.若是,给出证明;若不是,说明理由; (2)设b n =nda n (n ∈N *),求数列{b n }的前n 项和S n .考点 数列中最值问题的求解从近几年新课标高考可以看出,对求数列中的最大项是高考的热点,一般难度较大.解决这类问题时,要利用函数的单调性研究数列的最值,但要注意数列的单调性与函数的单调性有所不同,其自变量的取值是不连续的,只能取正整数,所以在求数列中的最大(小)项时,应注意数列中的项可以是相同的,故不应漏掉等号.例题、 (2010·辽宁)已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a n n的最小值为________.例题、示例 (2011·浙江)若数列()243nn n ⎧⎫⎪⎪⎛⎫+⎨⎬⎪⎝⎭⎪⎪⎩⎭中的最大项是第k 项,则k =________.【训练】已知数列{a n }的通项()10111nn a n ⎛⎫=+ ⎪⎝⎭(n ∈N +),试问该数列{a n }有没有最大项?若有,求最大项的项数;若没有,说明理由. [审题视点] 作差:a n +1-a n ,再分情况讨论.数列与不等式的综合应用例题、(2011·惠州模拟)在等比数列{a n }中,a n >0(n ∈N *),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2. (1)求数列{a n }的通项公式;(2)设b n =log 2a n ,求数列{b n }的前n 项和S n ; (3)是否存在k ∈N *,使得S 11+S 22+…+S n n<k 对任意n ∈N *恒成立,若存在,求出k 的最小值,若不存在,请说明理由.[审题视点] 第(1)问由等比数列的性质转化为a 3+a 5与a 3a 5的关系求a 3与a 5;进而求a n ;第(2)问先判断数列{b n },再由求和公式求S n ;第(3)问由S n n确定正负项,进而求S 11+S 22+…+S n n的最大值,从而确定k 的最小值.解决此类问题要抓住一个中心——函数,两个密切联系:一是数列和函数之间的密切联系,数列的通项公式是数列问题的核心,函数的解析式是研究函数问题的基础;二是方程、不等式与函数的联系,利用它们之间的对应关系进行灵活的处理.【训练】 (2012·岳阳模拟)已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>50成立的正整数n 的最小值.考点数列与解析几何、三角的交汇问题从近几年新课标高考试题可以看出,不同省市的高考对该内容要求的不尽相同,考生复习时注意把握.数列与解析几何交汇问题主要是解析几何中的点列问题,关键是充分利用解析几何的有关性质、公式,建立数列的递推关系式,然后借助数列的知识加以解决.一、数列与解析几何交汇例题、(2011·陕西)如图,从点P1(0,0)作x轴的垂线交曲线y=e x于点Q1(0,1),曲线在Q1点处的切线与x轴交于点P2.再从P2作x轴的垂线交曲线于点Q2,依次重复上述过程得到一系列点:P1,Q1;P2,Q2;…;P n,Q n.记P k点的坐标为(x k,0)(k=1,2,…,n).(1)试求x k与x k-1的关系(2≤k≤n);(2)求|P1Q1|+|P2Q2|+|P3Q3|+…+|P n Q n|.二、数列与三角交汇例题、(2011·安徽)在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记作T n,再令a n=lg T n,n≥1.(1)求数列{a n}的通项公式;(2)设b n=tan a n·tan a n+1,求数列{b n}的前n项和S n.考点等差与等比数列的综合性问题【问题研究】等差数列和等比数列既相互区别,又相互联系,高考作为考查学生综合能力的选拔性考试,将两类数列综合起来考查是高考的重点.这类问题多属于两者基本运算的综合题以及相互之间的转化.【解决方案】首先求解出两个数列的基本量:首项和公差及公比,再灵活利用性质转化条件,以及利用等差、等比数列的相关知识解决.例题、(本题满分12分)(2011·湖北)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n}中的b3、b4、b5.(1)求数列{b n}的通项公式;(2)数列{b n}的前n项和为S n,求证:数列54nS⎧⎫+⎨⎬⎩⎭是等比数列.正确设等差数列的三个正数,利用等比数列的性质解出公差d,从而求出数列{b n}的首项、公比;利用等比数列的定义可解决第(2)问.关于等差(比)数列的基本运算,其实质就是解方程或方程组,需要认真计算,灵活处理已知条件.容易出现的问题主要有两个方面:一是计算出现失误,特别是利用因式分解求解方程的根时,不注意对根的符号进行判断;二是不能灵活运用等差(比)数列的基本性质转化已知条件,导致列出的方程或方程组较为复杂,增大运算量.【训练】 (1)已知两个等比数列{a n },{b n },满足a 1=a (a >0),b 1-a 1=1,b 2-a 2=2,b 3-a 3=3,若数列{a n }唯一,求a 的值;(2)是否存在两个等比数列{a n },{b n },使得b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成公差不为0的等差数列?若存在,求{a n },{b n }的通项公式;若不存在,说明理由.易错点——忽视a n 与S n 中的条件n ≥2而致误【问题诊断】 在数列问题中,数列的通项a n 与其前n 项和S n 之间存在下列关系:⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n ,这个关系对任意数列都是成立的,但要注意的是这个关系式是分段的,在n =1和n ≥2时这个关系式具有完全不同的表现形式,这也是解题中经常出错的一个地方,在使用这个关系式时要牢牢记住其“分段”的特点.【防范措施】 由a n =S n -S n -1求出a n 后,一定不要忘记验证n =1是否适合a n .【示例】►(2009·安徽改编)已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .求数列{a n }与{b n }的通项公式. 错因 求a n 、b n 时均未验证n =1. 实录 ∵a n =S n -S n -1,∴a n =2n 2+2n -2(n -1)2-2(n -1)=4n . 又T n =2-b n ,∴b n =T n -T n -1=2-b n -2+b n -1,即b n =12b n -1,∴b n =⎝ ⎛⎭⎪⎫12n -1=21-n .正解 当n ≥2时,a n =S n -S n -1=2n 2+2n -2(n -1)2-2(n -1)=4n , 又a 1=S 1=4,故a n =4n ,当n ≥2时,由b n =T n -T n -1=2-b n -2+b n -1,得b n =12b n -1,又T 1=2-b 1,∴b 1=1,∴b n =⎝ ⎛⎭⎪⎫12n -1=21-n .【试一试】 已知在正整数数列{a n }中,前n 项和S n 满足: S n =18(a n +2)2.(1)求证:{a n }为等差数列.(2)若b n =12a n -30.求数列{b n }的前n 项和的最小值.[尝试解答] (1)证明:当n =1时,S 1=a 1=18(a 1+2)2,∴(a 1-2)2=0,∴a 1=2. 当n ≥2时,a n =S n -S n -1=18(a n +2)2-18(a n -1+2)2,∴a n -a n -1=4, ∴{a n }为等差数列.(2)由(1)知:a n =a 1+(n -1)4=4n -2, 由b n =12a n -30=2n -31≤0得n ≤312.∴{b n }的前15项之和最小,且最小值为-225.易错点——未对q =1或q ≠1讨论出错【问题诊断】 错位相减法适合于一个由等差数列{a n }及一个等比数列{b n }对应项之积组成的数列.考生在解决这类问题时,都知道利用错位相减法求解,也都能写出此题的解题过程,但由于步骤繁琐、计算量大导致了漏项或添项以及符号出错等.【防范措施】 两边乘公比后,对应项的幂指数会发生变化,应将相同幂指数的项对齐,这样有一个式子前面空出一项,另外一个式子后面就会多了一项,两项相减,除第一项和最后一项外,剩下的n -1项是一个等比数列.【示例】►(2010·四川)已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N *),求数列{b n }的前n 项和S n . 错因 未对q =1或q ≠1分别讨论,相减后项数、符号均出现了错误. 实录 (1)由已知得⎩⎪⎨⎪⎧a 1+a 2+a 3=6,a 1+a 2+…+a 8=-4, 即⎩⎪⎨⎪⎧3a 1+3d =6,8a 1+28d =-4,解得a 1=3,d =-1,∴a n =4-n . (2)由(1)知b n =n ·q n -1,∴S n =1+2·q 1+3·q 2+…+n ·q n -1,qS n =1·q +2·q 2+3·q 3+…+n ·q n ,两式相减得:(1-q )S n =1+q +q 2+…+q n -1+n ·q n =1-q n 1-q +n ·q n .∴S n =1-q n 1-q 2+n ·q n 1-q . 正解 (1)设{a n }的公差为d ,则由已知得⎩⎪⎨⎪⎧ a 1+a 2+a 3=6,a 1+a 2+…+a 8=-4,即⎩⎪⎨⎪⎧3a 1+3d =6,8a 1+28d =-4,解得a 1=3,d =-1,故a n =3-(n -1)=4-n . (2)由(1)知,b n =n ·q n -1,于是S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1, 若q ≠1,上式两边同乘以q .qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n ,两式相减得:(1-q )S n =1+q 1+q 2+…+q n -1-n ·q n =1-q n 1-q -n ·q n . ∴S n =1-q n1-q 2-n ·q n 1-q=n ·q n +1-n +1q n +11-q 2.若q =1,则S n =1+2+3+…+n =n n +12,∴S n=⎩⎪⎨⎪⎧n n +12q =1,nqn +1-n +1q n +11-q 2q ≠1.【试一试】 (2011·齐齐哈尔模拟)已知数列{a n }是首项为a 1=14,公比q =14的等比数列,设b n+2=3log 14a n (n ∈N *),数列{c n }满足c n =a n ·b n .(1)求数列{b n }的通项公式; (2)求数列{c n }的前n 项和S n .。