平行四边形、矩形、菱形、正方形的判定
平行四边形的性质和判定 菱形梯形等腰梯形矩形正方形性质和判定

平行四边形的性质和判定菱形梯形等腰梯形矩形正方形性质和判定平行四边形的性质和判定定义:两组对边分别平行的四边形叫做平行四边形.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分 .判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形 .注意:一组对边平行,一组对角相等的四边形是平行四边形;一组对边平行,另一组对边相等的四边形不一定是平行四边形,如:等腰梯形菱形是四边相等的四边形,属於特殊的平行四边形,除了这些图形的性质之外,它还具有以下性质:对角线互相垂直平分;四条边都相等;对角相等,邻角互补;每条对角线平分一组对角.判定:一组邻边相等的平行四边形是菱形对角线互相垂直的平行四边形是菱形四边相等的四边形是菱形依次连接四边形各边中点所得的四边形称为中点四边形。
不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形。
菱形的中点四边形是矩形。
菱形面积:对角线相乘后除二或边长乘高;菱形周界为边长的四倍:顺次连接菱形各边中点为矩形正方形是特殊的菱形梯形是指一组对边平行而另一组对边不平行的四边形。
平行的两边叫做梯形的底,其中长边叫下底;不平行的两边叫腰;两底间的距离叫梯形的高。
一腰垂直于底的梯形叫直角梯形,两腰相等的梯形叫等腰梯形。
梯形的性质及判定:一组对边平行且另一组对边不平行的四边形是梯形,但要判断另一组对边不平行比较困难,一般用一组对边平行且不相等的四边形是梯形来判断。
等腰梯形性质:等腰梯形在同一底上的两个底角相等等腰梯形的两条对角线相等等腰梯形判定:1两腰相等的梯形是等腰梯形;2同一底上的两个角相等的梯形是等腰梯形;3对角线相等的梯形是等腰梯形.梯形的体积计算公式:V=〔S1+S2+开根号(S1*S2)〕/3*H注:V:体积;S1:上表面积;S2:下表面积;H:高。
菱形正方形长方形平行四边形 的特征

菱形正方形长方形平行四边形的特征一、菱形的特征菱形是一种四边形,它的四条边都相等且相互平行,同时它的对角线相互垂直且长度相等。
菱形的四个内角都是直角,即每个内角为90度。
菱形的特点使得它在几何学中具有重要的地位。
它具有对称性,即通过菱形的对角线可以将它分为两个完全相同的部分。
这种对称性在很多应用中都有着重要的作用。
二、正方形的特征正方形是一种特殊的菱形,它的四条边都相等且相互平行,同时它的四个内角都是直角。
正方形具有对称性和等边性,它的每个内角为90度,每条边的长度也相等。
正方形在日常生活中非常常见,例如我们常见的围棋棋盘、象棋棋盘、西洋棋棋盘等都是正方形的形状。
此外,在建筑中,很多房屋的平面图都是正方形或由多个正方形组成的。
三、长方形的特征长方形是一种特殊的平行四边形,它的两条对边相等且相互平行,同时它的四个内角都是直角。
长方形具有对称性和等边性,它的每个内角为90度,两条相对的边长度不同。
长方形在我们的日常生活中随处可见,例如书本的封面、电视机的屏幕、门窗的形状等都是长方形。
在建筑中,很多房屋的平面图都是长方形,例如我们常见的矩形房屋。
四、平行四边形的特征平行四边形是一种四边形,它的两对边分别相等且相互平行。
平行四边形的两对对边分别平行且相等,而且它的内角之和为360度。
平行四边形在我们的日常生活中也非常常见,例如书桌的形状、电视机架的形状、图画的边框等都是平行四边形的形状。
在建筑中,很多建筑物的地面、墙面等都是由平行四边形组成的。
五、菱形、正方形、长方形和平行四边形的应用菱形、正方形、长方形和平行四边形在我们的生活中有着广泛的应用。
例如,在建筑设计中,很多房屋的平面图都可以使用这些形状来描述。
在城市规划中,很多道路、街区等也是由这些形状组成的。
在工业生产中,很多产品的形状也可以使用这些形状来描述。
例如电视机、电脑显示屏等产品的外形常常是正方形或长方形的。
在艺术设计中,这些形状也常常被用来构图和设计。
1.3平行四边形,矩形,菱形,正方形的性质和判定

第三节 平行四边形,矩形,菱形,正方形的性质和判定(一)平行四边形的性质和判定 一.教学重难点:重点:平行四边形的性质证明. 难点:分析、综合思考的方法.二.知识点和考点:1.平行四边形的定义2.平行四边形的性质,面积3.平行四边形的判定4.三角形的中位线及其性质三.知识点讲解考点一: 平行四边形的定义考点二:平行四边形的性质(1)平行四边形的对边相等注:在证明题时使用格式是:∵四边形ABCD 是平行四边形,定义:有两组对边分别平行的四边形叫做平行四边形。
记做例1:如图:在中,如果E F ∥AD ,GH ∥CD ,EF 与GH 相交于点O ,那么图中的平行四边形一共有 ( ) A .4个 B 、5个 C 、8个 D 、9个例2:如图,E 、F 分别是边AD 、BC 上的点,并且AF ∥CE ,求证:∠AFB=∠DEC 。
∴AB=DC,AD=BC例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE。
例2.平行四边形的周长等于56cm,两邻边长的比为3:1,那么这个平行四边形较长的边长为(2).平行四边形的对角相等注:在证明题时使用格式是:∵四边形ABCD是平行四边形∴∠A=∠C,∠B=∠D例1.已知中,E、F是对角线AC上的两点,且AE=CF。
求证:∠ADF=∠CBE。
例2、在中,∠A、∠B的度数之比为5:4,则∠C等于()A、 B、 C、 D、(3)、平行四边形的对角线互相平分注:在证明题时使用格式是:∵四边形ABCD是平行四边形∴OA=OC,OB=OD例3.如图,,过其对角线交点O,引一直线交BC于E,交AD于F,若AB=2.4cm,BC=4cm,OE=1.1cm,求四边形ABEF的周长。
例4.如图,已知:中,AC、BD相交于O点,OE⊥AD于E,OF⊥BC于F,求证:OE=OF。
例5.如图,如果的周长之差为8,而AB:AD=3:2,那么的周长为多少?例6.如图,已知的周长为60cm,对角线AC、BD相交于点O,的周长长8cm,求这个四边形各边长.(4)平行四边形的面积如图(1),,也就是边长×高=ah(2)、同底(等底)同高(等高)的平行四边形面积相等。
1.3平行四边形,矩形,菱形,正方形的性质和判定1

再努力一下
除了由定义得到的性质(两组对边分别平 行),平行四边形还有哪些性质? 平行四边形的两组对边________; 平行四边形的两组对角________; 平行四边形的对角线__________;
如何证明????
性质定理1; 性质定理2; 性质定理3;
比比看,看谁想的快?
例一பைடு நூலகம் 例二; 练习;
提升一下,锻炼大脑
小结一下吧.
两组对边分别_____四边形叫做平行四边 形; 平行四边形的两组对边________; 平行四边形的两组对角________; 平行四边形的对角线__________;
初中数学九 上册 苏科
1.3平行四边形,矩形,菱形,正方 形的性质和判定1。
教学目标
1.会证明平行四边形的性质,会利用性质解 决有关的数学问题; 2.通过用全等来证明平行四边形的性质,感 受数学中转化思想的应用;
动动脑,回忆一下
平行四边形的定义是什么? 两组对边分别_____四边形叫做平行四边 形; 根据平行四边形的定义可知,平行四边形 的两组对边_______;
1.3平行四边形,矩形,菱形,正方形的性质和判定5

矩形
菱形
平行 四边 形
正方形的性质
因为正方形既是____,又是____,当然是_____,
所以同时具备_____,_____和______的性质; 具体来说: 边的性质:正方形的四条边____; 角的性质:正方形的四个角____; 对角线的性质:正方形的对角线互相________, 备_____,_____和______的性质;具体来说: 边的性质:正方形的四条边____; 角的性质:正方形的四个角____; 对角线的性质:正方形的对角线互相________,并且每 一条对角线平分_____; 正方形的一条对角线把正方形分成两个_____的 __________形;正方形的两条对角线把正方形分成四 个_____的__________形;
初中数学九 上册 苏科 1.3平行四边形,矩形,菱形,正
方形的性质和判定5.
教学目标
1.复习正方形的定义;分清平行四边形,矩形,菱
形和正方形的关系; 2.会证明正方形的性质,会利用性质解决有关的 数学问题;
回忆一下……
正方形的定义是什么? 既是______,又是_____的四边形叫做正方形; 平行四边形,矩形,菱形和正方形的关系:
还能推导出什么?
看图: 正方形的一条对角线把正方形分成两个_____
的__________形; 正方形的两条对角线把正方形分成四个_____ 的__________形;
试试看:
例一; 例二;
锻炼一下吧.
练习一; 练习二;
小结
既是______,又是_____的四边形叫做正方形; 因为正方形既是____,又是____,当然是_____,所以
1.3平行四边形,矩形,菱形,正方形的性质和判定7

教学目标
1.复习矩形的定义,会证明矩形的判定定理; 2.会判定一个图形是矩形;
回忆
矩形的定义是什么? 有一个角是____的_______叫做矩形; 根据矩形的定义,要证明一个图形是矩形,必须 具备两个条件:1.是_____;2.有一个角是____; 书写格式;
矩形还有哪些判定方法?
1.对角线_____的________形是矩形; 2.有____个角是___角的_____形是矩形;
如何证明???
思路整理
如果要证明一个平行四边形是矩形,或者只要 证明有一角是____,或者只要证明________; 要证明一个四边形是矩形,或者直接证明有三 个角是____,或者先证明它是________,再证明 它是矩形;
典型例题
例一;
练一练
练习一; 练习二(课本P23);
提高一下
例二;
小结
有一个角是____的_______叫做矩形; 对角线_____的________形是矩形; 有____个角是___角的_____形是矩形; 如果要证明一个平行四边形是矩形,或者只要 证明有一角是____,或者只要证明________; 要证明一个四边形是矩形,或者直接证明有三 个角是____,或者先证明它是________,再证明 它是矩形;
正方形的判定

⑸若AB=BC,且AC=BD,则四边形ABCD是
(正方形
)
精品课件
例2、直角三角形ABC中,CD平分∠ACB交AB于D,
DE⊥AC,DF⊥AB。求证:四边形CEDF是正方形。
证明:∵ DE⊥AC,DF⊥AB
∴ ∠DEC=90°, ∠DFC=90° F
而∠ACB=90°
B
D
A
∴ 四边形ABCD为矩形( 有三个角是直角的四边形是矩形 )
证明:
∵四边形ABCD是平行四边形,∠A=900,
∴四边形ABCD是矩形.
A
D
又∵AB=BC,
∴四边形ABCD是正方形.
B
C
精品课件
正方形的判定方法2:
有一个组邻边相等的矩形是正方形
已知:四边形ABCD是矩形,AB=BC.
求证:四边形ABCD是正方形.
D
证明:
∵四边形ABCD是矩形,
B
C
∴∠A=∠B=∠C=∠D=90°,AD=BC,AB=CD.
2
1
∴ ∠EFH=90 °
∴ 四边形EFGH是正方形 (有一个角是直角的菱形是正方形)
精品课件
设计花坛
在一块正方形的花坛上,欲修建两条直的小路 使得两条直的小路将花坛平均分成面积相等的 四部分(不考虑道路的宽度).你有几种方法?
的四边形一定是:(A )
A.正方形
B.菱形
C.矩形
D.平行四边形
精品课件
练习5、已知四边形ABCD是平行四边形,对 角线AC、BD相交于点O。
⑴若AB=BC,则四边形ABCD是( 菱形 ) ⑵若AC=BD,则四边形ABCD是( 矩形 ) ⑶若∠BCD=900,则四边形ABCD是( 矩形 ) ⑷若OA=OB,则四边形ABCD是( 矩形 )
数学平行四边形、菱形、矩形、正方形的定理、性质、判定

1. 定义: 两组对边分别平行的四边形叫做平行四边形。
2.性质:⑴如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的对边相等”)⑵如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的对角相等”)⑶夹在两条平行线间的平行线段相等。
⑷如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的两条对角线互相平分”)⑸平行四边形是中心对称图形,对称中心是两条对角线的交点。
3.判定:(1)如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形。
(简述为“两组对边分别相等的四边形是平行四边形”)(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
(简述为“一组对边平行且相等的四边形是平行四边形”)(3)如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形。
(简述为“对角线互相平分的四边形是平行四边形”)(4)如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形。
(简述为“两组对角分别相等的四边形是平行四边形”(5)如果一个四边形的两组对边分别平行,那么这个四边形是平行四边形。
(简述为“两组对边分别平行的四边形是平行四边形”)矩形的性质和判定定义:有一个角是直角的平行四边形叫做矩形.性质:①矩形的四个角都是直角;②矩形的对角线相等 .注意:矩形具有平行四边形的一切性质 .判定:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形 .菱形的性质和判定定义:有一组邻边相等的平行四边形叫做菱形.性质:①菱形的四条边都相等;②菱形的对角线互相垂直,并且每一条对角线平分一组对角 .注意:菱形也具有平行四边形的一切性质 .判定:①有一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形(4).有一条对角线平分一组对角的平行四边形是菱形正方形的性质和判定定义:有一组邻边相等并且有一角是直角的平行四边形叫做正方形.性质:①正方形的四个角都是直角,四条边都相等;②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 .判定:因为正方形具有平行四边形、矩形、菱形的一切性质,所以我们判定正方形有三个途径①四条边都相等的平行四边形是正方形②有一组临边相等的矩形是正方形③有一个角是直角的菱形是正方形梯形及特殊梯形的定义梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.(一组对边平行且不相等的四边形叫做梯形.)等腰梯形:两腰相等的梯形叫做等腰梯形. 直角梯形:一腰垂直于底的梯形叫做直角梯形.等腰梯形的性质1、等腰梯形两腰相等、两底平行;2、等腰梯形在同一底上的两个角相等;3、等腰梯形的对角线相等;4、等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴. 等腰梯形的判定1、两腰相等的梯形是等腰梯形;2、在同一底上的两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形.平行四边形性质定理1 平行四边形的对角相等平行四边形性质定理2 平行四边形的对边相等且平行平行四边形性质定理3 平行四边形的对角线互相平分平行四边形判定定理1 两组对角分别相等的四边形是平行四边形平行四边形判定定理2 两组对边分别相等的四边形是平行四边形平行四边形判定定理3 对角线互相平分的四边形是平行四边形平行四边形判定定理4 一组对边平行相等的四边形是平行四边形矩形性质定理1 矩形的四个角都是直角矩形性质定理2 矩形的对角线相等矩形判定定理1 有一个角是直角的平行四边形是矩形矩形判定定理2 对角线相等的平行四边形是矩形正方形性质定理1正方形的四个角都是直角,四条边都相等正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角菱形性质定理1 菱形的四条边都相等菱形性质定理2 菱形的对角线互相垂直菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1 四边都相等的四边形是菱形菱形判定定理2 对角线互相垂直的平行四边形是菱形菱形判定定理3是对称轴图形的平行四边形是菱形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形、矩形、菱形、正方形的判定
一、判定定理
二、平行四边形的判定 例1:(定义)如图,剪两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成了一个四边形.线段AD 和BC 的长度有什么关系?
例2:(一组对边平行且相等)已知:如图,AD ∥BC ,ED ∥BF ,且AF =CE .求证:四边形ABCD 是平行四边形.
练习:如图, □ABCD 中,G 是CD 上一点,BG 交AD 延长线于E,AF=CG, 100=∠DGE .
(1)试说明DF=BG; (2)试求AFD ∠的度数.
A B C D F
E G
例3:(两组对边分别相等)已知如图所示,在四边形ABCD 中,AB CD BC AD E F ==,,、是对角线AC 上两点,且AE CF =.求证:BE DF =.
练习:(1)、在平行四边形ABCD 中,E 、F 为对角线BD 上的三等分点。
求证:四边形AFCE 是平行四边形。
(2)已知,如图所示,在□ABCD 中,BN DM =,BE DF =.求证:四边形MENF 是平行四边形.
例4:(对角线互相平分)如图所示,□ABCD 中,AC BD 、相交于点O E F ,、在对角线BD 上,且BE DF =.试说明四边形AECF 的形状.
三、平行四边形判定综合
1、如图,在□ABCD 中,E F G H 、、、各点分别在AB BC CD DA 、、、上,且A E B F C G D ===,请说明:EG 与FH 互相平分.
A
E F
B
C
D A
E
B
C
F
D
O N
A M F C
B
E D A B E F C H G
2、以ABC △的三边AB BC CA 、、在BC 的同侧作等边ABD BCE CAF △、△、△,请说明:四边形ADEF 为平行四边形.如图所示.
3. 如图所示,四边形ABCD 中,AD BC CAD BCA E F =∠=∠,,、分别是AD 、BC 的中点,试说明OE OF AF CE =,∥.
4、(定义与性质综合)如图,BD 平分∠ABC,DE//BC,EF//AC,试判断BE 与CF 是否相等?并简要说明.
A B
C
D
E F
5. 如图,已知□ABCD 中,E F 、分别是对角线AC 延长线上的点,且
DE BF =,四边形BFDE 是平行四边形吗?说说你的理由.
6、如图,在□ABCD 中,E 是AD 的中点,CE 交BA 的延长线于点F . (1) 你能证明CD=AF 吗?
(2) 若BC =2CD,则∠F =∠BCF .
F
A C F
D
E
B
A E
C F
B O
F E D
C
B
A
四、矩形的判定
如图,在正方形ABCD中,点E、F分别在BC、CD上移动,但A到EF的距离AH始终保持与AB 长相等,问在E、F移动过程中:
(1)∠EAF的大小是否有变化?请说明理由.
(2)△ECF的周长是否有变化?请说明理由.
【提示】证明△EAH≌△EAB,△F AH≌△F AD.。