江苏初三初中数学专题试卷带答案解析

合集下载

2024年江苏省盐城市中考数学试卷正式版含答案解析

2024年江苏省盐城市中考数学试卷正式版含答案解析

绝密★启用前2024年江苏省盐城市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.有理数2024的相反数是( )A. 2024B. −2024C. 12024D. −120242.下列四幅图片中的主体事物,在现实运动中属于翻折的是( )A. 工作中的雨刮器B. 移动中的黑板C. 折叠中的纸片D. 骑行中的自行车3.下列运算正确的是( )A. a6÷a2=a4B. 2a−a=2C. a3⋅a2=a6D. (a3)2=a54.盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为( )A. 0.24×107B. 24×105C. 2.4×107D. 2.4×1065.正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是( )A. 湿B. 地C. 之D. 都6.小明将一块直角三角板摆放在直尺上,如图,若∠1=55∘,则∠2的度数为( )A. 25∘B. 35∘C. 45∘D. 55∘7.矩形相邻两边长分别为√ 2cm、√ 5cm,设其面积为Scm2,则S在哪两个连续整数之间( )A. 1和2B. 2和3C. 3和4D. 4和58.甲、乙两家公司2019∼2023年的利润统计图如下,比较这两家公司的利润增长情况( )A. 甲始终比乙快B. 甲先比乙慢,后比乙快C. 甲始终比乙慢D. 甲先比乙快,后比乙慢第II卷(非选择题)二、填空题:本题共8小题,每小题3分,共24分。

2023年江苏省南京市中考数学试卷+答案解析

2023年江苏省南京市中考数学试卷+答案解析

2023年江苏省南京市中考数学试卷一、选择题:本题共6小题,每小题3分,共18分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.全国深入践行习近平生态文明思想,科学开展大规模国土绿化行动,厚植美丽中国亮丽底色,去年完成造林约3830000公顷.用科学记数法表示3830000是()A. B. C. D.2.整数a满足,则a的值为()A.3B.4C.5D.63.若一个等腰三角形的腰长为3,则它的周长可能是()A.5B.10C.15D.204.甲、乙两地相距100km,汽车从甲地匀速行驶到乙地,则汽车行驶的时间单位:与行驶速度单位:之间的函数图象是()A. B. C. D.5.我国南宋数学家秦九韶的著作《数书九章》中有一道问题:“问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步,欲知为田几何?”问题大意:如图,在中,里,里,里,则的面积是()A.80平方里B.82平方里C.84平方里D.86平方里6.如图,不等臂跷跷板AB的一端A碰到地面时,另一端B到地面的高度为60cm;当AB的一端B碰到地面时,另一端A到地面的高度为90cm,则跷跷板AB的支撑点O到地面的高度OH是()A.36cmB.40cmC.42cmD.45cm二、填空题:本题共10小题,每小题3分,共30分。

7.计算:____;____.8.若式子在实数范围内有意义,则x的取值范围是_______.9.计算的结果是_______________.10.分解因式的结果是___________.11.计算的结果是__________________.12.某校九年级有8个班级,人数分别为37,a,32,36,37,32,38,若这组数据的众数为32,则这组数据的中位数为______.13.甲车从A地出发匀速行驶,它行驶的路程单位:与行驶的时间单位:之间的函数关系如图所示.甲车出发后,乙车从A地出发沿同一路线匀速行驶.若乙车经过追上甲车,则乙车的速度单位:的取值范围是___________________.14.在平面直角坐标系中,点O为原点,点A在第一象限,且若反比例函数的图象经过点A,则k的取值范围是___________________.15.如图,与正六边形ABCDEF的边CD,EF分别相切于点C,若,则的半径长为___________________.16.如图,在菱形纸片ABCD中,点E在边AB上,将纸片沿CE折叠,点B落在处,,垂足为若,,则__________________三、解答题:本题共11小题,共88分。

2024年江苏省淮安市中考数学试卷(含答案)

2024年江苏省淮安市中考数学试卷(含答案)

2024年江苏省淮安市中考数学试卷一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列实数中,比−2小的数是( )A. −1B. 0C. 2D. −32.下列计算正确的是( )A. a⋅a3=a4B. a2+a3=a5C. a6÷a=a6D. (a3)4=a73.中国古典建筑中的镂空砖雕图案精美,下列砖雕图案中不是中心对称图形的是( )A. B. C. D.4.如图,AB//CD,点E在直线AB上,点F、G在直线CD上,∠FEG=90°,∠EGF=28°,则∠AEF的度数是( )A. 46°B. 56°C. 62°D. 72°5.用一根小木棒与两根长度分别为3cm、5cm的小木棒组成三角形,则这根小木棒的长度可以是( )A. 9cmB. 7cmC. 2cmD. 1cm6.若关于x的一元二次方程x2−4x+k=0有2个不相等的实数根,则k的取值范围是( )A. k≥4B. k>4C. k≤4D. k<47.如图,用9个直角三角形纸片拼成一个类似海螺的图形,其中每一个直角三角形都有一条直角边长为1.记这个图形的周长(实线部分)为l,则下列整数与l最接近的是( )A. 14B. 13C. 12D. 118.如图,在▱ABCD中,AB=2,BC=3,∠B=60°,P是BC边上的动点(BP>1),将△ABP沿AP翻折得△AB′P,射线PB′与射线AD交于点E.下列说法不正确的是( )A. 当AB′⊥AB时,B′A=B′EB. 当点B′落在AD上时,四边形ABPB′是菱形C. 在点P运动的过程中,线段AE的最小值为2AP⋅BB′D. 连接BB′,则四边形ABPB′的面积始终等于12二、填空题:本题共8小题,每小题3分,共24分。

=______.9.计算:8×1210.分解因式:a2−16=______.11.2024年5月3日嫦娥六号成功发射,它将在相距约380000km的地月之间完成月壤样品的“空中接力”.数据380000用科学记数法表示为______.12.一只不透明的袋中装有8个白球和若干个红球,这些球除颜色外都相同,搅匀后每次随机从袋中摸出一个球,记下颜色后放回袋中.通过大量重复摸球试验后发现,摸到白球的频率是0.4,则袋中约有红球___个.13.如图,△ABC是⊙O的内接三角形,∠BAC=50°,⊙O半径为3,则BC的长为______.14.一辆轿车从A地驶向B地,设出发x ℎ后,这辆轿车离B地路程为y km,已知y与x之间的函数表达式为y=200−80x,则轿车从A地到达B地所用时间是______ℎ.15.某公园广场的地面由形状、大小完全相同的一种地砖密铺(无空隙、不重叠的拼接)而成,铺设方式如图1.图2是其中一块地砖的示意图,AB=EF,CD=GH,BC=FG,BC//FG,AB//CD//GH//EF,部分尺寸如图所示(单位:dm).结合图1、图2信息,可求得BC的长度是______dm.16.如图,点P是正六边形ABCDEF的边AB的中点,一束光线从点P出发,照射到镜面EF上的点Q处,经反射后恰好经过顶点C.已知正六边形的边长为2,则EQ=______.三、解答题:本题共11小题,共102分。

2024年江苏省苏州市中考真题数学试卷含答案解析

2024年江苏省苏州市中考真题数学试卷含答案解析

2024年江苏省苏州市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.用数轴上的点表示下列各数,其中与原点距离最近的是()A.3-B.1C.2D.32.下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【分析】此题主要考查轴对称图形的概念,掌握轴对称图形的概念是解题的关键.根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选:A.3.苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.102.4710⨯D.1224710⨯⨯C.12247102.4710⨯B.10【答案】C【分析】本题考查的是科学记数法-表示较大的数,把一个大于10的数记成10na⨯的形式,其中a 是整数数位只有一位的数,n 是正整数,这种记数法叫做科学记数法.根据科学记数法-表示较大的数的方法解答.【详解】解:122470000000000 2.4710=⨯,故选:C .4.若1a b >-,则下列结论一定正确的是( )A .1a b+<B .1a b -<C .a b >D .1a b+>【答案】D【分析】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.不等式的性质:不等式的两边同时加上或减去同一个数或字母,不等号方向不变;不等式的两边同时乘以或除以同一个正数,不等号方向不变;不等式的两边同时乘以或除以同一个负数,不等号方向改变.直接利用不等式的性质逐一判断即可.【详解】解:1a b >-,A 、1a b +>,故错误,该选项不合题意;B 、12a b ->-,故错误,该选项不合题意;C 、无法得出a b >,故错误,该选项不合题意;D 、1a b +>,故正确,该选项符合题意;故选:D .5.如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒【答案】B 【分析】题目主要考查平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∴3180155BAD ∠=︒-∠-∠=︒,故选:B6.某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择( )A .甲、丁B .乙、戊C .丙、丁D .丙、戊【答案】C 【分析】本题主要考查了用中位数做决策,由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要选择100克以上的一个盲盒和100克以下的盲盒一个,根据选项即可得出正确的答案.【详解】解:由图像可知,要使选定7个盲盒质量的中位数仍为100,则需要从第6号盲盒和第7号盲盒里选择100克以上的一个盲盒和100克以下的盲盒一个,因此可排除甲、丁,乙、戊,丙、戊故选:C .7.如图,点A 为反比例函数()10y x x =-<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例()40y x x =>的图象交于点B ,则AO BO 的值为( )A .12B .14C D .13∴11122ACO S=⨯-= ,142BDO S =⨯= ∵OA OB ⊥,∴90AOC OBD BOD ∠=∠=︒-∠,∴AOC OBD △∽△,8.如图,矩形ABCD 中,AB ,1BC =,动点E ,F 分别从点A ,C 同时出发,以每秒1个单位长度的速度沿AB ,CD 向终点B ,D 运动,过点E ,F 作直线l ,过点A 作直线l 的垂线,垂足为G ,则AG 的最大值为( )A B 2C .2D .1【答案】D 【分析】连接AC ,BD 交于点O ,取OA 中点H ,连接GH ,根据直角三角形斜边中线的性质,可以得出G 的轨迹,从而求出AG 的最大值.∵四边形ABCD 是矩形,∴90ABC ∠=︒,OA OC =,AB ∴在Rt ABC △中,AC AB =∴112OA OC AC ===,二、填空题9.计算:32x x ⋅= .【答案】5x 【分析】利用同底数幂的乘法解题即可.【详解】解:32325x x x x +⋅==,故答案为:5x .【点睛】本题考查了同底数幂的乘法,掌握相应的运算法则是解题的关键.10.若2a b =+,则()2b a -= .【答案】4【分析】本题考查了求代数式的值,把2a b =+整体代入化简计算即可.【详解】解:∵2a b =+,∴()2b a -()22b b ⎡⎤=-+⎣⎦()22b b =--()22=-4=,故答案为:4.11.如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是 .12.如图,ABC 是O 的内接三角形,若28OBC ∠=︒,则A ∠= .∵OB OC =,OBC ∠∴OCB OBC ∠=∠∴801OC OC B ∠∠=︒-113.直线1:1l y x =-与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15︒,得到直线2l ,则直线2l 对应的函数表达式是 .设1l 与y 轴的交点为点B ,令0x =,得1y =-;令y =∴()1,0A ,()0,1B - ,∴1OA =,1OB =,即45OAB OBA ∠=∠=︒14.铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O , AB 所在圆的圆心C 恰好是ABO 的内心,若AB == .(结果保留π)∵六条弧所对应的弦构成一个正六边形,∴60,AOB OA ∠=︒=∴AOB 为等边三角形,∵圆心C 恰好是ABO 15.二次函数()20y ax bx c a =++≠的图象过点()0,A m ,()1,B m -,()2,C n ,()3,D m -,其中m ,n 为常数,则mn的值为 .16.如图,ABC ,90ACB ∠=︒,5CB =,10CA =,点D ,E 分别在AC AB ,边上,AE ,连接DE ,将ADE V 沿DE 翻折,得到FDE V ,连接CE ,CF .若CEF △的面积是BEC 面积的2倍,则AD = .则90AHE ACB ︒∠=∠=,又∴AHE ACB ∽,三、解答题17.计算:()042-+-.【答案】2【分析】本题考查了实数的运算,利用绝对值的意义,零指数幂的意义,算术平方根的定义化简计算即可.【详解】解:原式413=+-2=.18.解方程组:27233x y x y +=⎧⎨-=⎩.【答案】31x y =⎧⎨=⎩【分析】本题考查的是解二元一次方程组,解题的关键是掌握加减消元法求解.根据加减消元法解二元一次方程组即可.【详解】解:27233x y x y +=⎧⎨-=⎩①②-①②得,44y =,解得,1y =.将1y =代入①得3x =.∴方程组的解是31x y =⎧⎨=⎩19.先化简,再求值:2212124x x x x x +-⎛⎫+÷ ⎪--.其中3x =-.20.如图,ABC 中,AB AC =,分别以B ,C 为圆心,大于12BC 长为半径画弧,两弧交于点D ,连接BD ,CD ,AD ,AD 与BC 交于点E .(1)求证:ABD ACD △≌△;(2)若2BD =,120BDC ∠=︒,求BC 的长.21.一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为______;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)等可能的结果:(春,夏),(春,秋),(春,冬),(夏,春)春),(秋,夏),(秋,冬),(冬,春),(冬,夏),(冬,秋)在12个等可能的结果中,抽取的书签1张为“春”,1张为122.某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B (乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年级全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据以上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为______°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【答案】(1)见解析(2)72(3)本校七年级800名学生中选择项目B(乒乓球)的人数约为240人【分析】本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.(1)利用C组的人数除以所占百分比求出总人数,然后用总人数减去A、B、C、E组的人数,最后补图即可;(2)用360︒乘以E组所占百分比即可;(3)用800乘以B组所占百分比即可.÷=,【详解】(1)解:总人数为915%60D组人数为6061891215----=,补图如下:(2)解:123607260︒⨯=︒,故答案为:72;(3)解:1880024060⨯=(人).答:本校七年级800名学生中选择项目23.图①是某种可调节支撑架,BC 为水平固定杆,竖直固定杆AB BC ⊥,活动杆AD 可绕点A 旋转,CD 为液压可伸缩支撑杆,已知10cm AB =,20cm BC =,50cm AD =.(1)如图②,当活动杆AD 处于水平状态时,求可伸缩支撑杆CD 的长度(结果保留根号);(2)如图③,当活动杆AD 绕点A 由水平状态按逆时针方向旋转角度α,且3tan 4α=(α为锐角),求此时可伸缩支撑杆CD 的长度(结果保留根号).由题意可知,90B A ∠=∠=︒,又CE AD ⊥ ,∴四边形ABCE 为矩形.20BC =由题意可知,四边形ABFG 为矩形,90AGD ∴=︒△.在Rt AGD 中,tan DG AG α==34DG AG ∴=.24.如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A -,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.45∴∠=︒.BAC∥轴,PN x∴∠=∠=︒,∠NQM BLN BAC4525.如图,ABC 中,AB =D 为AB 中点,BAC BCD ∠=∠,cos ADC ∠=,O 是ACD 的外接圆.(1)求BC 的长;(2)求O 的半径.又22,AD=DE=∴.1∴在Rt AED△中,22=-=AE AD DEBAC BCD△∽△,26.某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D 1001次列车从A 站始发,经停B 站后到达C 站,G 1002次列车从A 站始发,直达C 站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表A 站B 站C 站车次发车时刻到站时刻发车时刻到站时刻D 10018:009:309:5010:50G 10028:25途经B 站,不停车10:30请根据表格中的信息,解答下列问题:(1)D 1001次列车从A 站到B 站行驶了______分钟,从B 站到C 站行驶了______分钟;(2)记D 1001次列车的行驶速度为1v ,离A 站的路程为1d ;G 1002次列车的行驶速度为2v ,离A 站的路程为2d .①12v v =______;②从上午8:00开始计时,时长记为t 分钟(如:上午9:15,则75t =),已知1240v =千米/小时(可换算为4千米/分钟),在G 1002次列车的行驶过程中()25150t ≤≤,若1260d d -=,求t 的值.27.如图①,二次函数2y x bx c =++的图象1C 与开口向下的二次函数图象2C 均过点()1,0A -,()3,0B .(1)求图象1C 对应的函数表达式;(2)若图象2C 过点()0,6C ,点P 位于第一象限,且在图象2C 上,直线l 过点P 且与x 轴平行,与图象2C 的另一个交点为Q (Q 在P 左侧),直线l 与图象1C 的交点为M ,N (N 在M 左侧).当PQ MP QN =+时,求点P 的坐标;(3)如图②,D ,E 分别为二次函数图象1C ,2C 的顶点,连接AD ,过点A 作AF AD ⊥.交图象2C 于点F ,连接EF ,当EF AD ∥时,求图象2C 对应的函数表达式.由二次函数的对称性得,∴PM NQ =.又PQ MP QN =+ ,而PQ PH PM ∴=.设()02PH t t =<<,则点将1x t =+代入(2y x =-+将21x t =+代入()(1y x =+P M y y = ,()(22t t ∴-+∴四边形IGJF 为矩形,IF GJ ∴=,IG FJ =.设2C 对应的函数表达式为 点D ,E 分别为二次函数图象将1x =分别代入22y x =-得4,4D E y y a =-=-,∴()1,4D -,()1,4E a -,4DG ∴=,2AG =,EG =。

2024年江苏省盐城市中考数学试卷及答案解析

2024年江苏省盐城市中考数学试卷及答案解析

2024年江苏省盐城市中考数学试卷及答案解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)2024的相反数是()A.2024B.﹣2024C.D.【解答】解:2024的相反数是﹣2024,故选:B.2.(3分)下列四幅图片中的主体事物,在现实运动中属于翻折的是()A.工作中的雨刮器B.移动中的黑板C.折叠中的纸片D.骑行中的自行车【答案】C.3.(3分)下列运算正确的是()A.a6÷a2=a4B.2a﹣a=2C.a3•a2=a6D.(a3)2=a5【分析】利用同底数幂乘法及除法法则,合并同类项法则,幂的乘方法则逐项判断即可.【解答】解:a6÷a2=a4,则A符合题意;2a﹣a=a,则B不符合题意;a3•a2=a5,则C不符合题意;(a3)2=a6,则D不符合题意;故选:A.4.(3分)盐城是江苏省第一产粮大市.2023年全市小麦总产量约2400000吨,数据2400000用科学记数法表示为()A.0.24×107B.24×105C.2.4×107D.2.4×106【分析】将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数方法叫做科学记数法,据此即可求得答案.【解答】解:2400000=2.4×106,故选:D.【点评】本题考查科学记数法表示较大的数,熟练掌握其定义是解题的关键.5.(3分)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都【分析】正方体的表面展开图相对的面之间一定相隔一个正方形,根据这一特点进行作答.【解答】解:正方体的表面展开图相对的面之间一定相隔一个正方形,“地”与“都”是相对面,“之”与“盐”是相对面,“湿”与“城”是相对面,故选:C.【点评】本题主要考查了正方体相对两个面上的文字,关键在于要注意正方体的空间图形,从相对面入手解答问题.6.(3分)小明将一块直角三角板摆放在直尺上,如图,若∠1=55°,则∠2的度数为()A.25°B.35°C.45°D.55°【分析】由两直线平行,内错角相等,可求得∠3的度数,然后求得∠2的度数.【解答】解:如图:∵直尺的两边平行,∠1=55°,∴∠ABC=∠1=55°,∵∠BAC=90°,∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣90°﹣55°=35°,∴∠2=∠ACB=35°.故选:B.【点评】此题考查了平行线的性质.注意两直线平行,内错角相等定理的应用是解此题的关键.7.(3分)矩形相邻两边长分别为cm、cm,设其面积为S cm2,则S在哪两个连续整数之间()A.1和2B.2和3C.3和4D.4和5【答案】C.8.(3分)甲、乙两家公司2019~2023年的利润统计图如下,比较这两家公司的利润增长情况()A.甲始终比乙快B.甲先比乙慢,后比乙快C.甲始终比乙慢D.甲先比乙快,后比乙慢【解答】解:甲家公司的利润增长较快,理由是:甲公司从2019﹣2023年,利润增长了210﹣100=110(万元),增长率为×100%=110%,乙公司从2019﹣2023年利润增长了160﹣120=40(万元),增长率为,×100%≈33.3%,因此甲公司利润始终比乙增长快.故选:A.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上)9.(3分)若有意义,则x的取值范围是.【解答】解:若有意义,则x的取值范围是x≠1.故答案为:x≠1.10.(3分)分解因式:x2+2x+1=.【解答】解:x2+2x+1=(x+1)2.故答案为:(x+1)2.【点评】本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).11.(3分)两个相似多边形的相似比为1:2,则它们的周长的比为.【分析】直接根据相似多边形周长的比等于相似比进行解答即可.【解答】解:∵两个相似多边形的相似比为1:2,∴两个相似多边形周长的比等于1:2,故答案为:1:2.12.(3分)如图,△ABC是⊙O的内接三角形,∠C=40°,连接OA、OB,则∠OAB=°.【解答】解:∵∠C=40°,∴∠AOB=80°,∵OA=OB,∴∠OAB=∠OBA,∵∠OAB+∠OBA+∠AOB=180°,∴∠OAB=50°,故答案为:50.13.(3分)已知圆锥的底面半径为4,母线长为5,该圆锥的侧面积为.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:由圆锥的底面半径为4,母线长为5,则圆锥的侧面积为×2π×4×5=20π.故答案为:20π.【点评】本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.14.(3分)中国古代数学著作《增删算法统宗》中记载的“绳索量竿”问题,大意是:现有一根竿子和一条绳索,用绳索去量竿子,绳索比竿子长5尺;若将绳索对折去量竿子,绳索就比竿子短5尺,问绳索、竿子各有多长?该问题中的竿子长为尺.【解答】解:设该问题中的竿子长为x尺,则绳索长为(x+5)尺,根据题意得:x﹣(x+5)=5,解得:x=15,∴该问题中的竿子长为15尺.故答案为:15.15.(3分)如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m的点P处,测得教学楼底端点A的俯角为37°,再将无人机沿教学楼方向水平飞行26.6m至点Q处,测得教学楼顶端点B 的俯角为45°,则教学楼AB的高度约为m.(精确到1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【解答】解:如图,令AB的延长线于PQ的延长线交于点C,由题意,知AC=30m,PQ=26.6m,∠APC=37°,∠BQC=45°,在Rt△APC中,PC=≈=40(m),∴QC=PC﹣PQ=40﹣26.6=13.4(m),在Rt△BQC中,BC=QC=13.4m,∴AB=AC﹣BC=30﹣13.4=16.6≈17(m),故答案为:17.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,理解题意,能熟练运用三角函数关系是解题的关键.16.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,点D是AC的中点,连接BD,将△BCD 绕点B旋转,得到△BEF.连接CF,当CF∥AB时,CF=或.【解答】解:作BG⊥CF于点G,如图所示,∵∠ACB=90°,AC=BC=2,点D是AC的中点,∴CD=,∠ABC=45°,∴BD===,由旋转的性质可知:△DCB≌△FEB,∴BD=BF=,∵CF∥AB,∴∠ABC=∠BCG=45°,∴CG=BC•sin∠BCG=2×=2,∴BG==2,∴GF===,∴CF=CG+GF=2+;当点D运动点F′时,此时CF′∥AB,同理可得,GF′=,CG=2,∴CF′=﹣2;故答案为:2+或﹣2.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)17.(6分)计算:|﹣2|﹣(1+π)0+4sin30°.【分析】利用绝对值的性质,零指数幂,特殊锐角三角函数值计算即可.【解答】解:原式=2﹣1+4×=2﹣1+2=3.【点评】本题考查实数的运算,绝对值的性质,零指数幂,特殊锐角三角函数值,熟练掌握相关运算法则是解题的关键.18.(6分)求不等式≥x﹣1的正整数解.【分析】根据解一元一次不等式的步骤对所给不等式进行求解,并写出正整数解即可.【解答】解:,1+x≥3x﹣3,x﹣3x≥﹣3﹣1,﹣2x≥﹣4,x≤2.所以此不等式的正整数解为:1,2.【点评】本题考查一元一次不等式的整数解,熟知解一元一次不等式的步骤是解题的关键.19.(8分)先化简,再求值:1﹣÷,其中a=4.【分析】先计算分式的除法,再计算分式的减法,把原式化简,把a的值代入计算即可.【解答】解:原式=1﹣•=1﹣=﹣=,当a=4时,原式==.【点评】本题考查的是分式的化简求值,掌握分式的混合运算法则是解题的关键.20.(8分)在“重走建军路,致敬新四军”红色研学活动中,学校建议同学们利用周末时间自主到以下三个基地开展研学活动.A.新四军纪念馆(主馆区);B.新四军重建军部旧址(泰山庙);C.新四军重建军部纪念塔(大铜马).小明和小丽各自随机选择一个基地作为本次研学活动的第一站.(1)小明选择基地A的概率为;(2)用画树状图或列表的方法,求小明和小丽选择相同基地的概率.【分析】(1)直接根据概率公式求解即可;(2)列出树状图得出所有等可能的情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【解答】解:(1)∵共有三个基地开展研学活动,∴小明选择基地A的概率为;故答案为:;(2)画树状图如下:由上可得,一共有9种等可能性,其中小明和小丽选择相同基地的可能性有3种,∴小明和小丽选择相同基地的概率为=.【点评】此题考查了树状图法求概率.树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)已知:如图,点A、B、C、D在同一条直线上,AE∥BF,AE=BF.若,则AB=CD.请从①CE∥DF;②CE=DF;③∠E=∠F这3个选项中选择一个作为条件(写序号),使结论成立,并说明理由.【分析】选择①,利用AAS证明△AEC≌△BFD,即可得到AC=BD,减去公共边BC,得到AB=CD;选择②,无法证明;选择③,利用ASA证明△AEC≌△BFD,即可得到AC=BD,减去公共边BC,得到AB=CD.【解答】证明:选择①,∵AE∥BF,∴∠A=∠FBD,∵CE∥DF,∴∠ACE=∠D,在△AEC和△BFD中,,∴△AEC≌△BFD(AAS),∴AC=BD,∴AB=CD;选择③,∵AE∥BF,∴∠A=∠FBD,在△AEC和△BFD中,,∴△AEC≌△BFD(ASA),∴AC=BD,∴AB=CD.【点评】本题考查了全等三角形的性质与判定,平行线的性质与判定,掌握性质和判定方法是解题的关键.22.(10分)小明在草稿纸上画了某反比例函数在第二象限内的图象,并把矩形直尺放在上面,如图.请根据图中信息,求:(1)反比例函数表达式;(2)点C坐标.【分析】(1)根据图象信息可知A(﹣3,2),待定系数法求出反比例函数解析式即可;(2)由图象可知,BC的解析式为y=﹣,与反比例函数解析式联立方程组求出点C坐标即可.【解答】解:(1)由图可知点A的坐标为(﹣3,2),∵反比例函数图象上过点A,设反比例函数关系式为y=,∴k=﹣6,∴反比例函数解析式为y=﹣;(2)直线OA的解析式为y=﹣x,由图象可知,直线OA向上平移三个单位得到直线BC的解析式为y=﹣,联立方程组,解得,(舍去),∴C(﹣,4).【点评】本题考查了反比例函数图象与性质,熟练掌握联立方程组求出交点坐标是关键.23.(10分)如图,点C在以AB为直径的⊙O上,过点C作⊙O的切线l,过点A作AD⊥l,垂足为D,连接AC、BC.(1)求证:△ABC∽△ACD;(2)若AC=5,CD=4,求⊙O的半径.【分析】(1)先证明OC∥AD,得到∠CAD=∠ACO=∠CAB,再根据∠D=∠ACB=90°,得到△ABC ∽△ACD;(2)根据△ABC∽△ACD,得到,求出AB,得到半径.【解答】(1)证明:连接OC,∵l是⊙O的切线,∴OC⊥l,∵AD⊥l,∴OC∥AD,∴∠CAD=∠ACO=∠CAB,∵∠D=∠ACB=90°,∴△ABC∽△ACD;(2)解:∵AC=5,CD=4,∠ADC=90°,∴AD==3,∵△ABC∽△ACD,∴,∴,∴AB=,∴半径为.【点评】本题考查了相似三角形的性质与判定,切线的性质,圆周角定理等,综合运用性质与判定是解题的关键.24.(10分)阅读涵养心灵.某地区2023年9月就“初中生每天阅读时间”对七年级8000名学生进行了抽样调查(设每天阅读时间为t h,调查问卷设置了四个时间选项:A.t<1;B.1≤t<1.5;C.1.5≤t <2;D.t≥2),并根据调查结果制作了如图1所示的条形统计图.2023年9月该地区出台系列激励措施,力推学生阅读习惯养成.为了检测这些措施的效果,2023年12月该地区又对七年级学生进行了一次抽样调查,并根据调查结果制作了如图2所示的扇形统计图.请根据提供的信息,解答下列问题.(1)2023年9月份抽样调查的样本容量为,该地区七年级学生“每天阅读时间不少于1小时”的人数约为人;(2)估算该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率;(精确到0.01%)(3)根据两次调查结果,对该地区出台相关激励措施的做法进行评价.【分析】(1)把条形统计图各组人数相加可得样本容量;用该地区七年级学生总人数乘样本中“每天阅读时间不少于1小时”的人数所占比例即可求出该地区七年级学生“每天阅读时间不少于1小时”的人数;(2)分别求出12月份和9月份“每天阅读时间不少于1小时”所占百分比即可解答;(3)答案不唯一,只要合理均可.【解答】解:(1)2023年9月份抽样调查的样本容量为:80+320+280+120=800;该地区七年级学生“每天阅读时间不少于1小时”的人数约为:8000×=7200(人),故答案为:800,7200;(2)12月份“每天阅读时间不少于1小时”的占比为(1﹣5%)=95%,9月份“每天阅读时间不少于1小时”的占比为×100%=90%,[(1﹣5%)﹣×100%]÷(×100%)≈5.56%,故该地区2023年12月份“每天阅读时间不少于1小时”的七年级学生人数相对于9月份的增长率为5.56%;(3)该地区出台相关激励措施的做法收到了良好的效果,“每天阅读时间少于1小时”的比例由9月份的10%减少到12份的5%,“每天阅读时间大约于1.5小时”的比例也有大幅度上升.25.(10分)如图1,E、F、G、H分别是▱ABCD各边的中点,连接AF、CE交于点M,连接AG、CH交于点N,将四边形AMCN称为▱ABCD的“中顶点四边形”.(1)求证:中顶点四边形AMCN为平行四边形;(2)①如图2,连接AC、BD交于点O,可得M、N两点都在BD上,当▱ABCD满足时,中顶点四边形AMCN是菱形;②如图3,已知矩形AMCN为某平行四边形的中顶点四边形,请用无刻度的直尺和圆规作出该平行四边形.(保留作图痕迹,不写作法)【分析】(1)根据平行四边形的性质,线段的中点平分线段,推出四边形AECG,四边形AFCH均为平行四边形,进而得到:AM∥CN,AN∥CM,即可得证;(2)①根据菱形的性质结合图形即可得出结果;②连接AC,作直线MN,交于点O,然后作ND=2ON,MB=2OB,然后连接AB、BC、CD、DA即可得出点M和N分别为△ABC△ADC的重心,据此作图即可.【解答】(1)证明:∵▱ABCD,∴AB∥CD,AD∥BC,AB=CD,AD=BC,∵点E、F、G、H分别是▱ABCD各边的中点,∴,AE∥CG,∴四边形AECG为平行四边形,同理可得:四边形AFCH为平行四边形,∴AM∥CN,AN∥CM,∴四边形AMCN是平行四边形;(2)解:①当平行四边形ABCD满足AC⊥BD时,中顶点四边形AMCN是菱形,由(1)得四边形AMCN是平行四边形,∵AC⊥BD,∴MN⊥AC,∴中顶点四边形AMCN是菱形,故答案为:AC⊥BD;②如图所示,即为所求,连接AC,作直线MN,交于点O,然后作ND=2ON,MB=2OM,然后连接AB、BC、CD、DA即可,∴点M和N分别为△ABC和△ADC的重心,符合题意;证明:矩形AMCN,∴AC=MN,OM=ON,∵ND=2ON,MB=2OM,∴OB=OD,∴四边形ABCD为平行四边形;分别延长CM、AM、AN、CN交四边于点E、F、G、H如图所示:∵矩形AMCN,∴AM∥CN,MO=NO,由作图得BM=MN,∴△MBF∽△NBC,∴,∴点F为BC的中点,同理得:点E为AB的中点,点G为DC的中点,点H为AD的中点.26.(12分)请根据以下素材,完成探究任务.制定加工方案生产背景背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:服装种类加工人数(人)每人每天加工量(件)平均每件获利(元)风y224雅x1正148探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.【分析】任务1:根据题意安排x名工人加工“雅”服装,y名工人加工“风”服装,得出加工“正”服装的有(70﹣x﹣y)人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;任务2:根据题意得:“雅”服装每天获利为:x[100﹣2(x﹣10)],然后将2种服装的获利求和即可得出结果;任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.【解答】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x名工人加工“雅”服装,y名工人加工“风”服装,∴加工“正”服装的有(70﹣x﹣y)人,∵“正”服装总件数和“风”服装相等,∴(70﹣x﹣y)×1=2y,整理得:;任务2:根据题意得:“雅”服装每天获利为:x[100﹣2(x﹣10)],∴w=2y×24+(70﹣x﹣y)×48+x[100﹣2(x﹣10)],整理得:w=(﹣16x+1120)+(﹣32x+2240)+(﹣2x2+120x),∴w=﹣2x2+72x+3360(x>10),任务3:由任务2得w=﹣2x2+72x+3360=﹣2(x﹣18)2+4008,∴当x=18时,获得最大利润,,∴x≠18,∵开口向下,∴取x=17或x=19,当x=17时,,不符合题意;当x=19时,,符合题意;∴70﹣x﹣y=34,综上:安排19名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.【点评】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键.27.(14分)发现问题小明买菠萝时发现,通常情况下,销售员都是先削去菠萝的皮,再斜着铲去菠萝的籽.提出问题销售员斜着铲去菠萝的籽,除了方便操作,是否还蕴含着什么数学道理呢?分析问题某菠萝可以近似看成圆柱体,若忽略籽的体积和铲去果肉的厚度与宽度,那么籽在侧面展开图上可以看成点,每个点表示不同的籽.该菠萝的籽在侧面展开图上呈交错规律排列,每行有n个籽,每列有k个籽,行上相邻两籽、列上相邻两籽的间距都为d(n,k均为正整数,n>k≥3,d>0),如图1所示.小明设计了如下三种铲籽方案.方案1:图2是横向铲籽示意图,每行铲的路径长为,共铲行,则铲除全部籽的路径总长为;方案2:图3是纵向铲籽示意图,则铲除全部籽的路径总长为;方案3:图4是销售员斜着铲籽示意图,写出该方案铲除全部籽的路径总长.解决问题在三个方案中,哪种方案铲籽路径总长最短?请写出比较过程,并对销售员的操作方法进行评价.【分析】方案1:根据题意列出代数式即可求解;方案2:根据题意列出代数式即可求解;方案3:根据图得出斜着铲每两个点之间的距离为,根据题意得一共有2n列,2k行,斜着铲相当于有n条线段长,同时有2k﹣1个,即可得出总路径长;解决问题:利用作差法比较三种方案即可.【解答】解:方案1:根据题意每行有n个籽,行上相邻两籽的间距为d,∴每行铲的路径长为(n﹣1)d,∵每列有k个籽,呈交错规律排列,∴相当于有2k行,∴铲除全部籽的路径总长为2(n﹣1)dk,故答案为:(n﹣1)d;2k;2(n﹣1)dk;方案2:根据题意每列有k个籽,列上相邻两籽的间距为d,∴每列铲的路径长为(k﹣1)d,∵每行有n个籽,呈交错规律排列,∴相当于有2n列,∴铲除全部籽的路径总长为2(k﹣1)dn,故答案为:2(k﹣1)dn;方案3:由图得斜着铲每两个点之间的距离为,根据题意得一共有2n列,2k行,斜着铲相当于有n条线段长,同时有2k﹣1个,∴铲除全部轻的路径总长为:;解决问题由上得:2(n﹣1)dk﹣2(k﹣1)dn=2ndk﹣2dk﹣2ndk+2dn=2d(n﹣k)>0,∴方案1的路径总长大于方案2的路径总长;,∵n>k≥3,当k=3时,,,∴方案3铲籽路径总长最短,销售员的操作方法是选择最短的路径,减少对菠萝的损耗.。

2024年江苏省连云港市中考数学真题卷及答案解析

2024年江苏省连云港市中考数学真题卷及答案解析

连云港市2024年初中学业水平考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分在每小题给出的四个选项中,只有一项符1合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.12-的相反数是()A.2- B.2C.12-D.122.2024年5月,全国最大的海上光伏项目获批落地连云港,批准用海面积约28000亩,总投资约90亿元.其中数据“28000”用科学记数法可以表示为()A.32810⨯ B.42.810⨯ C.32.810⨯ D.50.2810⨯3.下列运算结果等于6a 的是()A.33a a + B.6a a ⋅ C.28a a ÷ D.()32a -4.下列网格中各个小正方形的边长均为1,阴影部分图形分别记作甲、乙、丙、丁,其中是相似形的为()A.甲和乙B.乙和丁C.甲和丙D.甲和丁5.如图,将一根木棒的一端固定在O 点,另一端绑一重物.将此重物拉到A 点后放开,让此重物由A 点摆动到B 点.则此重物移动路径的形状为()A.倾斜直线B.抛物线C.圆弧D.水平直线6.下列说法正确的是()A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为12,连续抛此硬币2次必有1次正面朝上7.如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm ,则图中阴影图形的周长是()A .440cmB.320cmC.280cmD.160cm8.已知抛物线2y ax bx c =++(a 、b 、c 是常数,a<0)的顶点为(1,2).小烨同学得出以下结论:①0abc <;②当1x >时,y 随x 的增大而减小;③若20ax bx c ++=的一个根为3,则12a =-;④抛物线22y ax =+是由抛物线2y ax bx c =++向左平移1个单位,再向下平移2个单位得到的.其中一定正确的是()A.①②B.②③C.③④D.②④二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.如果公元前121年记作121-年,那么公元后2024年应记作__________年.10.在实数范围内有意义,则x 的取值范围是_____.11.如图,直线a b ,直线l a ⊥,1120∠=︒,则2∠=__________︒.12.关于x 的一元二次方程20x x c -+=有两个相等的实数根,则c 的值为__________.13.杠杆平衡时,“阻力⨯阻力臂=动力⨯动力臂”.已知阻力和阻力臂分别为1600N 和0.5m ,动力为(N)F ,动力臂为(m)l .则动力F 关于动力臂l 的函数表达式为__________.14.如图,AB 是圆的直径,1∠、2∠、3∠、4∠的顶点均在AB 上方的圆弧上,1∠、4∠的一边分别经过点A 、B ,则1234∠+∠+∠+∠=__________︒.15.如图,将一张矩形纸片ABCD 上下对折,使之完全重合,打开后,得到折痕EF ,连接BF .再将矩形纸片折叠,使点B 落在BF 上的点H 处,折痕为AG .若点G 恰好为线段BC 最靠近点B 的一个五等分点,4AB =,则BC 的长为__________.16.如图,在ABC 中,90C ∠=︒,30B ∠=︒,2AC =.点P 在边AC 上,过点P 作PD AB ⊥,垂足为D ,过点D 作DF BC ⊥,垂足为F .连接PF ,取PF 的中点E .在点P 从点A 到点C 的运动过程中,点E 所经过的路径长为__________.三、解答题(本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤,作图过程需保留作图痕迹)17.计算0|2|(π1)-+--18.解不等式112x x -<+,并把解集在数轴上表示出来.19.下面是某同学计算21211m m ---的解题过程:解:2121211(1)(1)(1)(1)m m m m m m m +-=---+-+-①(1)2m =+-②1m =-③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.20.如图,AB 与CD 相交于点E ,EC ED =,AC BD ∥.(1)求证:AEC BED △△≌;(2)用无刻度的直尺和圆规作图:求作菱形DMCN ,使得点M 在AC 上,点N 在BD 上.(不写作法,保留作图痕迹,标明字母)21.为了解七年级男生体能情况,某校随机抽取了七年级20名男生进行体能测试,并对测试成绩(单位:分)进行了统计分析:【收集数据】10094888852798364838776899168779772839673【整理数据】该校规定:59x ≤为不合格,5975x <≤为合格,7589x <≤为良好,89100x <≤为优秀.(成绩用x 表示)等次频数(人数)频率不合格10.05合格a 0.20良好100.50优秀5b 合计201.00【分析数据】此组数据的平均数是82,众数是83,中位数是c ;【解决问题】(1)填空:=a __________,b =__________,c =__________;(2)若该校七年级共有300名男生,估计体能测试能达到优秀的男生约有多少人?(3)根据上述统计分析情况,写一条你的看法.22.数学文化节猜谜游戏中,有四张大小、形状、质地都相同的字谜卡片,分别记作字谜A 、字谜B 、字谜C 、字谜D ,其中字谜A 、字谜B 是猜“数学名词”,字谜C 、字谜D 是猜“数学家人名”.(1)若小军从中随机抽取一张字谜卡片,则小军抽取的字谜是猜“数学名词”的概率是__________;(2)若小军一次从中随机抽取两张字谜卡片,请用画树状图或列表的方法求小军抽取的字谜均是猜“数学家人名”的概率.23.我市将5月21日设立为连云港市“人才日”,以最大诚意礼遇人才,让人才与城市“双向奔赴”.活动主办方分两次共邮购了200把绘有西游文化的折扇作为当天一项活动的纪念品.折扇单价为8元,其中邮费和优惠方式如下表所示:邮购数量1~99100以上(含100)邮寄费用总价的10%免费邮寄折扇价格不优惠打九折若两次邮购折扇共花费1504元,求两次邮购的折扇各多少把?24.如图1,在平面直角坐标系xOy 中,一次函数1(0)y kx k =+≠的图像与反比例函数6y x=的图像交于点A 、B ,与y 轴交于点C ,点A 的横坐标为2.(1)求k 的值;(2)利用图像直接写出61kx x+<时x 的取值范围;(3)如图2,将直线AB 沿y 轴向下平移4个单位,与函数6(0)y x x=>的图像交于点D ,与y 轴交于点E ,再将函数6(0)y x x=>的图像沿AB 平移,使点A 、D 分别平移到点C 、F 处,求图中阴影部分的面积.25.图1是古代数学家杨辉在《详解九章算法》中对“邑的计算”的相关研究.数学兴趣小组也类比进行了如下探究:如图2,正八边形游乐城12345678A A A A A A A A 的边长为2km 2,南门O 设立在67A A 边的正中央,游乐城南侧有一条东西走向的道路BM ,67A A 在BM 上(门宽及门与道路间距离忽略不计),东侧有一条南北走向的道路BC ,C 处有一座雕塑.在1A 处测得雕塑在北偏东45︒方向上,在2A 处测得雕塑在北偏东59︒方向上.(1)12CA A ∠=__________︒,21CA A ∠=__________︒;(2)求点1A 到道路BC 的距离;(3)若该小组成员小李出南门O 后沿道路MB 向东行走,求她离B 处不超过多少千米,才能确保观察雕塑不会受到游乐城的影响?(结果精确到0.1km 1.41≈,sin 760.97︒≈,tan76 4.00︒≈,sin 590.86︒≈,tan 59 1.66︒≈)26.在平面直角坐标系xOy 中,已知抛物线21y ax bx =+-(a 、b 为常数,0a >).(1)若抛物线与x 轴交于(1,0)A -、(4,0)B 两点,求抛物线对应的函数表达式;(2)如图,当1b =时,过点(1,)C a -、(1,2)D a +分别作y 轴的平行线,交抛物线于点M 、N ,连接MN MD 、.求证:MD 平分CMN ∠;(3)当1a =,2b ≤-时,过直线1(13)y x x =-≤≤上一点G 作y 轴的平行线,交抛物线于点H .若GH 的最大值为4,求b 的值.27.【问题情境】(1)如图1,圆与大正方形的各边都相切,小正方形是圆的内接正方形,那么大正方形面积是小正方形面积的几倍?小昕将小正方形绕圆心旋转45°(如图2),这时候就容易发现大正方形面积是小正方形面积的__________倍.由此可见,图形变化是解决问题的有效策略;【操作实践】(2)如图3,图①是一个对角线互相垂直的四边形,四边a 、b 、c 、d 之间存在某种数量关系.小昕按所示步骤进行操作,并将最终图形抽象成图4.请你结合整个变化过程,直接写出图4中以矩形内一点P 为端点的四条线段之间的数量关系;【探究应用】(3)如图5,在图3中“④”的基础上,小昕将PDC △绕点P 逆时针旋转,他发现旋转过程中DAP ∠存在最大值.若8PE =,5PF =,当DAP ∠最大时,求AD 的长;(4)如图6,在Rt ABC △中,90C ∠=︒,点D 、E 分别在边AC 和BC 上,连接DE 、AE 、BD .若5AC CD +=,8BC CE +=,求AE BD +的最小值.连云港市2024年初中学业水平考试数学试题一、选择题(本大题共有8小题,每小题3分,共24分在每小题给出的四个选项中,只有一项符1合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.12-的相反数是()A.2- B.2C.12-D.12【答案】D 【解析】【分析】根据相反数的性质,互为相反数的两个数的和为0即可求解.【详解】解:因为-12+12=0,所以-12的相反数是12.故选:D .【点睛】本题考查求一个数的相反数,掌握相反数的性质是解题关键.2.2024年5月,全国最大的海上光伏项目获批落地连云港,批准用海面积约28000亩,总投资约90亿元.其中数据“28000”用科学记数法可以表示为()A.32810⨯B.42.810⨯ C.32.810⨯ D.50.2810⨯【答案】B 【解析】【分析】本题考查科学记数法,根据科学记数法的表示方法:10,110,na a n ⨯≤<为整数,进行表示即可.【详解】解:428000 2.810=⨯;故选:B .3.下列运算结果等于6a 的是()A.33a a + B.6a a ⋅ C.28a a ÷ D.()32a -【答案】C 【解析】【分析】本题考查整式的运算,根据合并同类项,同底数幂的乘除法则,积的乘方和幂的乘方法则,逐一进行计算判断即可.【详解】解:A 、3332a a a +=,不符合题意;B 、67a a a ⋅=,不符合题意;C 、826a a a ÷=,符合题意;D 、()326a a -=-,不符合题意;故选:C .4.下列网格中各个小正方形的边长均为1,阴影部分图形分别记作甲、乙、丙、丁,其中是相似形的为()A.甲和乙B.乙和丁C.甲和丙D.甲和丁【答案】D 【解析】【分析】本题考查相似图形,根据对应角相等,对应边对应成比例的图形是相似图形结合正方形的性质,进行判断即可.【详解】解:由图可知,只有选项甲和丁中的对应角相等,且对应边对应成比例,它们的形状相同,大小不同,是相似形.故选D .5.如图,将一根木棒的一端固定在O 点,另一端绑一重物.将此重物拉到A 点后放开,让此重物由A 点摆动到B 点.则此重物移动路径的形状为()A.倾斜直线B.抛物线C.圆弧D.水平直线【答案】C【解析】【分析】本题考查动点的移动轨迹,根据题意,易得重物移动的路径为一段圆弧.【详解】解:在移动的过程中木棒的长度始终不变,故点A的运动轨迹是以O为圆心,OA为半径的一段圆弧,故选:C.6.下列说法正确的是()A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为1,连续抛此硬币2次必有1次正面朝上2【答案】C【解析】【分析】本题考查事件发生的可能性与概率.由题意根据事件的可能性以及事件发生的概率对各选项进行依次判断即可.【详解】解:A、“10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率一样”,故该选项错误,不符合题意;B、从1,2,3,4,5中随机抽取一个数,奇数有3个,偶数有2个,取得奇数的可能性较大,故该选项错误,不符合题意;C、“小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件”,故该选项正确,符合题意;D、抛一枚质地均匀的硬币,正面朝上的概率为1,连续抛此硬币2次有可能有1次正面朝上,故2该选项错误,不符合题意;故选:C.7.如图,正方形中有一个由若干个长方形组成的对称图案,其中正方形边长是80cm,则图中阴影图形的周长是()A.440cmB.320cmC.280cmD.160cm【答案】A【解析】【分析】本题考查平移的性质,利用平移的性质将阴影部分的周长转化为边长是80cm 的正方形的周长加上边长是80cm 的正方形的两条边长再减去220cm ⨯,由此解答即可.【详解】解:由图可得:阴影部分的周长为边长是80cm 的正方形的周长加上边长是80cm 的正方形的两条边长再减去220cm ⨯,∴阴影图形的周长是:480280220440cm ⨯+⨯-⨯=,故选:A .8.已知抛物线2y ax bx c =++(a 、b 、c 是常数,a<0)的顶点为(1,2).小烨同学得出以下结论:①0abc <;②当1x >时,y 随x 的增大而减小;③若20ax bx c ++=的一个根为3,则12a =-;④抛物线22y ax =+是由抛物线2y ax bx c =++向左平移1个单位,再向下平移2个单位得到的.其中一定正确的是()A.①②B.②③C.③④D.②④【答案】B【解析】【分析】根据抛物线的顶点公式可得12b a-=,结合a<0,2a b c ++=,由此可判断①;由二次函数的增减性可判断②;用a 表示b 、c 的值,再解方程即可判断③,由平移法则即可判断④.【详解】解:根据题意可得:12b a -=,2b a ∴-=,0a < ,02b ∴-<即0b >,2a b c ++=,2b a=-22c a b a ∴=--=+,c ∴的值可正也可负,∴不能确定abc 的正负;故①错误;a<0,∴抛物线开口向下,且关于直线1x =对称,当1x >时,y 随x 的增大而减小;故②正确;2,2b a c a =-=+ ,∴抛物线为222y ax x a a -=++,6092a a a =+-+,12a ∴=-,故③正确; 抛物线()2212y ax bx c a x =++=-+,将()212y a x =-+向左平移1个单位得:()221122y a x ax =-++=+,∴抛物线22y ax =+是由抛物线2y ax bx c =++向左平移1个单位得到的,故④错误;∴正确的有②③,故选:B .【点睛】本题考查了二次函数的性质,二次函数的平移,二次函数图象上点的坐标特征,二次函数与一元二次方程,一元二次方程的解的定义,用a 表示b 、c 的值是本题的关键.二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)9.如果公元前121年记作121-年,那么公元后2024年应记作__________年.【答案】2024+【解析】【分析】本题考查正负数的意义,根据正负数表示一对相反意义的量,公元前为负,则公元后为正,进行作答即可.【详解】解:公元前121年记作121-年,那么公元后2024年应记作2024+年;故答案为:2024+.10.在实数范围内有意义,则x 的取值范围是_____.【答案】2x ≥【解析】【详解】根据二次根式被开方数必须是非负数的条件,在实数范围内有意义,必须20x -≥,∴2x ≥.故答案为:2x ≥11.如图,直线a b ,直线l a ⊥,1120∠=︒,则2∠=__________︒.【答案】30【解析】【分析】本题考查平行线的性质,三角形的外角,根据两直线平行,同位角相等,求出3∠的度数,外角的性质,得到3902∠=︒+∠,即可求出2∠的度数.【详解】解:∵a b ,∴31120∠=∠=︒,∵l a ⊥,∴3290∠=∠+︒,∴230∠=︒;故答案为:30.12.关于x 的一元二次方程20x x c -+=有两个相等的实数根,则c 的值为__________.【答案】14##0.25【解析】【分析】本题考查了一元二次方程根的个数与根的判别式的关系.根据题意得224c 0∆=-=,进行计算即可得.【详解】解:若关于x 的一元二次方程20x x c -+=有两个相等的实数根,2140c ∆=-=,14c ∴=,故答案为:14.13.杠杆平衡时,“阻力⨯阻力臂=动力⨯动力臂”.已知阻力和阻力臂分别为1600N 和0.5m ,动力为(N)F ,动力臂为(m)l .则动力F 关于动力臂l 的函数表达式为__________.【答案】800F l =【解析】【分析】本题考查了根据实际问题列反比例函数关系式,根据题意可得16000.5l F ⋅=⨯,进而即可求解,掌握杠杆原理是解题的关键.【详解】解:由题意可得,16000.5l F ⋅=⨯,∴800l F =,即800F l=,故答案为:800F l =.14.如图,AB 是圆的直径,1∠、2∠、3∠、4∠的顶点均在AB 上方的圆弧上,1∠、4∠的一边分别经过点A 、B ,则1234∠+∠+∠+∠=__________︒.【答案】90【解析】【分析】本题考查圆周角定理,根据半圆的度数为180︒,同弧所对的圆周角是圆心角的一半,进行求解即可.【详解】∵AB 是圆的直径,∴AB 所对的弧是半圆,所对圆心角的度数为180︒,∵1∠、2∠、3∠、4∠所对的弧的和为半圆,∴11234180902∠+∠+∠+∠=⨯︒=︒,故答案为:90.15.如图,将一张矩形纸片ABCD 上下对折,使之完全重合,打开后,得到折痕EF ,连接BF .再将矩形纸片折叠,使点B 落在BF 上的点H 处,折痕为AG .若点G 恰好为线段BC 最靠近点B 的一个五等分点,4AB =,则BC 的长为__________.【答案】【解析】【分析】本题考查矩形折叠,勾股定理,解直角三角形,设AG 与BF 交于点M ,BG a =,则:5BC a =,勾股定理求出,AG BF ,等积法求出BM ,根据cos BM BC FBC BG BF ∠==,列出方程进行求解即可.【详解】解:设AG 与BF 交于点M ,∵矩形ABCD ,∴90,4ABC C AB CD ∠=∠=︒==,∵翻折,∴122CF CD ==,AG BH ⊥,设BG a =,则:5BC a =,∴AG ==,BF ==,∵1122ABG S AB BG AG BM =⋅=⋅ ,∴AB BG BM AG ⋅==,∵90BMG C ∠=∠=︒,∴cos BM BC FBC BG BF∠==,∴BM BF BG BC ⋅=⋅,5a a =⋅,解得:a =a =是原方程的解,∴5BC a ==故答案为:.16.如图,在ABC 中,90C ∠=︒,30B ∠=︒,2AC =.点P 在边AC 上,过点P 作PD AB ⊥,垂足为D ,过点D 作DF BC ⊥,垂足为F .连接PF ,取PF 的中点E .在点P 从点A 到点C 的运动过程中,点E 所经过的路径长为__________.【答案】194【解析】【分析】本题考查含30度角的直角三角形,一次函数与几何的综合应用,矩形的判定和性质,两点间的距离,以C 为原点,建立如图所示的坐标系,设AP a =,则2CP a =-,利用含30度角的直角三角形的性质,求出点E 的坐标,得到点E 在直线13y x =-上运动,求出点P 分别与,A C 重合时,点E 的坐标,利用两点间的距离公式进行求解即可.【详解】解:以C 为原点,建立如图所示的坐标系,设AP a =,则2CP a =-,则:()0,2P a -,∵30B ∠=︒,∴60A ∠=︒,∵PD AB ⊥,∴90PDA ∠=︒,∴30APD ∠=︒,∴122aAD AP ==,过点D 作DG AC ⊥,则:90AGD ∠=︒,∴1,244aAG AD DG a ====,∵DF BC ⊥,DG AC ⊥,90ACB ∠=︒,∴四边形DGCF 为矩形,∴DG CF =,∴3,04F ⎛⎫ ⎪ ⎪⎝⎭,∵E 为,P F 的中点,∴1,182E a a ⎛⎫- ⎪ ⎪⎝⎭,令1,182x a y a ==-,则:4313y x =-,∴点E 在直线4313y x =-上运动,当点P 与C 重合时,0a =,此时()0,1E ,当点P 与A 重合时,2a =,此时3,04E ⎛⎫ ⎪ ⎪⎝⎭,∴点E 所经过的路径长为194=;故答案为:194.三、解答题(本大题共11小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤,作图过程需保留作图痕迹)17.计算0|2|(π1)-+--【答案】1-【解析】【分析】本题考查实数的混合运算,零指数幂,先进行去绝对值,零指数幂和开方运算,再进行加减运算即可.【详解】解:原式2141=+-=-18.解不等式112x x -<+,并把解集在数轴上表示出来.【答案】3x >-,图见解析【解析】【分析】本题主要考查解一元一次不等式以及在数轴上表示不等式的解集,根据去分母,去括号,移项,合并可得不等式的解集,然后再在数轴上表示出它的解集即可【详解】解:112x x -<+,去分母,得12(1)x x -<+,去括号,得122x x -<+,移项,得122x x --<-,解得3x >-.这个不等式的解集在数轴上表示如下:19.下面是某同学计算21211m m ---的解题过程:解:2121211(1)(1)(1)(1)m m m m m m m +-=---+-+-①(1)2m =+-②1m =-③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.【答案】从第②步开始出现错误,正确过程见解析【解析】【分析】本题考查异分母分式的加减运算,先通分,然后分母不变,分子相减,最后将结果化为最简分式即可.掌握相应的计算法则,是解题的关键.【详解】解:从第②步开始出现错误.正确的解题过程为:原式121211(1)(1)(1)(1)(1)(1)(1)(1)1m m m m m m m m m m m m ++--=-===+-+-+-+-+.20.如图,AB 与CD 相交于点E ,EC ED =,AC BD ∥.(1)求证:AEC BED △△≌;(2)用无刻度的直尺和圆规作图:求作菱形DMCN ,使得点M 在AC 上,点N 在BD 上.(不写作法,保留作图痕迹,标明字母)【答案】(1)见解析(2)见解析【解析】【分析】(1)根据平行线的性质得到,A B C D ∠=∠∠=∠,结合EC ED =,利用AAS 即可证明AEC BED △△≌;(2)作CD 的垂直平分线,分别交,AC BD 于点,M N ,连接,DM CN 即可.【小问1详解】证明: AC BD ∥,A B ∴∠=∠,C D ∠=∠.在AEC △和BED 中,A BC D EC ED∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)AEC BED ∴ ≌;【小问2详解】解:MN 是CD 的垂直平分线,,MD MC DN CN ∴==,由(1)的结论可知,,A B AE BE ∠=∠=,又∵AEM BEN ∠=∠,则AEM BEN ≅ ,∴,ME NE = CD MN ⊥,CD ∴是MN 的垂直平分线,,DM DN CM CN ∴==,DM DN CN CM ∴===,∴四边形DMCN 是菱形,如图所示,菱形DMCN 为所求.【点睛】本题考查了垂直平分线的作法,平行线的性质,三角形全等的判定,菱形的判定,熟练掌握垂直平分线的作法及三角形全等的判定定理是解题的关键.21.为了解七年级男生体能情况,某校随机抽取了七年级20名男生进行体能测试,并对测试成绩(单位:分)进行了统计分析:【收集数据】10094888852798364838776899168779772839673【整理数据】该校规定:59x ≤为不合格,5975x <≤为合格,7589x <≤为良好,89100x <≤为优秀.(成绩用x 表示)等次频数(人数)频率不合格10.05合格a 0.20良好100.50优秀5b 合计20 1.00【分析数据】此组数据的平均数是82,众数是83,中位数是c ;【解决问题】(1)填空:=a __________,b =__________,c =__________;(2)若该校七年级共有300名男生,估计体能测试能达到优秀的男生约有多少人?(3)根据上述统计分析情况,写一条你的看法.【答案】(1)4,0.25,83(2)75人(3)男生体能状况良好【解析】【分析】本题考查频数分布表和用样本估计总体:(1)利用频数=频率×数据总数可求出a的值;利用频率=频数÷数据总数可求出b,最后根据中位数定义可求出c;(2)用样本估计总体可得结论;(3)结合分析,得出看法【小问1详解】解:2020%4a=⨯=;5200.25b=÷=;把20个数据按从小到大的顺序排列为:52,64,68,72,73,76,77,79,83,83,83,87,88,88,89,91,94,96,97,100,最中间的两个数据为83,83,所以,8383832c+==,故答案为:4,0.25,83;【小问2详解】解:53007520⨯=(人)答:估计体能测试能达到优秀的男生约有75人;【小问3详解】解:从样本的平均数、中位数和众数可以看出,男生整体体能状况良好22.数学文化节猜谜游戏中,有四张大小、形状、质地都相同的字谜卡片,分别记作字谜A、字谜B、字谜C、字谜D,其中字谜A、字谜B是猜“数学名词”,字谜C、字谜D是猜“数学家人名”.(1)若小军从中随机抽取一张字谜卡片,则小军抽取的字谜是猜“数学名词”的概率是__________;(2)若小军一次从中随机抽取两张字谜卡片,请用画树状图或列表的方法求小军抽取的字谜均是猜“数学家人名”的概率.【答案】(1)1 2(2)1 6【解析】【分析】(1)根据简单地概率公式解答即可.(2)利用画树状图法解答即可.本题考查了简单地概率公式,树状图法求概率,熟练掌握画树状图法求概率是解题的关键.【小问1详解】小军抽取的字谜是猜“数学名词”的概率是2142=,故答案为:12.【小问2详解】根据题意,画树状图如下:由图可知,共有12种等可能的结果,其中小军抽取的字谜均是猜“数学家人名”的有2种,∴小军抽取的字谜均是猜“数学家人名”的概率是21126=.23.我市将5月21日设立为连云港市“人才日”,以最大诚意礼遇人才,让人才与城市“双向奔赴”.活动主办方分两次共邮购了200把绘有西游文化的折扇作为当天一项活动的纪念品.折扇单价为8元,其中邮费和优惠方式如下表所示:邮购数量1~99100以上(含100)邮寄费用总价的10%免费邮寄折扇价格不优惠打九折若两次邮购折扇共花费1504元,求两次邮购的折扇各多少把?【答案】两次邮购的折扇分别是40把和160把【解析】【分析】本题主要考查一元一次方程的应用,首先判断出两次购买数量的范围,再设设一次邮购折扇(100)x x <把,则另一次邮䝧折扇(200)x -把,根据“两次邮购折扇共花费1504元”列出一元一次方程,求解即可【详解】解:若每次购买都是100把,则20080.914401504⨯⨯=≠.∴一次购买少于100把,另一次购买多于100把.∴设一次邮购折扇(100)x x <把,则另一次邮购折扇(200)x -把.由题意得:8(110%)0.98(200)1504x x ++⨯-=,解得40x =.20020040160x ∴-=-=.答:两次邮购的折扇分别是40把和160把.24.如图1,在平面直角坐标系xOy 中,一次函数1(0)y kx k =+≠的图像与反比例函数6y x=的图像交于点A 、B ,与y 轴交于点C ,点A 的横坐标为2.(1)求k 的值;(2)利用图像直接写出61kx x+<时x 的取值范围;(3)如图2,将直线AB 沿y 轴向下平移4个单位,与函数6(0)y x x=>的图像交于点D ,与y 轴交于点E ,再将函数6(0)y x x =>的图像沿AB 平移,使点A 、D 分别平移到点C 、F 处,求图中阴影部分的面积.【答案】(1)1k =(2)3x <-或02x <<(3)8【解析】【分析】本题考查反比例函数与一次函数的综合应用:(1)先求出A 点坐标,再将A 点代入一次函数的解析式中求出k 的值即可;(2)图像法求不等式的解集即可;(3)根据平移的性质,得到阴影部分的面积即为ACFD 的面积,进行求解即可.【小问1详解】点A 在6y x =的图像上,∴当2x =时,632y ==.∴(2,3)A ,将点(2,3)A 代入1y kx =+,得1k =.【小问2详解】由(1)知:1y x =+,联立16y x y x =+⎧⎪⎨=⎪⎩,解得:23x y =⎧⎨=⎩或32x y =-⎧⎨=-⎩,∴()3,2B --;由图像可得:61kx x +<时x 的取值范围为:3x <-或02x <<.【小问3详解】∵1y x =+,∴当0x =时,1y =,∴(0,1)C ,∵将直线AB 沿y 轴向下平移4个单位,∴4CE =,直线DE 的解析式为:3y x =-,设直线DE 与x 轴交于点H∴当0x =时,=3y -,当0y =时,3x =,∴()3,0H ,()0,3E -,∴3OF OE ==,∴45FEC ∠=︒,如图,过点C 作CG DE ⊥,垂足为G ,∴22CG CE ==.又(2,3)A ,(0,1)C ,AC ∴=.连接,AD CF ,∵平移,∴AC DF ∥,AC DF =,∴四边形ACFD 为平行四边形,∴阴影部分面积等于ACFD 的面积,即8=.25.图1是古代数学家杨辉在《详解九章算法》中对“邑的计算”的相关研究.数学兴趣小组也类比进行了如下探究:如图2,正八边形游乐城12345678A A A A A A A A 的边长为2km 2,南门O 设立在67A A 边的正中央,游乐城南侧有一条东西走向的道路BM ,67A A 在BM 上(门宽及门与道路间距离忽略不计),东侧有一条南北走向的道路BC ,C 处有一座雕塑.在1A 处测得雕塑在北偏东45︒方向上,在2A 处测得雕塑在北偏东59︒方向上.(1)12CA A ∠=__________︒,21CA A ∠=__________︒;(2)求点1A 到道路BC 的距离;(3)若该小组成员小李出南门O 后沿道路MB 向东行走,求她离B 处不超过多少千米,才能确保观察雕塑不会受到游乐城的影响?(结果精确到0.1km 2 1.41≈,sin 760.97︒≈,tan76 4.00︒≈,sin 590.86︒≈,tan 59 1.66︒≈)【答案】(1)1290CA A ︒∠=,2176CA A ︒∠=(2)2.0千米(3)2.4km 【解析】【分析】本题考查正多边形的外角,解直角三角形,相似三角形的判定和性质:(1)求出正八边形的一个外角的度数,再根据角的和差关系进行求解即可;(2)过点1A 作1A D BC ⊥,垂足为D ,解21Rt CA A △,求出1122tan 76 4.00222CA A A ∴=⋅≈⨯=︒,解1Rt CA D △,求出112cos 4522 2.0km 2A D CA ︒=⋅==,即可;(3)连接8CA 并延长交BM 于点E ,延长81A A 交BE 于点G ,过点8A 作8A F BC ⊥,垂足为F ,解78Rt A A G △,求出8A G ,证明8Rt Rt CA F CEB △∽△,列出比例式进行求解即可.【小问1详解】解:∵正八边形的一个外角的度数为:360458︒=︒,∴12454590CA A ∠︒=︒+︒=,21180455976CA A ∠︒=︒-︒-︒=;故答案为:90,76;【小问2详解】过点1A 作1A D BC ⊥,垂足为D .在21Rt CA A △中,2122A A =,2176CA A ︒∠=,1122tan 76 4.002CA A A ∴=⋅≈⨯=︒在1Rt CA D △中,1904545CA D ∠︒=︒-︒=,112cos 45 2.0km 2A D CA ∴=⋅=︒=.答:点1A 到道路BC 的距离为2.0千米.【小问3详解】连接8CA 并延长交BM 于点E ,延长81A A 交BE 于点G ,过点8A 作8A F BC ⊥,垂足为F . 正八边形的外角均为45︒,∴在78Rt A A G △中,812A G =.812FB A G ∴==.又812A F A D CD === ,1822DF A A ==,522CB CD DF FB +∴=++=.∵88,CFA B FCA BCE ∠=∠∠=∠,∴8Rt Rt CA F CEB △∽△,8CF A F CB EB ∴=2222EB+=,1.41≈,2.4km EB ∴≈.答:小李离点B 不超过2.4km ,才能确保观察雕塑不会受到游乐城的影响.26.在平面直角坐标系xOy 中,已知抛物线21y ax bx =+-(a 、b 为常数,0a >).(1)若抛物线与x 轴交于(1,0)A -、(4,0)B 两点,求抛物线对应的函数表达式;(2)如图,当1b =时,过点(1,)C a -、(1,D a +分别作y 轴的平行线,交抛物线于点M 、N ,连接MN MD 、.求证:MD 平分CMN ∠;(3)当1a =,2b ≤-时,过直线1(13)y x x =-≤≤上一点G 作y 轴的平行线,交抛物线于点H .若GH 的最大值为4,求b 的值.【答案】(1)213144y x x =--(2)见解析(3)3-【解析】【分析】(1)利用待定系数法求解即可;(2)连接CN ,根据题意,求得(1,2)M a --,(1,)N a ,进而求出2CN =,(2)2CM a a =--=,利用勾股定理求出MN =DN =,从而得到NDM NMD ∠=∠,结合平行线的性质即可证明结论;。

江苏初三初中数学专题试卷带答案解析

江苏初三初中数学专题试卷带答案解析

江苏初三初中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、计算题在一个口袋中有4个完全相同的小球,把它们分别标上1,2,3,4.小明先随机地摸出1个小球,小强再随机的摸出1个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时,小明获胜,否则小强获胜.(1)若小明摸出的球不放回,求小明获胜的概率;(2)若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.二、选择题1.小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为()A.B.πC.πD.2.数据1,2,x,-1,-2的平均数是0,则这组数据的方差是()。

A.1B.2C.3D.4三、单选题1.掷两枚质地均匀的硬币,则两枚硬币全部正面朝上的概率等于( )A.1B.C.D.02.某运动员进行110m跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解这10次成绩的( )A.众数B.方差C.平均数D.频数3.在进行数据整理时,要显示数据特征( )A.最好用扇形统计图B.最好用条形统计图C.最好用折线统计图D.选用哪种统计图,要视具体情况而定4.小玲在一次班会中参与知识抢答活动,现有语文题6个,数学题5个,综合题9个,她从中随机抽取1个,抽中数学题的概率是( )A.B.C.D.5.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球( )A.24个B.30个C.36个D.42个6.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度X(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为A.0.8B.0.7C.0.4D.0.2四、填空题1.在围棋盒中有6颗黑色棋子和”颗白色棋子,随机地取出一颗棋子,如果它是黑色棋子的概率是,则n=_____________.2.一组数据3,4,6,8,x的中位数是x,且x是满足不等式组的整数,则这组数据的平均数是.3.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是__________·4.有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式.先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的概率__________________·五、解答题1.目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法.统计整理并制作了如下的统计图:(1)这次调查的家长总数为__________,家长表示“不赞同”的人数为________________;(2)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是____________;(3)求图②中表示家长“无所谓”的扇形圆心角的度数.2.某班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班50名学生的处理方式进行统计,得出相关统计表和统计图,请根据统计表图所提供的信息回答下列问题:(1)统计表中的m=______________,n=_________________;(2)补全频数分布直方图;(3)若该校共有2000名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?3.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统汁后?将数据整理成如图所示的统计图(图中信息不完整).已知A、B两组捐款人数的比为1:5请结合以上信息解答下列问题.(1)a=______________,本次调查样本的容量是______________________;(2)先求出C组的人数,再补全“捐款人数分组统计图1”;(3)若任意抽出1名学生进行调查,恰好是捐款数不少于30元的概率是多少?4.盒中有x个黑球和y个白球,这些球除颜色外无其他差别.若从盒中随机取一个球,它是黑球的概率是;中再放进1个黑球,这时取得黑球的概率变为(1)填空:x="_____________," y=____________________;(2)小王和小林利用x黑球和y个白球进行摸球游戏。

2024年江苏省苏州市中考数学试卷(附答案解析)

2024年江苏省苏州市中考数学试卷(附答案解析)

2024年江苏省苏州市中考数学试卷(附答案解析)一、选择题:本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.1.(3分)用数轴上的点表示下列各数,其中与原点距离最近的是()A.﹣3B.1C.2D.3【解答】解:∵|﹣3|=3,|1|=1,|2|=2,|3|=3,而3<2<1,∴1与原点距离最近,故选:B.2.(3分)下列图案中,是轴对称图形的是()A.B.C.D.【答案】A.3.(3分)苏州市统计局公布,2023年苏州市全年实现地区生产总值约为2.47万亿元,被誉为“最强地级市”.数据“2470000000000”用科学记数法可表示为()A.2.47×1010B.247×1010C.2.47×1012D.247×1012【答案】C.4.(3分)若a>b﹣1,则下列结论一定正确的是()A.a+1<b B.a﹣1<b C.a>b D.a+1>b【解答】解:若a>b﹣1,不等式两边加1可得a+1>b,故A不合题意,D符合题意,根据a>b﹣1,得不到a﹣1<b,a>b,故B、C不符合题意.故选:D.5.(3分)如图,AB∥CD,若∠1=65°,∠2=120°,则∠3的度数为()A.45B.55°C.60°D.65°【解答】解:∵AB∥CD,∠1=65°,∴∠ACD=∠1=65°,∵∠2=∠ACD+∠3,∠2=120°,∴∠3=55°,故选:B.6.(3分)某公司拟推出由7个盲盒组成的套装产品,现有10个盲盒可供选择,统计这10个盲盒的质量如图所示.序号为1到5号的盲盒已选定,这5个盲盒质量的中位数恰好为100,6号盲盒从甲、乙、丙中选择1个,7号盲盒从丁、戊中选择1个,使选定7个盲盒质量的中位数仍为100,可以选择()A.甲、丁B.乙、戊C.丙、丁D.丙、戊【答案】C.7.(3分)如图,点A为反比例函数y=﹣(x<0)图象上的一点,连接AO,过点O作OA的垂线与反比例函数y=(x>0)的图象交于点B,则的值为()A.B.C.D.【分析】作AG⊥x轴,BH⊥x轴,可证明△AGO∽△OHB,利用面积比等于相似比的平方解答即可.【解答】解:作AG⊥x轴,垂足为G,BH⊥x轴,垂足为H,∵点A在函数y=﹣图象上,点B在反比例函数y=图象上,=,S△BOH=2,∴S△AGO∵∠AOB=90°,∴∠AOG=∠HBO,∠AGO=∠OHB,∴△AGO∽△OHB,∴,∴.故选:A.8.(3分)如图,矩形ABCD中,AB=,BC=1,动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿AB,CD向终点B,D运动,过点E,F作直线l,过点A作直线l的垂线,垂足为G,则AG的最大值为()A.B.C.2D.1【解答】解:连接AC,交EF于O,∵四边形ABCD是矩形,∴AB∥CD,∠B=90°,∵AB=,BC=1,∴AC===2,∵动点E,F分别从点A,C同时出发,以每秒1个单位长度的速度沿AB,CD向终点B,D运动,∴CF=AE,∵AB∥CD,∴∠ACD=∠CAB,又∵∠COF=∠AOE,∴△COF≌△AOE(AAS),∴AO=CO=1,∵AG⊥EF,∴点G在以AO为直径的圆上运动,∴AG为直径时,AG有最大值为1,故选:D.二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相对应的位置上.9.(3分)计算:x3•x2=.【解答】解:x3•x2=x5,故答案为:x5.10.(3分)若a=b+2,则(b﹣a)2=.【解答】解:∵a=b+2,∴b﹣a=﹣2,∴(b﹣a)2=(﹣2)2=4,故答案为:4.11.(3分)如图,正八边形转盘被分成八个面积相等的三角形,任意转动这个转盘一次,当转盘停止转动时,指针落在阴影部分的概率是.【解答】解:根据题意可知,正八边形转盘被分成八个面积相等的三角形,其中阴影部分的面积为3个面积相等的三角形,∴指针落在阴影部分的概率等于阴影部分的面积除以正八边形的面积,即,故答案为:.12.(3分)如图,△ABC是⊙O的内接三角形,若∠OBC=28°,则∠A=°.【解答】解:连接OC,∵OB=OC,∠OBC=28°,∴∠OCB=∠OBC=28°,∴∠BOC=180°﹣∠OCB﹣∠OBC=124°,∴,故答案为:62.13.(3分)直线l1:y=x﹣1与x轴交于点A,将直线l1绕点A逆时针旋转15°,得到直线l2,则直线l2对应的函数表达式是.【分析】根据题意画出示意图,结合特殊角的三角函数值即可解决问题.【解答】解:如图所示,将x=0代入y=x﹣1得,y=﹣1,所以点B坐标为(0,﹣1).将y=0代入y=x﹣1得,x=1,所以点A的坐标为(1,0),所以OA=OB=1,所以∠OBA=∠OAB=45°.由旋转可知,∠BAC=15°,∴∠OAC=45°+15°=60°.在Rt△AOC中,tan∠OAC=,所以OC=,则点C的坐标为(0,).令直线l2的函数表达式为y=kx+b,则,解得,所以直线l2的函数表达式为y=.故答案为:y=.14.(3分)铁艺花窗是园林设计中常见的装饰元素.如图是一个花瓣造型的花窗示意图,由六条等弧连接而成,六条弧所对应的弦构成一个正六边形,中心为点O,所在圆的圆心C恰好是△ABO的内心,若AB=2,则花窗的周长(图中实线部分的长度)=.(结果保留π)【解答】解:如图,过点C作CM⊥AB于点M,则AM=BM=AB=,∵六条等弧所对应的弦构成一个正六边形,中心为点O,∴∠AOB==60°,∵OA=OB,∴△AOB是正三角形,∵点O是△AOB的内心,∴∠CAB=∠CBA=×60°=30°,∠ACB=2∠AOB=120°,在Rt△ACM中,AM=,∠CAM=30°,∴AC==2,∴的长为=π,∴花窗的周长为π×6=8π.故答案为:8π.15.(3分)二次函数y=ax2+bx+c(a≠0)的图象过点A(0,m),B(1,﹣m),C(2,n),D(3,﹣m),其中m,n为常数,则的值为.【解答】解:将A(0,m),B(1,﹣m),D(3,﹣m)代入y=ax2+bx+c(a≠0),得:,∴,把C(2,n)代入,∴,∴,故答案为:.16.(3分)如图,△ABC中,∠ACB=90°,CB=5,CA=10,点D,E分别在AC,AB边上,AE=AD,连接DE,将△ADE沿DE翻折,得到△FDE,连接CE,CF.若△CEF的面积是△BEC面积的2倍,则AD=.【解答】解:∵,∴设AD=x,,∵△ADE沿DE翻折,得到△FDE,∴DF=AD=x,∠ADE=∠FDE,过E作EH⊥AC于H,设EF与AC相交于M,则∠AHE=∠ACB=90°,又∵∠A=∠A,∴△AHE∽△ACB,∴,∵CB=5,CA=10,,∴,∴EH=x,,则DH=AH﹣AD=x=EH,∴Rt△EHD是等腰直角三角形,∴∠HDE=∠HED=45°,则∠ADE=∠EDF=135°,∴∠FDM=135°﹣45°=90°,在△FDM和△EHM中,,∴△FDM≌△EHM(AAS),∴,,∴,=25﹣5x,∵△CEF的面积是△BEC的面积的2倍,∴,则3x2﹣40x+100=0,解得,x2=10(舍去),则,故答案为:.三、解答题:本大题共11小题,共82分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.17.(5分)计算:|﹣4|+(﹣2)0﹣.【分析】先化简,然后计算加减法即可.【解答】解:|﹣4|+(﹣2)0﹣=4+1﹣3=2.18.(5分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,①﹣②得:4y=4,即y=1,将y=1代入①得:x=3,则方程组的解为.19.(6分)先化简,再求值:(+1)÷,其中x=﹣3.【解答】解:(+1)÷=•=•=,当x=﹣3时,原式==.【点评】本题考查分式的化简求值,熟练掌握运算法则是解答本题的关键.20.(6分)如图,△ABC中,AB=AC,分别以B,C为圆心,大于BC长为半径画弧,两弧交于点D,连接BD,CD,AD,AD与BC交于点E.(1)求证:△ABD≌△ACD;(2)若BD=2,∠BDC=120°,求BC的长.【解答】(1)证明:由作图知:BD=CD.在△ABD和△ACD中,,∴△ABD≌△ACD(SSS);(2)解:∵△ABD≌△ACD,∠BDC=120°,∴∠BDA=∠CDA=∠BDC=×120°=60°,又∵BD=CD,∴DA⊥BC,BE=CE.∵BD=2,∴BE=BD•sin∠BDA=2×=,∴.【点评】本题考查作图﹣基本作图,全等三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题.21.(6分)一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,书签除图案外都相同,并将4张书签充分搅匀.(1)若从盒子中任意抽取1张书签,恰好抽到“夏”的概率为;(2)若从盒子中任意抽取2张书签(先抽取1张书签,且这张书签不放回,再抽取1张书签),求抽取的书签恰好1张为“春”,1张为“秋”的概率.(请用画树状图或列表等方法说明理由)【分析】(1)直接由概率公式求解即可;(2)画树状图,共有12种等可能的结果,其中抽取的书签恰好1张为“春”,1张为“秋”的结果有2种,再由概率公式求解即可.【解答】解:(1)∵一个不透明的盒子里装有4张书签,分别描绘“春”,“夏”,“秋”,“冬”四个季节,∴从盒子中任意抽取1张书签,恰好抽到“夏”的概率为,故答案为:;(2)画树状图如下:共有12种等可能的结果,其中抽取的书签恰好1张为“春”,1张为“秋”的结果有2种,∴抽取的书签恰好1张为“春”,1张为“秋”的概率为=.22.(8分)某校计划在七年级开展阳光体育锻炼活动,开设以下五个球类项目:A(羽毛球),B(乒乓球),C(篮球),D(排球),E(足球),要求每位学生必须参加,且只能选择其中一个项目.为了了解学生对这五个项目的选择情况,学校从七年身全体学生中随机抽取部分学生进行问卷调查,对调查所得到的数据进行整理、描述和分析,部分信息如下:根据上信息,解决下列问题:(1)将图①中的条形统计图补充完整(画图并标注相应数据);(2)图②中项目E对应的圆心角的度数为°;(3)根据抽样调查结果,请估计本校七年级800名学生中选择项目B(乒乓球)的人数.【解答】解:(1)此次调查的总人数为9÷15%=60(人),D项目的人数有60﹣6﹣18﹣9﹣12=15(人),补全条形统计图如下:(2)图②中项目E对应的圆心角的度数为360°×=72°;故答案为:72;(3)800×=240(名),答:估计本校七年级800名学生中选择项目B(乒乓球)的人数为240名.23.(8分)图①是某种可调节支撑架,BC为水平固定杆,竖直固定杆AB⊥BC,活动杆AD可绕点A旋转,CD为液压可伸缩支撑杆,已知AB=10cm,BC=20cm,AD=50cm.(1)如图②,当活动杆AD处于水平状态时,求可伸缩支撑杆CD的长度(结果保留根号);(2)如图③,当活动杆AD绕点A由水平状态按逆时针方向旋转角度α,且tanα=(α为锐角),求此时可伸缩支撑杆CD的长度(结果保留根号).【解答】解:(1)过点C作CE⊥AD,垂足为E,由题意得:AB=CE=10cm,BC=AE=20cm,∵AD=50cm,∴ED=AD﹣AE=50﹣20=30(cm),在Rt△CED中,CD===10(cm),∴可伸缩支撑杆CD的长度为10cm;(2)过点D作DF⊥BC,交BC的延长线于点F,交AD′于点G,由题意得:AB=FG=10cm,AG=BF,∠AGD=90°,在Rt△ADG中,tanα==,∴设DG=3x cm,则AG=4x cm,∴AD===5x(cm),∵AD=50cm,∴5x=50,解得:x=10,∴AG=40cm,DG=30cm,∴DF=DG+FG=30+10=40(cm),∴BF=AG=40cm,∵BC=20cm,∴CF=BF﹣BC=40﹣20=20(cm),在Rt△CFD中,CD===20(cm),∴此时可伸缩支撑杆CD的长度为20cm.【点评】本题考查了解直角三角形的应用,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.24.(8分)如图,△ABC中,AC=BC,∠ACB=90°,A(﹣2,0),C(6,0),反比例函数y=(k ≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y=(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.【分析】(1)根据条件先求出点B坐标,再利用待定系数法求出直线AB解析式,将D坐标代入两个函数解析式得到mk的值;(2)先求出PQ=MQ,再设点P的坐标为(t,),则PQ=t,PN=6﹣t,MQ=PQ=t,利用三角形==﹣,利用最值求出t和面积最大值及点P坐标即面积列出函数S△PMN可.【解答】解:(1)∵A(﹣2,0),C(6,0),∴AC=8.又∵AC=BC,∴BC=8.∠ACB=90°,∴点B(6,8).设直线AB的函数表达式为y=ax+b,将A(﹣2,0),B(6,8)代入y=ax+b得:,解得,∴直线AB的函数表达式为y=x+2.∴将点D(m,4)代入y=x+2,得m=2.∴D(2,4),将D(2,4)代入反比例函数解析式y=得:4=,解得k=8.(2)延长NP交y轴于点Q,交AB于点L.∵AC=BC,∠BCA=90°,∴∠BAC=45°,∵PN∥x轴,∴∠BLN=∠BAC=45°,∠NQM=90°,∵AB∥MP,∴∠MPL=∠BLP=45°,∠QMP=∠QPM=45°,∴QM=QP,设点P的坐标为(t,),则PQ=t,PN=6﹣t,MQ=PQ=t,===﹣,∴S△PMN有最大值,此时P(3,).∴当t=3时,S△PMN【点评】本题考查了反比例函数k值的几何意义、反比例函数图象上点的坐标特征、等腰直角三角形的性质,熟练掌握二次函数顶点式求最值是关键.25.(10分)如图,△ABC中,AB=4,D为AB中点,∠BAC=∠BCD,cos∠ADC=,⊙O是△ACD的外接圆.(1)求BC的长;(2)求⊙O的半径.【分析】(1)先证明△BAC∽△BCD,得到,即可解答;(2)过点A作AE⊥CD于点E,连接CO,并延长交⊙O于F,连接AF,在Rt△AED中,通过解直角三角形得到DE=1,,由△BAC∽△BCD得到,设CD=x,则,CE=x﹣1,在Rt△ACE中,根据勾股定理构造方程,求得CD=2,,由∠AFC=∠ADC得到sin∠AFC=sin∠ADC,根据正弦的定义即可求解.【解答】解:(1)∵∠BAC=∠BCD,∠B=∠B,∴△BAC∽△BCD,∴,∵,D为AB中点,∴,∴BC2=16,∴BC=4;(2)过点A作AE⊥CD于点E,连接CO,并延长交⊙O于F,连接AF,∵在Rt△AED中,,,∴DE=1,∴,∵△BAC∽△BCD,∴,设CD=x,则AC=x,CE=x﹣1,∵在Rt△ACE中,AC2=CE2+AE2,∴,即x2+2x﹣8=0,解得x=2,x=﹣4(舍去),∴CD=2,AC=,∵∠AFC与∠ADC都是所对的圆周角,∴∠AFC=∠ADC,∵CF为⊙O的直径,∴∠CAF=90°,∴,∴,即⊙O的半径为.【点评】本题考查相似三角形的判定及性质,解直角三角形,圆周角定理,掌握各种定理和判定方法是解题的关键.26.(10分)某条城际铁路线共有A,B,C三个车站,每日上午均有两班次列车从A站驶往C站,其中D1001次列车从A站始发,经停B站后到达C站,G1002次列车从A站始发,直达C站,两个车次的列车在行驶过程中保持各自的行驶速度不变.某校数学学习小组对列车运行情况进行研究,收集到列车运行信息如下表所示.列车运行时刻表车次A站B站C站发车时刻到站时刻发车时刻到站时刻D10018:009:309:5010:50G10028:25途经B站,不停车10:30请根据表格中的信息,解答下列问题:(1)D1001次列车从A站到B站行驶了分钟,从B站到C站行驶了分钟;(2)记D1001次列车的行驶速度为v1,离A站的路程为d1;G1002次列车的行驶速度为v2,离A站的路程为d2.①=.②从上午8:00开始计时,时长记为t分钟(如:上午9:15,则t=75),已知v1=240千米/小时(可换算为4千米/分钟),在G1002次列车的行驶过程中(25≤t≤150),若|d1﹣d2|=60,求t的值.【分析】(1)直接根据表中数据解答即可;(2)①分别求出D1001次列车、G1002次列车从A站到C站的时间,然后根据路程等于速度乘以时间求解即可;②先求出v2,A与B站之间的路程,G1002次列车经过B站时,对应t的值,从而得出当90≤t≤110时,D1001次列车在B站停车,G1002次列车经过B站时,D1001次列车正在B站停车,然后分25≤t <90,90≤t≤100,100<t≤110,110<t≤150讨论,根据题意列出关于t的方程求解即可.【解答】解:(1)D1001次列车从A站到B站行驶了90分钟,从B站到C站行驶了60分钟,故答案为:90,60;(2)①根据题意得:D1001次列车从A站到C站共需90+60=150分钟,G1002次列车从A站到C站共需35+60+30=125分钟,∴150v1=125v2,∴,故答案为:;②∵v1=4(千米/分钟),,∴v2=4.8(千米/分钟),∵4×90=360(千米),∴A与B站之间的路程为360千米,∵360÷4.8=75(分钟),∴当t=100时,G1002次列车经过B站,由题意可知,当90≤t≤110时,D1001次列车在B站停车,∴G1002次列车经过B站时,D1001次列车正在B站停车,i.当25≤t<90时,d1>d2,∴|d1﹣d2|=d1﹣d2,∴4t﹣4.8(t﹣25)=60,t=75(分钟);ⅱ.当90≤t≤100时,d1≥d2,∴|d1﹣d2|=d1﹣d2,∴360﹣4.8(t﹣25)=60,t=87.5(分钟),不合题意,舍去;ⅱi.当100<t≤110时,d1<d2,∴|d1﹣d2|=d2﹣d1,∴4.8(t﹣25)﹣360=60,t=112.5(分钟),不合题意,舍去;iv.当110<t≤150时,d1<d2,∴|d1﹣d2|=d2﹣d1,∴4.8(t﹣25)﹣[360+4(t﹣110)]=60,t=125(分钟);综上所述,当t=75或125时,|d1﹣d2|=60.【点评】本题考查了一元一次方程的应用,速度、时间、路程的关系,明确题意,合理分类讨论是解题的关键.27.(10分)如图①,二次函数y=x2+bx+c的图象C1与开口向下的二次函数图象C2均过点A(﹣1,0),B(3,0).(1)求图象C1对应的函数表达式;(2)若图象C2过点C(0,6),点P位于第一象限,且在图象C2上,直线l过点P且与x轴平行,与图象C2的另一个交点为Q(Q在P左侧),直线l与图象C1的交点为M,N(N在M左侧).当PQ=MP+QN时,求点P的坐标;(3)如图②,D,E分别为二次函数图象C1,C2的顶点,连接AD,过点A作AF⊥AD,交图象C2于点F,连接EF,当EF∥AD时,求图象C2对应的函数表达式.【解答】解:(1)将A(1,0),B(3,0代入y=x2+bx+c得,解得,∴图象C1对应的函数表达式:y=x2﹣2x﹣3;(2)设C2对应的函数表达式为y=a(x+1)(x﹣3)(a<0),将点C(0,6)代入得,a=﹣2.∴C2对应的函数表达式为:y=﹣2(x+1)(x﹣3),其对称轴为直线x=1.又∵图象C1的对称轴也为直线x=1.作直线x=1,交直线l于点H(如答图①)由二次函数的对称性得,QH=PH,PM=NQ,又∵PQ=MP+QM,∴PH=PM.设PH=t(0<l<2),则点P的横坐标为t+1,点M的横坐标为2t+1,将x=t+1代入y=﹣2(x+1)(x﹣3),得y P=﹣2(t+2)(t﹣2),将x=2t+1代入y=(x+1)(x﹣3),得y M=(2t+2)(2t﹣2),∵y P=y M,∴﹣2(t+2)(t﹣2)=(2t+2)(2t﹣2),即6t2=12,解得,(舍去).∴点P的坐标为(+1,4);(3)连接DE,交x轴于点G,过点F作FI⊥ED于点I,过点F作FJ⊥x轴于点J,(如答图②),∵FI⊥ED,FJ⊥x轴,∴四边形IGJF为矩形,∴IF=GJ,IG=FJ,设C2对应的函数表达式为y=a(x+1)(x﹣3)(a<0),∵点D,E分别为二次函数图象C1,C2的顶点,∴D(1,﹣4),E(1,﹣4a).∴DG=4,AG=2,EG=﹣4a,在Rt△AGD中,,∵AF⊥AD,∴∠FAB+∠DAB=90°,又∵∠DAG+∠ADG=90°,∴∠ADG=∠FAB,∴tmn∠FAB=tm∠ADG=,设GJ=m(0<m<2),则AJ=2+m,∴FJ=,F(m+1,),∵EF∥AD,∴∠FEl=∠ADG,∴tan∠FEl=tan∠ADG==,∴EI=2m,∵EG=EI+IG,∴,∴①,∵点F在C2上,a(m+1+1)(m+1﹣3)=,即a(m+2)(m﹣2)=,∵m+2≠0,∴a(m﹣2)=②,由①,②可得,解得m1=0(舍去),m2=,∴a=﹣,∴图象C2对应的函数表达式为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏初三初中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、解答题1.如图,在平面直角坐标系中,已知点A(8,1)、B(0,-3),反比例函数y=(x>0)的图像经过点A,过点(t,0)且平行于y轴的直线(0<t<8),与反比例函数的图像交于点M,与直线AB交于点N.(1)当t=2时,求△BMN面积;(2)若MA⊥AB,求t的值。

2.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x (分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?3.如图,已知点A、C在反比例函数的图象上,点B、D在反比例函数(0<<4)的图象上,AB∥CD∥x 轴,AB、CD在x轴的两侧,A、C的纵坐标分别为()、().(1)若,求证:四边形ABCD为平行四边形;(2)若AB=,CD=,,求的值.4.某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:(1)求张强返回时的速度;(2)妈妈比按原速返回提前多少分钟到家?(3)请直接写出张强与妈妈何时相距1000米?5.如图,已知点A在反比例函数上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E ,若△BCE 的面积为8。

(1)求证:△EOB ∽△ABC ;(2)求反比例函数的解析式。

6.如图,在直角坐标系xOy 中,一直线y=2x+b 经过点A (-1,0)与y 轴正半轴交于B 点,在x 轴正半轴上有一点D ,且OB=OD ,过D 点作DC ⊥x 轴交直线y=2x+b 于C 点,反比例函数y=(x >O )经过点C . (1)求b ,k 的值;(2)求△BDC 的面积;(3)在反比例函数y=(x >0)的图象上找一点P (异于点C ),使△BDP 与△BDC 的面积相等,求出P 点坐标.7.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y (cm )与燃烧时间x (min )的关系如图所示.(1)求乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式;(2)求点P 的坐标,并说明其实际意义;(3)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.8.如图,在平面直角坐标系xOy 中,一次函数y=ax+b 的图象与x 轴相交于点A (-2,0),与y 轴交于点C ,与反比例函数在第一象限内的图象交于点B (m ,n ),连结OB .若S △AOB =6,S △BOC =2.(1)求一次函数的表达式;(2)求反比例函数的表达式.9.某工厂甲、乙两个车间同时开始生产某种产品,产品总任务量为m 件,开始甲、乙两个车间工作效率相同.乙车间在生产一段时间后,停止生产,更换新设备,之后工作效率提高.甲车间始终按原工作效率生产.甲、乙两车间生产的产品总件数y 与甲的生产时间x (时)的函数图象如图所示.(1)甲车间每小时生产产品 件,a= . (2)求乙车间更换新设备之后y 与x 之间的函数关系式,并求m 的值.(3)若乙车间在开始更换新设备时,增加两名工作人员,这样可便更换设备时间减少0.5小时,并且更换后工作效率提高到原来的2倍,那么两个车间完成原任务量需几小时?10.如图,四边形ABCD为正方形,点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数的图象经过点C,一次函数y=ax+b的图象经过点A、C(1)求反比例函数和一次函数的解析式(2)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,请直接写出P点的坐标. 11.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.12.一列快车由甲地开往乙地,一列慢车由乙地开往甲地, 两车同时出发,匀速运动.快车离乙地的路程y(km)与行驶1(km)与行驶的时间x(h)之间的函数关系,如的时间x(h)之间的函数关系,如图中线段AB所示;慢车离乙地的路程y2图中线段OC所示。

根据图象进行以下研究。

解读信息:(1)甲、乙两地之间的距离为_______km;(2)线段AB的解析式为_________________; 线段OC的解析式为__________________;问题解决:(3)设快、慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式,并画出函数的图象。

江苏初三初中数学专题试卷答案及解析一、解答题1.如图,在平面直角坐标系中,已知点A(8,1)、B(0,-3),反比例函数y=(x>0)的图像经过点A,过点(t,0)且平行于y轴的直线(0<t<8),与反比例函数的图像交于点M,与直线AB交于点N.(1)当t=2时,求△BMN面积;(2)若MA⊥AB,求t的值。

【答案】(1)6;(2)【解析】(1)根据待定系数法求出反比例函数和直线AB的解析式,利用t=2得出M和N的坐标,进而求出△BMN的面积;(2)求出直线AM的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组求出M的坐标,即可得出结果.试题解析:(1)把点A(8,1)代入反比例函数y= (x>0)得:k=1×8=8,y=,设直线AB的解析式为:y=ax+b,根据题意得:,解得:a=,b=−3,∴直线AB的解析式为:y=x−3;当t=2时,M(2,4),N(2,−2),则MN=6,∴△BMN的面积=×6×2=6;(2)∵MA⊥AB,∴设直线MA的解析式为:y=−2x+c,把点A(8,1)代入得:c=17,∴直线AM的解析式为:y=−2x+17,解方程组,得:或 (舍去),∴M的坐标为(,16),∴t=.2.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x (分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?【答案】(1)y=20x(0≤x≤30);(2)乙出发后10分钟追上甲,此时乙所走的路程是200米.【解析】(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,根据图象得到点C的坐标,然后利用待定系数法求一次函数解析式解答;(2)根据图形写出点A、B的坐标,再利用待定系数法求出线段AB的解析式,再与OC的解析式联立求解得到交点的坐标,即为相遇时的点.试题解析:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600)所以,,解得,所以,y=40x-200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲,此时乙所走的路程是200米.【考点】一次函数的应用.3.如图,已知点A、C在反比例函数的图象上,点B、D在反比例函数(0<<4)的图象上,AB∥CD∥x 轴,AB、CD在x轴的两侧,A、C的纵坐标分别为()、().(1)若,求证:四边形ABCD为平行四边形;(2)若AB=,CD=,,求的值.【答案】(1)证明见解析;(2)1【解析】(1)根据题意,分别用m,n表示A、B、C、D四点坐标,得出CD=AB,结合AB∥CD,从而可证四边形ABCD为平行四边形;(2)根据题意列出方程组求解即可.试题解析:(1)∵AB∥CD∥x轴,AB、CD在x轴的两侧,A、C的纵坐标分别为m(m>0),n(n<0)∴A,B,C,D∴AB=,CD=∵m+n=0∴CD=,又∵AB∥CD∴四边形ABCD为平行四边形(2)∵AB=,CD=,m-n=6,∴解得:b=1,∴b的值为14.某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:(1)求张强返回时的速度;(2)妈妈比按原速返回提前多少分钟到家?(3)请直接写出张强与妈妈何时相距1000米?【答案】(1)、150米/分;(2)、10分;(3)、35分或分或分【解析】(1)、根据速度=路程÷时间,即可解答;(2)、求出妈妈原来的速度,妈妈原来走完3000米所用的时间,即可解答;(3)、分别求出张强和妈妈的函数解析式,根据张强与妈妈相距1000米,列出方程,即可解答. 试题解析:(1)、3000÷(50﹣30)=3000÷20=150(米/分),答:张强返回时的速度为150米/分;(2)、(45﹣30)×150=2250(米),点B 的坐标为(45,750),妈妈原来的速度为:2250÷45=50(米/分), 妈妈原来回家所用的时间为:3000÷50=60(分),60﹣50=10(分), 妈妈比按原速返回提前10分钟到家;(3)、如图:设线段BD 的函数解析式为:y=kx+b ,把(0,3000),(45,750)代入得:,解得:, ∴y=﹣50x+3000,线段OA 的函数解析式为:y=100x (0≤x≤30), 设线段AC 的解析式为:y=k 1x+b 1,把(30,3000),(50,0)代入得: 解得:,∴y=﹣150x+7500,(30<x≤50)当张强与妈妈相距1000米时,即﹣50x+3000﹣100x=1000或100x ﹣(﹣50x+3000)=1000或(﹣150x+7500)﹣(﹣50x+3000)=1000, 解得:x=35或x=或x=, ∴当时间为35分或分或分时,张强与妈妈何时相距1000米.【考点】一次函数的应用.5.如图,已知点A 在反比例函数上,作Rt △ABC ,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E ,若△BCE 的面积为8。

相关文档
最新文档