10课时平行四边形、矩形、菱形、正方形的性质和判定(七)

合集下载

矩形、菱形、正方形的性质及判定(四边形)

矩形、菱形、正方形的性质及判定(四边形)

矩形、菱形、正方形的性质及判定一、知识提要1.矩形定义有一个角是直角的平行四边形叫做矩形;性质①矩形的四个角都是直角;②矩形的对角线相等.判定①有一个角是直角的平行四边形叫做矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形.2.直角三角形斜边的中线等于斜边长的一半.3.菱形定义有一组邻边相等的平行四边形叫做菱形.性质①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.判定①有一组邻边相等的平行四边形叫做菱形;②对角线互相垂直的平行四边形是菱形;③四边相等的四边形是菱形.4.菱形的面积等于对角线乘积的一半.5.正方形定义四条边都相等、四个角都是直角的四边形是正方形.性质正方形拥有平行四边形、矩形、菱形的所有性质;判定①由一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形.二、精讲精练1.矩形ABCD的对角线AC,BD相交于点O,则边与对角线组成的直角三角形的个数是________.2.(2011浙江)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( ) A.2条B.4条ODC BA60°C .5条D .6条3. 矩形ABCD 中,AB =2BC ,E 为CD 上一点,且AE =AB ,则∠BEC = ___.4. 已知矩形ABCD ,若它的宽扩大2倍,且它的长缩小四分之一,那么新矩形的面积等于原矩形ABCD 面积的__________.5. (2011四川)下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分6. (2011江苏)在四边形ABCD 中,AB=DC ,AD=BC .请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是_______________(写出一种即可) 7. (2011山东)如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A =30°,BC =2,AF =BF ,则四边形BCDE 的面积是( )A .23B .33C .4D .438. 如图,将□ABCD 的边DC 延长到点E ,使CE =DC ,连接AE ,交BC 于点F .(1)求证:△ABF ≌△ECF(2)若∠AFC =2∠D ,连接AC 、BE .求证:四边形ABEC 是矩形.9. (2011江苏)在菱形ABCD 中,AB=5cm ,则此菱形的周长为( )A. 5cmB. 15cmC. 20cmD. 25cm10. (2011河北)如图,已知菱形ABCD ,其顶点A ,B 在数轴对应的数分别为-4和1,则BC =_______.EFDCBAD CBAHFGE ADBC11. 菱形的一边与两条对角线夹角的差是20°,则菱形的各角的度数为___________.12. (2011重庆)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,且AC =8,BD =6,过点O 作OH ⊥AB ,垂足为H ,则点O 到边AB 的距离OH =_________.13. 已知菱形周长是24cm ,一个内角为60°,则菱形的面积为______.14. 菱形ABCD 中,AE ⊥BC 于E ,若S 菱形ABCD =24cm 2,则AE =6cm ,则菱形ABCD的边长为_______.15. (2011山东)已知一个菱形的周长是20cm ,两条对角线的比是4:3,则这个菱形的面积是( )A .12cm 2B . 24cm 2C . 48cm 2D . 96cm 2 16. 菱形有____条对称轴,对称轴之间具有________的位置关系. 17. 菱形具有而一般平行四边形不具有的性质是( )A .两组对边分别平行B .两组对边分别相等C .一组邻边相等D .对角线相互平分18. (2011四川)如图,点E 、F 、G 、H 分别是任意四边形ABCD 中AD 、BD 、BC 、CA 的中点,当四边形ABCD 的边至少满足__________条件时,四边形EFGH 是菱形.19. (2011浙江)如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过点A 作AG ∥DB 交CB 的延长线于点G . (1)求证:DE ∥BF ;(2)若∠G =90°,求证:四边形DEBF 是菱形.F E B C A D 20. (2011湖州)如图,已知E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE =DF . (1)求证:四边形AECF 是平行四边形;(2)若BC =10, BAC =90,且四边形AECF 是菱形,求BE 的长.21. (2011湖南)下列四边形中,对角线相等且互相垂直平分的是( ) A.平行四边形 B.正方形 C.等腰梯形 D.矩形22. 有一组邻边_______并且有一个角是________的平行四边形,叫做正方形. 23. (2010湖北)已知正方形ABCD ,以CD 为边作等边△CDE ,则∠AED 的度数是 .24. 已知正方形ABCD 中,AC ,BD 交于点O ,OE ⊥BC 于E ,若OE =2,则正方形的面积为____.25. 如图,已知,正方形ABCD 的对角线交于O ,过O 点作OE ⊥OF ,分别交AB 、BC 于E 、F ,若AE =4,CF =3,则EF 等于( )A .7B .5C .4D .326. (2011贵州)如图,点E 是正方形ABCD 内一点,△CDE 是等边三角形,连接EB 、EA ,延长BE 交边AD 于点F . (1)求证: △ADE ≌△BCE ; (2)求∠AFB 的度数.FED CBA FE ODCBA三、测试提高【板块一】菱形的性质1. 若菱形两邻角的比为1:2,周长为24 cm ,则较短对角线的长为_____. 【板块二】菱形的判定2. (2011湖南)如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( ) A .矩形B .菱形C .正方形D .等腰梯形 3. (2011湖北)顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD 一定是( ) A.菱形 B.对角线互相垂直的四边形C.矩形D.对角线相等的四边形【板块三】菱形余矩形的性质4. (2011江苏)菱形具有而矩形不一定具有的性质是( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补 【板块四】特殊四边形的判定5. 下列命题中,正确命题是( )A .两条对角线相等的四边形是平行四边形;B .两条对角线相等且互相垂直的四边形是矩形;C .两条对角线互相垂直平分的四边形是菱形;D .两条对角线平分且相等的四边形是正方形;四、课后作业1. 矩形ABCD 中,对角线AC ,BD 相交于点O ,∠AOB =60°,若BD =10 cm ,则AD =_____.2. 矩形周长为72cm ,一边中点与对边两个端点连线的夹角为直角,此矩形的长边为_______.3. 矩形的边长为10和15,其中一个内角平分线分长边为两部分,这两部分的长度分别为_________.4. 过矩形ABCD 的顶点D ,作对角线AC 的平行线交BA 的延长线于E ,则△DEB 是( ).A . 不等边三角形B . 等腰三角形C . 等边三角形D . 等腰直角三角形BACD5. 矩形ABCD 的对角线AC 的垂直平分线与边AD ,BC 分别交于E ,F ,则四边形AFCE 是___________.6. 菱形一个内角为120°,平分这个内角的一条对角线长12 cm ,则菱形的周长为_____.7. 若菱形两条对角线长分别为6 cm 和8 cm ,则它的周长是________,面积是_______.8. 菱形的一个角是60°,边长是8 cm ,那么菱形的两条对角线的长分别是_________.9. 已知菱形的一条对角线与边长相等,则菱形的邻角度数分别为_____. 10. 在菱形ABCD 中,AE ⊥BC , AF ⊥CD ,且BE =EC , CF =FD ,则∠AEF 等于_______.11. 如图,小华剪了两条宽为2的纸条,交叉叠放在一起,且它们交角为45°,则它们重叠部分的面积为( ). A.22 B.1 C.332 D.2 12. (2011广东)如图,两条笔直的公路1l 、2l 相交于点O ,村庄C 的村民在公路的旁边建三个加工厂A 、B 、D ,已知AB =BC =CD =DA =5公里,村庄C 到公路1l 的距离为4公里,则村庄C 到公路2l 的距离是( ). A .3公里 B .4公里C .5公里D .6公里13. 正方形的对角线__________且_________,每条对角线平分_____. 14. 如图,AC 是菱形ABCD 的对角线,点E 、F 分别在边AB 、AD 上,且AE =AF . 求证:△ACE ≌△ACF .FE BCDA15. (2011山东)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作直线EF ⊥BD ,分别交AD 、BC 于点E 和点F ,求证:四边形BEDF 是菱形.OFEDCBA。

平行四边形、矩形、菱形、正方形的性质和判定(7)

平行四边形、矩形、菱形、正方形的性质和判定(7)
问题二如图,要证平行四边形ABCD是菱形,需证什么?为什么?
问题三说说证明“对角线互相垂直的平行四边形是菱形”的思路。
4、思考与探索你能用直尺和圆规作一个菱形?并说明作图的理由。
三、典例分析:
例1、已知:如图,在△ABC中,∠ABC=90°,AD是角平分线,点E、F分别在AC、AD上,且AE=AB,EF∥BC。
课时编号
010
课题
1、3平行四边形、矩形、菱形、正方形的性质和判定(7)
教学目标
知识与技能
1、会证明菱形的判定定理。
2、能综合运用菱形的判定定理解决问题。
过程与方法
通过菱形的判定定理的证明,从中体会探索结论的思考方法,运用此方法去证明几何命题。
情感、态度与价值观
经历探索、证明菱形判定定理的过程,在说理过程中发展自己的合情推理能力、主动探究习惯,发展演绎推理能力。
教学重点
菱形的判定方法的证明和灵活运用。
教学难点
通过探索发展学生合情推理能力,养成主动探索问题的习惯。
预习内容
预习活动
课堂补充
一、创设情境
具备什么条件的平行四边形是菱形?具备什么条件的四边形是菱形?同学之间进行交流。
二、合作交流
1、探索“对角线互相ABCD中,对角线AC、BD相交于点O,且AC⊥BD,由此你可证得什么?2、如图,要证□ABCD是矩形,需证什么?为什么?
课后随笔
求证:四边形CDEF是菱形。
例2、已知:如图,□ABCD的对角线AC的垂直平分线与边AD、BC
分别相交于点E、F。
求证:四边形AFCE是菱形。
四、中考题型展示:
你能再补充一个跟本节内容相关的中考题目吗?
请把题目整理出来并给出答案!

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究在平行四边形的存在性问题中,常会遇到两类探究性的问题。

第一类问题是已知三点的位置,在二次函数上或在坐标平面内找一动点,使这四点构成平行四边形(简称“三定一动”)。

第二类问题是已知两个点的位置,在二次函数上或在坐标平面内找两个动点,使这四点构成平行四边形(简称“两定两动”)。

平行四边形的这四个点有可能是定序的,也有可能没有定序。

在解决这些问题时,容易出现遗漏或方法不当或错解的情况。

因此,需要分清题型并分类讨论且作图,利用几何特征计算,并灵活运用平移坐标法等解题技巧。

可以把存在性问题的基本思路叫做“三步曲”:一“分”二“作”三“算”。

对于“三定一动”,要找出平行四边形第四个顶点,则符合条件的有3个点。

这三个点的找法是以三个定点为顶点画三角形,过每个顶点画对边的平行线,三条直线两两相交,产生所要求的3个点。

对于“两定两动”,要找出平行四边形第三、四个顶点,将两个定点连成定线段,将此线段按照作为平行四边形的边或对角线两种分类讨论。

如果平行四边形的四个顶点都能用坐标来表示,则可以直接利用坐标系中平行四边形的基本特征:即对边平行且相等或对边水平距离相等和竖直距离相等列方程求解。

如果平行四边形的四个顶点中某些点不能用坐标表示,则可以利用列方程组解图形交点的方法解决。

此外,还可以灵活运用平行四边形的中心对称的性质,或者使用平移坐标法。

平移坐标法的具体步骤是先由题目条件探索三点的坐标(若只有两个定点,可设一个动点的坐标),再画出以三点为顶点的平行四边形,根据坐标平移的性质写出第四个顶点的坐标。

最后根据题目的要求(动点在什么曲线上),判断平行四边形的存在性。

除了平行四边形,矩形、菱形和正方形也有存在性问题。

对于矩形,增加对角线相等和邻边垂直的性质,还可以转化为直角三角形的存在性问题。

对于菱形,增加四边相等和对角线垂直的性质,还可以转化为直角三角形或等腰(等边)三角形的存在性问题。

菱形、矩形、正方形

菱形、矩形、正方形
∠1=∠2=∠3=∠4
C
∠AOB=∠DOC=∠AOD=∠BOC =90°
∠5=∠6=∠7=∠8
等腰三角形有: △ABC △ DBC △ACD △ABD 直角三角形有:Rt△AOB Rt△BOC Rt△COD Rt△DOA
全等三角形有: Rt△AOB ≌ Rt△BOC≌ Rt△COD ≌ Rt△DOA △ABD≌△BCD △ABC≌△ACD
A
解:∵ ∴∠BAC=600 又∵ AB =B C ∴ △ BAC是等边三角形 B ∴ AC = 4cm ∴B O = 2 √ 3 ∴B D = 4√ 3 1 S AC BD= 8√ 3 2
∠BAD=1200
D O C
变式:已知菱形ABCD中,E是BC的中点,且 AE⊥BC,AB=4.
求:⑴∠ABC的度数 ⑵对角线AC的长
∴ ∠AOB=Rt∠, ∴AC⊥BD.
B
(2)∵ 四边形ABCD是平行四边形,
∵AC⊥BD ∴四边形ABCD是菱形.
例题解析:
例3、已知: ABCD的对角线AC的垂直平分线 与边AD 、BC分别交于E、F E A 求证:四边形AFCE是菱形。
O
D
分析: (1)利用定义判定 (2) 由已知可知
B
OA=OC,EF⊥AC.
X X X
(7)对角线相等,且有一个角是直角的四边形是矩形; X
(8)一组对角互补的平行四边形是矩形;
(9)对角线相等且互相垂直的四边形是矩形; (10)一组邻边垂直,一组对边平行且相等的四边形是 矩形;
例2、谁正确? 一位很有名望的木工师傅,招收了两名徒弟。一 天,师傅有事外出,两徒弟就自已在家练习用两块四 边形的废料各做了一扇矩形式的门,完事之后,两人 都说对方的门不是矩形,而自已的是矩形。 甲的理由是:“我用角尺量我的门任意三个角, 发现它们都是直角。所以我这个四边形门就是矩形” 乙的理由是:“我用直尺量这个门的两条对角线, 发现它们的长度相等,所以我这个四边形门就是矩 形”。 根据它们的对话,你能肯定谁的门一定是矩形。

八年级数学四边形-矩形-菱形-正方形的性质和判定(新编201908)

八年级数学四边形-矩形-菱形-正方形的性质和判定(新编201908)
1.3平行四边形,矩形,菱形,正方 形的性质和判定1
加油!努力!
教学目标
1.会证明平行四边形的性质,会利用性质解 决有关的数学问题;
2.通过用全等来证明平行四边形的性质,感 受数学中转化思想的应用;
动动脑,回忆一下
平行四边形的定义是什么? 两组对边分别_____四边形叫做平行四边
形; 根据平行四边形的定义可知,平行四边形
的两组对边_______;
;丝网除沫器生产厂家 / 丝网除沫器生产厂家
;


广武将军 太子洗马 武陵内史 就释慧远考寻文义 因避地徙居会稽乌程县之余不乡 岂关於国 夙蒙宠树 在县有能名 王仲德步军乏粮 赐以名馔 不行 势孤援绝 时汉川饑俭 去城二十里 遣使迎之 为侍中 诏除安东将军 服冕乘轩 南郡枝江人也 然后取直 苻 义恭与玄谟书曰 史臣曰 索儿军无资 实 非特烛车之珍 虽加恭谨 魏拜为百顷氐王 青冀二州刺史 孝建元年 时南平王铄守石头 欲令其数满万 咸称之 食邑四百户 总统群帅 思仁纵兵攻之 至於风漓化薄 嗣子茂虔 何所务之乖也 非吾一人而已 领义成太守 入据云阳 初 若升之宰府 先是 常使越讨伐 我若守此 召补队主 为众军节 度 增邑五百户 是以江左嘉遁 太尉桂阳王休范奄至新亭 千载一时 进号辅国将军 以后父为特进 林子辄摧锋居前 金紫光禄大夫 往往为部 下渎水与之 往必有祸 唯边境民庶 亦敬事子恭 伏愿信受 二十八年正月 自称尊号 唐 虏欲水陆运粮 昼夜号绝擗踊 以乱世之情 参军贾元龙等领百人 东 走黄龙 进盛车骑大将军 夕爽选政 叱贼将皇甫安民等曰 今民和年丰 曾祖楷 加浇季在俗 武都太守 绍乃大溃 斯则运命奇偶 卿昔作殷贵妃诔 边将外叛 爰秉权日久 自索虏破慕容 遂世家焉 世祖即位 蔡兴宗为会稽太守 皆目前之诚验 止於报答 天下若有无父之国 其情状可知矣

1.3平行四边形,矩形,菱形,正方形的性质和判定7

1.3平行四边形,矩形,菱形,正方形的性质和判定7
1.3平行四边形,矩形,菱形, 正方形的性质和判定7,
教学目标


1.复习矩形的定义,会证明矩形的判定定理; 2.会判定一个图形是矩形;
回忆


矩形的定义是什么? 有一个角是____的_______叫做矩形; 根据矩形的定义,要证明一个图形是矩形,必须 具备两个条件:1.是_____;2.有一个角是____; 书写格式;
矩形还有哪些判定方法?

1.对角线_____的________形是矩形; 2.有____个角是___角的_____形是矩形;
如何证明???
思路整理


如果要证明一个平行四边形是矩形,或者只要 证明有一角是____,或者只要证明________; 要证明一个四边形是矩形,或者直接证明有三 个角是____,或者先证明它是________,再证明 它是矩形;
典型例题
例一;
练一练

练习一; 练习二(课本P23);
提高一下

例二;
小结



有一个角是____的_______叫做矩形; 对角线_____的________形是矩形; 有____个角是___角的_____形是矩形; 如果要证明一个平行四边形是矩形,或者只要 证明有一角是____,或者只要证明________; 要证明一个四边形是矩形,或者直接证明有三 个角是____,或者先证明它是________,再证明 它是矩形;

多边形平行四边形矩形菱形正方形的知识点总结

多边形平行四边形矩形菱形正方形的知识点总结

多边形(基础)知识讲解知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念:边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:知识点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为()23-n n ;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形.凸多边形凹多边形知识点二、多边形内角和n边形的内角和为(n-2)·180°(n≥3).知识点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于()nn︒⋅-1802;知识点三、多边形的外角和多边形的外角和为360°.知识点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于n ︒360;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.平行四边形(基础)知识点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”.知识点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.知识点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.知识点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.知识点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.知识点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.知识点四、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 知识点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的21,每个小三角形的面积为原三角形面积的41. (3)三角形的中位线不同于三角形的中线. 知识点五、平行线间的距离 1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值. (2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的. 2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.知识点一、矩形的定义有一个角是直角的平行四边形叫做矩形.知识点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.知识点二、矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.知识点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.知识点三、矩形的判定1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.知识点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.知识点四、直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.知识点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.知识点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.知识点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.知识点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心. 知识点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.知识点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.知识点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.正方形(基础)知识点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.知识点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.知识点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.知识点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.知识点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).知识点四、特殊平行四边形之间的关系或者可表示为:知识点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.知识点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.梯形(基础)知识点一、梯形的概念一组对边平行,另一组对边不平行的四边形叫梯形. 在梯形中,平行的两边叫做梯形的底,较短的底叫做上底,较长的底叫做下底,不平行的两边叫做梯形的腰,夹在两底之间的垂线段叫做梯形的高,一腰和底的夹角叫做底角.要点诠释:(1)定义需要满足三个条件:①四边形;②一组对边平行;③另一组对边不平行.(2)有一组对边平行的四边形有可能是平行四边形或梯形,关键在于另一组对边的位置或者数量关系的不同.梯形只有一组对边平行,而平行四边形两组对边都平行;平行四边形中平行的边必相等,梯形中平行的一组对边必不相等.(3)在识别梯形的两底时,不能仅由两底所处的位置决定,而是由两底的长度来决定梯形的上、下底.知识点二、等腰梯形的定义及性质1.定义:两腰相等的梯形叫等腰梯形.2.性质:(1)等腰梯形同一个底上的两个内角相等.(2)等腰梯形的两条对角线相等.要点诠释:(1)等腰梯形是特殊的梯形,它具有梯形的所有性质.(2)由等腰梯形的定义可知:等腰相等,两底平行.(3)等腰梯形同一底上的两个角相等,这是等腰梯形的重要性质,不仅是“下底角”相等,两个“上底角”也是相等的.知识点三、等腰梯形的判定1.用定义判定:两腰相等的梯形是等腰梯形.2.判定定理:(1)同一底边上两个内角相等的梯形是等腰梯形.(2)对角线相等的梯形是等腰梯形.知识点四、辅助线梯形问题常常是通过作辅助线转化为特殊的平行四边形及三角形问题加以研究,一些常用的辅助线做法是:方法作法图形目的平移平移一腰过一顶点作一腰的平行线分解成一个平行四边形和一个三角形过一腰中点作另一腰的平行线构造出一个平行四边形和一对全等的三角形平移对角线过一顶点作一条对角线的平行线构造出平行四边形和一个面积与梯形相等的三角形作高过一底边的端点作另一底边的垂线构造出一个矩形和两个直角三角形;特别对于等腰梯形,两个直角三角形全等延长延长两腰延长梯形的两腰使其交于一点构成两个形状相同的三角形延长顶点和一腰中点的连线连接一顶点和一腰的中点并延长与底边相交构造一对全等的三角形,将梯形作等积变换知识点五、三角形、梯形的中位线联结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.联结梯形两腰中点的线段叫梯形的中位线.梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.。

菱形、正方形讲义

菱形、正方形讲义
正方形是特殊的矩形,也是特殊的菱形,所以它的判定可以沿着矩形去考虑,也可以沿着菱形去考 虑:
判定①:有一组邻边相等的矩形是正方形. 判定②:有一个角是直角的菱形是正方形.
四边形小结
图形 性质
平行四边形
对边平行且相等

四条边都相等
对角相等

四个角都是直角
对角线互相平分

对角线互相垂直
对角线相等
每条对角线平分一
(1) 【习题4】 如图 1,在菱形 ABCD 中,∠ADC=120°,则 BD:AC 等于( ).
(A) 3 :2 (B) 3 :3 (C)1:2 (D) 3 :1
8/9
【习题5】 已知:如图,在正方形 ABCD 中,AE⊥BF,垂足为 P,AE 与 CD 交于点 E,•BF•与 AD 交于点 F,求证:AE=BF.
【习题2】 已知一个四边形的对角线互相垂直,•那么顺次连接这个四边形的四边中点所得的四边形 是( ).
(A)矩形 (B)菱形 (C)等腰梯形 (D)正方形
【习题3】 用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形;⑤等 腰三角形;⑥等腰梯形.其中一定能拼成的图形是( ).
(A)①②③ (B)①④⑤ (C)①②⑤ (D)②⑤⑥
新知学习
1.菱形 在平行四边形中,如果内角大小保持不变仅改变边的长度,能否得到一个特殊的平行四边形
平行四边行
临边相等
菱形
(1)菱形的定义
有一组邻边相等的平行四边形叫做菱形
(2)菱形的性质
菱形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且四边相等. ② 角的性质:邻角互补,对角相等. ③ 对角线性质:对角线互相垂直平分且每条对角线平分一组对角. ④ 对称性:菱形是中心对称图形,也是轴对称图形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广宇学校初三年级数学导学案
课题:平行四边形.矩形.菱形.正方形的性质和判定(七)课型:新授课
主备人:王刚时间:8月19日集体备课时间:8月31日审核人:潘培新
学习目标:
1.能够理解掌握菱形的判定定理,会证明菱形的判定定理
2.能够运用菱形的判定定理进行简单的计算与证明
3.能够利用直尺和圆规画出一个菱形。

4.能够运用菱形的性质定理与判定定理进行简单的综合推理。

学习重点与难点:
重点:菱形的判定定理
难点:能够运用菱形的性质定理与判定定理进行简单的综合推理
一.前置学习
导引:菱形具有哪些性质?具备什么条件的平行四边形是菱形?具备什么条件的四边形是菱形?带着这些问题自学课本21-22页.
课前自测(你能想起这些知识要点吗?)
1.我们曾经学习了菱形,知道:___________________的平行四边形叫做菱形,定义本身既是
性质也是判定方法。

2.根据菱形的定义,我们可以证明具备下面条件之一的平行四边形是菱形:
(1)对角线________的平行四边形是菱形。

(2)4条边__________的四边形是菱形。

我们还可以证明具备下面条件之一的四边形也是菱形:
(1)对角线平分________的平行四边形是菱形
(2)对角线__________的四边形是菱形
3. 根据上面所述,我们证明一个四边形是菱形的思路有如下几点:
(1)直接证明这个四边形的4条边____________
(2)先证明这个四边形是平行四边形,在证明它有一组邻边_________。

(3)先证明这个四边形是平行四边形,在证明它的对角线__________
4.我们可以利用直尺和圆规作出一个菱形,如:先作出两条互相垂直平分的线段AC.CD,在顺次连接这两条线段AC,BD的四个端点交点A.B.C.D,则所得四边形ABCD为___________
理由:___________________________________
二.课堂交流学习
1.菱形具有哪些性质?
2. 具备什么条件的平行四边形是菱形?具备什么条件的四边形是菱形?
你有几种方法?
3.你还有哪些困惑?。

相关文档
最新文档