平行四边形、矩形、菱形、正方形知识点总结

合集下载

菱形正方形长方形平行四边形 的特征

菱形正方形长方形平行四边形 的特征

菱形正方形长方形平行四边形的特征一、菱形的特征菱形是一种四边形,它的四条边都相等且相互平行,同时它的对角线相互垂直且长度相等。

菱形的四个内角都是直角,即每个内角为90度。

菱形的特点使得它在几何学中具有重要的地位。

它具有对称性,即通过菱形的对角线可以将它分为两个完全相同的部分。

这种对称性在很多应用中都有着重要的作用。

二、正方形的特征正方形是一种特殊的菱形,它的四条边都相等且相互平行,同时它的四个内角都是直角。

正方形具有对称性和等边性,它的每个内角为90度,每条边的长度也相等。

正方形在日常生活中非常常见,例如我们常见的围棋棋盘、象棋棋盘、西洋棋棋盘等都是正方形的形状。

此外,在建筑中,很多房屋的平面图都是正方形或由多个正方形组成的。

三、长方形的特征长方形是一种特殊的平行四边形,它的两条对边相等且相互平行,同时它的四个内角都是直角。

长方形具有对称性和等边性,它的每个内角为90度,两条相对的边长度不同。

长方形在我们的日常生活中随处可见,例如书本的封面、电视机的屏幕、门窗的形状等都是长方形。

在建筑中,很多房屋的平面图都是长方形,例如我们常见的矩形房屋。

四、平行四边形的特征平行四边形是一种四边形,它的两对边分别相等且相互平行。

平行四边形的两对对边分别平行且相等,而且它的内角之和为360度。

平行四边形在我们的日常生活中也非常常见,例如书桌的形状、电视机架的形状、图画的边框等都是平行四边形的形状。

在建筑中,很多建筑物的地面、墙面等都是由平行四边形组成的。

五、菱形、正方形、长方形和平行四边形的应用菱形、正方形、长方形和平行四边形在我们的生活中有着广泛的应用。

例如,在建筑设计中,很多房屋的平面图都可以使用这些形状来描述。

在城市规划中,很多道路、街区等也是由这些形状组成的。

在工业生产中,很多产品的形状也可以使用这些形状来描述。

例如电视机、电脑显示屏等产品的外形常常是正方形或长方形的。

在艺术设计中,这些形状也常常被用来构图和设计。

1.3平行四边形,矩形,菱形,正方形的性质和判定

1.3平行四边形,矩形,菱形,正方形的性质和判定

第三节 平行四边形,矩形,菱形,正方形的性质和判定(一)平行四边形的性质和判定 一.教学重难点:重点:平行四边形的性质证明. 难点:分析、综合思考的方法.二.知识点和考点:1.平行四边形的定义2.平行四边形的性质,面积3.平行四边形的判定4.三角形的中位线及其性质三.知识点讲解考点一: 平行四边形的定义考点二:平行四边形的性质(1)平行四边形的对边相等注:在证明题时使用格式是:∵四边形ABCD 是平行四边形,定义:有两组对边分别平行的四边形叫做平行四边形。

记做例1:如图:在中,如果E F ∥AD ,GH ∥CD ,EF 与GH 相交于点O ,那么图中的平行四边形一共有 ( ) A .4个 B 、5个 C 、8个 D 、9个例2:如图,E 、F 分别是边AD 、BC 上的点,并且AF ∥CE ,求证:∠AFB=∠DEC 。

∴AB=DC,AD=BC例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE。

例2.平行四边形的周长等于56cm,两邻边长的比为3:1,那么这个平行四边形较长的边长为(2).平行四边形的对角相等注:在证明题时使用格式是:∵四边形ABCD是平行四边形∴∠A=∠C,∠B=∠D例1.已知中,E、F是对角线AC上的两点,且AE=CF。

求证:∠ADF=∠CBE。

例2、在中,∠A、∠B的度数之比为5:4,则∠C等于()A、 B、 C、 D、(3)、平行四边形的对角线互相平分注:在证明题时使用格式是:∵四边形ABCD是平行四边形∴OA=OC,OB=OD例3.如图,,过其对角线交点O,引一直线交BC于E,交AD于F,若AB=2.4cm,BC=4cm,OE=1.1cm,求四边形ABEF的周长。

例4.如图,已知:中,AC、BD相交于O点,OE⊥AD于E,OF⊥BC于F,求证:OE=OF。

例5.如图,如果的周长之差为8,而AB:AD=3:2,那么的周长为多少?例6.如图,已知的周长为60cm,对角线AC、BD相交于点O,的周长长8cm,求这个四边形各边长.(4)平行四边形的面积如图(1),,也就是边长×高=ah(2)、同底(等底)同高(等高)的平行四边形面积相等。

矩形、菱形、正方形】5大知识要点总结

矩形、菱形、正方形】5大知识要点总结

1. 矩形、菱形和正方形的定义及特点- 矩形是指具有四个直角的四边形,对角线相等,且相对边长相等。

- 菱形是指具有四个边长相等的四边形,对角线垂直且平分。

- 正方形是一种特殊的矩形和菱形,具有四个直角和四个边长相等的特点。

2. 矩形、菱形和正方形的性质和公式- 矩形的周长和面积分别用公式2*(长+宽)和长*宽表示。

- 菱形的周长和面积分别用公式4*边长和(对角线1*对角线2)/2表示。

- 正方形的周长和面积分别用公式4*边长和边长^2表示。

3. 矩形、菱形和正方形在几何图形中的应用- 矩形常见于建筑物的平面设计、画框、电视屏幕等。

- 菱形在菱形格子、菱形图案、梁的截面等中常见应用。

- 正方形常见于棋盘、地砖、窗户等设计中。

4. 矩形、菱形和正方形与其他几何图形的联系和区别- 矩形是特殊的平行四边形,与平行四边形和正方形有联系。

- 菱形是特殊的平行四边形,与平行四边形和正方形有联系。

- 正方形是特殊的矩形和菱形,具有独特的特点和应用。

5. 实际生活中的矩形、菱形和正方形的应用案例- 通过实际案例,解释矩形、菱形和正方形在生活中的运用和意义,如建筑结构、家居设计、工程绘图等。

- 分析实际案例中矩形、菱形和正方形的优缺点,引导读者对几何图形的深入思考和应用。

个人观点和总结通过对矩形、菱形和正方形的深入研究和比较,我深刻地认识到这些几何图形在我们日常生活中的重要性和应用广泛性。

它们不仅是数学中的重要概念,也是实际工程和设计中不可或缺的元素。

在未来的学习和工作中,我将更加注重对这些几何图形的认识和运用,以提高自己的学术和职业能力。

PS: 本文仅代表个人观点,如有不同意见,请指正。

矩形、菱形和正方形是我们生活中常见的几何图形,它们在建筑、设计、工程、艺术等领域都有着广泛的应用。

下面将对它们在不同领域的具体应用进行更详细地介绍。

我们来看矩形在建筑和设计中的应用。

矩形具有四个直角和对角线相等的特点,这使得它成为建筑物中常见的平面结构。

菱形正方形长方形平行四边形 的特征

菱形正方形长方形平行四边形 的特征

菱形正方形长方形平行四边形的特征平面几何是数学中非常重要的分支之一。

它是研究平面内点、线、面以及它们之间的关系的学问。

在平面几何中,有许多不同的几何图形,包括圆形、三角形、四边形、梯形、矩形等等。

本文将重点探讨菱形、正方形、长方形和平行四边形这几种特殊的几何图形。

第一种几何图形是菱形。

菱形是一种四边形,其中每一边的长度相等,且两对相邻的边平行。

它也是一种特殊的矩形,因为它具有与矩形相同的两组相等的对角线,并且每一对对角线相交于90度的角。

因此,我们可以得出菱形的几个特征:1、菱形是一种四边形,其中每一边的长度相等,且两对相邻的边平行。

2、每一对对角线相等,并且相交于90度的角。

3、菱形的面积等于对角线之积的一半。

4、菱形的内角和为360度。

接下来是正方形。

正方形是一种四边形,其中四条边长度相等,且每个角都是直角。

因此,它也是一种特殊的矩形和菱形。

正方形具有以下几个特征:1、正方形是一种四边形,其中四条边长度相等,每个角都是直角。

2、正方形的对角线相等,并且相交于90度的角。

3、正方形的面积等于边长的平方。

4、正方形的内角和为360度。

第三种几何图形是长方形。

长方形是一种四边形,其中两对相邻的边相等,但不一定平行。

长方形也是一种特殊的平行四边形和矩形。

长方形的几个特征如下:1、长方形是一种四边形,其中两对相邻的边长度相等,但不一定平行。

2、长方形的对角线长度不一定相等,并且相交于90度的角。

3、长方形的面积等于宽度乘以长度。

4、长方形的内角和为360度。

最后是平行四边形。

平行四边形是一种四边形,其中两对相邻的边平行。

平行四边形也是一种特殊的梯形,但它的两对相邻的边长度相等。

平行四边形的几个特征包括:1、平行四边形是一种四边形,其中两对相邻的边平行。

2、平行四边形的对角线不一定相等,并且相交于90度的角。

3、平行四边形的面积等于底边乘以高度。

4、平行四边形的内角和为360度。

总结而言,菱形、正方形、长方形和平行四边形都是常见的几何图形。

最新(精典整理)--平行四边形、矩形、菱形、正方形知识点总结

最新(精典整理)--平行四边形、矩形、菱形、正方形知识点总结

平行四边形、矩形、菱形、正方形知识方法总结一. 平行四边形、矩形、菱形、正方形的性质:二. 判断(识别)方法小结:(1) 识别平行四边形的方法:(从边、角、对角线3方面)①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形; ④两组对角分别相等的四边形是平行四边形; ⑤对角线互相平分的四边形是平行四边形。

(2) 识别矩形的方法:(从定义、特殊元素(角、对角线)3方面) ①有一个角是直角的平行四边形是矩形;( t R ⊕∠一个 ) ②对角线相等的平行四边形是矩形; ( ⊕对角线 =) ③有三个角是直角的四边形是矩形; (3t R ∠个 )④对角线相等且互相平分的四边形是矩形。

( ⊕对角线互相平分对角线 =)(3) 识别菱形的方法:(从定义、特殊元素(边、对角线)3方面) ①有一组邻边相等的平行四边形是菱形; ( =⊕ 一组邻边 ) ②对角线互相垂直的平行四边形是菱形; ( ⊕⊥对角线 ) ③四边都相等的四边形是菱形; (4= 边)④对角线互相垂直平分的四边形是菱形。

( ⊕⊥对角线互相平分对角线 ) (4) 识别正方形的方法:(从边、角、对角线3方面) 抓本质:矩形+菱形 ①有一组邻边相等且有一个角是直角的平行四边形是正方形;( = Rt ∠⊕⊕ 一组邻边一个 )②对角线互相垂直且相等的平行四边形是正方形; (⊕⊕⊥=对角线 对角线)③有一组邻边相等的矩形是正方形; ( =⊕ 矩形一组邻边 )④对角线互相垂直的矩形是正方形; ( ⊕⊥矩形对角线 ) ⑤有一个角是直角的菱形是正方形; ( Rt ∠⊕菱形一个 ) ⑥对角线相等的菱形是正方形; (⊕=菱形 对角线)⑦对角线互相垂直平分且相等的四边形是正方形。

( ⊕⊕⊥=对角线互相平分对角线 对角线) 小结:把以上识别方法的编号分别填入下图中的每一条带方向的线上:(如平行四边形的第一种识别方法的编号为 (1) ①,其他方法类似)三、其他性质:1、平行四边形、矩形、菱形、正方形(平行四边形系列图形):都具有的(1)与面积有关的:任意一条对角线分得的两部分面积___________;两条对角线分得的四部分面积________。

四边形的知识点总结

四边形的知识点总结

四边形的知识点总结四边形是指具有四条边的图形。

在数学中,我们经常会遇到各种不同类型的四边形,包括矩形、正方形、平行四边形、梯形、菱形等。

本篇文章将为大家总结四边形的各种知识点,让大家对这些图形有更深入的了解。

一、矩形矩形是指四边都相等且所有内角都是直角的四边形。

下面是矩形的主要特点:1. 矩形的对角线相等。

2. 矩形的面积可以用长和宽相乘得到,即S=lw。

3. 矩形的周长可以用四条边长之和得到,即P=2(l+w)。

4. 矩形的内角都是90度。

5. 根据勾股定理,矩形的长、宽和对角线之间有如下关系:l^2+w^2=d^2,其中d为对角线的长度。

二、正方形正方形是指四边都相等且所有内角都是90度的矩形。

下面是正方形的主要特点:1. 正方形的四条边等长。

2. 正方形的对角线相等且垂直。

3. 正方形的面积可以用任意一条边长的平方得到,即S=a^2。

4. 正方形的周长可以用四条边长之和得到,即P=4a。

5. 角平分线和中线在正方形中重合且同时是对角线的中垂线。

三、平行四边形平行四边形是指具有相对边平行的四边形。

下面是平行四边形的主要特点:1. 平行四边形的对边平行且相等。

2. 平行四边形的邻边互相平行。

3. 平行四边形的内角和为360度。

4. 平行四边形的面积可以用底边长和高得到,即S=bh。

5. 平行四边形的周长可以用两倍的底边长加两倍的高得到,即P=2(b+h)。

四、梯形梯形是指有一对相对边平行的四边形。

下面是梯形的主要特点:1. 梯形的两组对边各自相等。

2. 梯形的内角和为360度。

3. 梯形的面积可以用底边长和高得到,即S=(a+b)h/2。

4. 梯形的周长可以用四条边长之和得到,即P=a+b+c+d。

5. 梯形的高线可以将梯形分成两个三角形,面积为这两个三角形面积之和,即h=h1+h2。

五、菱形菱形是指四边相等且对角线相等的四边形。

下面是菱形的主要特点:1. 菱形的两组对边各自平行且相等。

2. 菱形的对角线相等且垂直。

平行四边形、矩形、菱形、正方形知识点总结

平行四边形、矩形、菱形、正方形知识点总结

平行四边形、矩形、菱形、正方形知识点总结一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2)表示方法:用“2.熟练掌握性质”表示平行四边形,例如:平行四边形 ABCD 记作ABCD,读作“平行四边形 ABCD”.平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S =底⨯高 =a h;3.平行四边形的判别方法②平行四边形的对角线将四边形分成 4 个面积相等的三角形.①定义:两组对边分别平行的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、.几种特殊四边形的有关概念②方法1:两组对角分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;③对角线:对角线互相平分且相等;(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;④对称性:轴对称图形(对边中点连线所在直线,2 条).②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为 450;④对称性:轴对称图形(4 条).④对称性:轴对称图形(对角线所在直线,2 条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补③对角线:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;④有一个角是直角的菱形③对角线互相垂直的矩形.⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形 ABCD 为平行四边形,再说明平行四边形 ABCD 的任意一个角为直角.②先说明四边形 ABCD 为平行四边形,再说明平行四边形 ABCD 的对角线相等.③说明四边形 ABCD 的三个角是直角.(2)识别菱形的常用方法①先说明四边形 ABCD 为平行四边形,再说明平行四边形 ABCD 的任一组邻边相等.②先说明四边形 ABCD 为平行四边形,再说明对角线互相垂直.③说明四边形 ABCD 的四条相等.(3)识别正方形的常用方法①先说明四边形 ABCD 为平行四边形,再说明平行四边形 ABCD 的一个角为直角且有一组邻边相等.②先说明四边形 ABCD 为平行四边形,再说明对角线互相垂直且相等.③先说明四边形 ABCD 为矩形,再说明矩形的一组邻边相等.④先说明四边形 ABCD 为菱形,再说明菱形 ABCD 的一个角为直角.(4)识别等腰梯形的常用方法①先说明四边形 ABCD 为梯形,再说明两腰相等.②先说明四边形 ABCD 为梯形,再说明同一底上的两个内角相等.③先说明四边形 ABCD 为梯形,再说明对角线相等.5.几种特殊四边形的面积问题①设矩形 ABCD 的两邻边长分别为 a,b,则 S 矩形=ab.1②设菱形 ABCD 的一边长为 a,高为 h,则 S 菱形=ah;若菱形的两对角线的长分别为 a,b,则 S 菱形= ab.21③设正方形 ABCD 的一边长为 a,则 S 正方形= a 2 ;若正方形的对角线的长为 a,则 S 正方形= a2 .21④设梯形 ABCD 的上底为 a,下底为 b,高为 h,则 S 梯形= (a b)h .2平行四边形矩形菱形正方形图形1.对边1.对边且1.对边且四条边都2.对角1.对边且四条边都2.对角且;;;;2.对角邻角;;2.对角;且四个角都是;3.对角线且四个角都是;性质3.对角线且每3.对角线;3.对角线条对角线且每条对角;;;线面积。

四边形的分类知识点

四边形的分类知识点

四边形的分类知识点四边形是指具有四条边的平面图形,它们在几何学中属于重要的基础概念。

根据四边形的特征和属性,可以将其进行分类。

本文将介绍四边形的分类知识点,包括平行四边形、矩形、正方形和菱形。

1. 平行四边形平行四边形是指四边形的对边两两平行。

特点如下:- 两对对边分别平行:即AB∥CD, AD∥BC。

- 对角线互相平分:即AC和BD互相平分。

- 对边长度相等:即AB=CD, AD=BC。

- 对角线长度不等:即AC≠BD。

平行四边形的性质:- 对角线互相平分:即AC和BD互相平分。

- 内角和为360°:即∠A+∠B+∠C+∠D=360°。

- 对边共线:即AB和CD共线,AD和BC共线。

2. 矩形矩形是指四边形的四个内角均为直角的特殊平行四边形。

特点如下:- 对边两两平行:即AB∥CD, AD∥BC。

- 对角线互相平分:即AC和BD互相平分。

- 对边长度相等:即AB=CD, AD=BC。

- 内角均为直角:即∠A=∠B=∠C=∠D=90°。

矩形的性质:- 对边共线:即AB和CD共线,AD和BC共线。

- 对角线相等:即AC=BD。

- 相对边长度相等:即AB=CD, AD=BC。

- 两个相邻内角的和为直角:即∠A+∠B=90°,∠B+∠C=90°,∠C+∠D=90°,∠D+∠A=90°。

3. 正方形正方形是指四边形的四条边长均相等且四个内角均为直角的特殊矩形。

特点如下:- 对边两两平行:即AB∥CD, AD∥BC。

- 对角线互相平分:即AC和BD互相平分。

- 对边长度相等:即AB=CD, AD=BC。

- 内角均为直角:即∠A=∠B=∠C=∠D=90°。

- 边长相等:即AB=BC=CD=DA。

正方形的性质:- 对边共线:即AB和CD共线,AD和BC共线。

- 对角线相等:即AC=BD。

- 相对边长度相等且相等于对角线长度的平方根:即AB=BC=CD=DA=AC=BD。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形、矩形、菱形、正方形知识点总结
-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
2
平行四边形、矩形、菱形、正方形知识点总结
1. 平行四边形、矩形、菱形、正方形的性质: 平行四边形
矩形
菱形
正方形
图形
性 质 边 对边平行且相等 对边平行且相等
对边平行,四边相等
对边平行,四边相等
角 对角相等,邻角互补
四个角都是直角 对角相等
四个角都是直角 对角线
互相平分
互相平分且相等 互相垂直平分,且
每条对角线平分一
组对角
互相垂直平分且相等,每条对角线平分一组对角
对称性
只是中心对称图形
既是轴对称图形,又是中心对称图形
面积
ah =S ab =S
212
1
S d d =
(注:d 1,d 2为菱形两条对角线的长度。


2S a =
2. 判定方法小结: (1) 平行四边形:
①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③两组对角分别相等的四边形是平行四边形; ④对角线互相平分的四边形是平行四边形;
⑤一组对边平行且相等的四边形是平行四边形。

(2) 矩形:有一个角是直角的平行四边形叫做矩形。

①有一个角是直角的平行四边形是矩形; ②对角线相等的平行四边形是矩形; ③有三个角是直角的四边形是矩形; ④对角线相等且互相平分的四边形是矩形。

(3) 菱形:有一组邻边相等的平行四边形叫做菱形. ①有一组邻边相等的平行四边形是菱形; ②对角线互相垂直的平行四边形是菱形;
③四边都相等的四边形是菱形; ④对角线互相垂直平分的四边形是菱形。

(4) 正方形:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。

①有一组邻边相等且有一个角是直角的平行四边形是正方形; ②对角线互相垂直且相等的平行四边形是正方形;
③有一组邻边相等的矩形是正方形; ④对角线互相垂直的矩形是正方形;
⑤有一个角是直角的菱形是正方形; ⑥对角线相等的菱形是正方形;
⑦对角线互相垂直平分且相等的四边形是正方形。

3。

相关文档
最新文档