现代控制理论作业题答案
现代控制理论试卷答案3套

现代控制理论试卷 1一、(10分)判断以下结论,若是正确的,则在括号里打√,反之打×(1)用独立变量描述的系统状态向量的维数是唯一。
()(2)线性定常系统经过非奇异线性变换后,系统的能观性不变。
()(3)若一个系统是李雅普诺夫意义下稳定的,则该系统在任意平衡状态处都是稳定的。
()(4)状态反馈不改变被控系统的能控性和能观测性。
()(5)通过全维状态观测器引入状态反馈来任意配置系统的闭环极点时,要求系统必须同时能控和能观的。
()二、(12分)已知系统1001010,(0)00121x x x⎛⎫⎛⎫⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,求()x t.三、(12分) 考虑由下式确定的系统:2s+2(s)=43Ws s++,求其状态空间实现的能控标准型和对角线标准型。
四、(9分)已知系统[]210020,011003x x y⎡⎤⎢⎥==⎢⎥⎢⎥-⎣⎦,判定该系统是否完全能观?五、(17分) 判断下列系统的能控性、能观性;叙述李亚普诺夫稳定性的充要条件并分析下面系统的稳定性.[]xy u x x 11103211=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=六、(17分)已知子系统1∑ 111121011x x u -⎡⎤⎡⎤=+⎢⎥⎢⎥-⎣⎦⎣⎦,[]1110y x = 2∑ []22222110,01011x x u y x -⎡⎤⎡⎤=+=⎢⎥⎢⎥-⎣⎦⎣⎦求出串联后系统的状态模型和传递函数.七、(15分)确定使系统2001020240021a x x u b -⎡⎤⎡⎤⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦为完全能控时,待定参数的取值范围。
八、(8分)已知非线性系统 ⎩⎨⎧--=+-=2112211sin 2x a x xx x x试求系统的平衡点,并确定出可以保证系统大范围渐近稳定的1a 的范围。
现代控制理论 试卷 1参考答案一、(10分)判断以下结论,若是正确的,则在括号里打√,反之打× (1) 用独立变量描述的系统状态向量的维数是唯一。
现代控制理论试题与答案

现代控制理论试题与答案现代控制理论1.经典-现代控制区别:经典控制理论中,对⼀个线性定常系统,可⽤常微分⽅程或传递函数加以描述,可将某个单变量作为输出,直接和输⼊联系起来;现代控制理论⽤状态空间法分析系统,系统的动态特性⽤状态变量构成的⼀阶微分⽅程组描述,不再局限于输⼊量,输出量,误差量,为提⾼系统性能提供了有⼒的⼯具.可以应⽤于⾮线性,时变系统,多输⼊-多输出系统以及随机过程.2.实现-描述由描述系统输⼊-输出动态关系的运动⽅程式或传递函数,建⽴系统的状态空间表达式,这样问题叫实现问题.实现是⾮唯⼀的.3.对偶原理系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观⼦系统为渐近稳定第⼀章控制系统的状态空间表达式1.状态⽅程:由系统状态变量构成的⼀阶微分⽅程组2.输出⽅程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态⽅程和输出⽅程总合,构成对⼀个系统完整动态描述4.友矩阵:主对⾓线上⽅元素均为1:最后⼀⾏元素可取任意值;其余元素均为05.⾮奇异变换:x=Tz,z=T-1x;z=T-1A Tz+T-1Bu,y=CTz+Du.T为任意⾮奇异阵(变换矩阵),空间表达式⾮唯⼀6.同⼀系统,经⾮奇异变换后,特征值不变;特征多项式的系数为系统的不变量第⼆章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φ(t)2.线性定常⾮齐次⽅程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ第三章线性控制系统的能控能观性1.能控:使系统由某⼀初始状态x(t0),转移到指定的任⼀终端状态x(tf),称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态⽅程中系统矩阵A和控制矩阵b3.⼀般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后⼀⾏相对应的⼀⾏元素没有全为0.(2)T-1B中对于互异特征值部分,它的各⾏元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的⼀列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析⽅便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最⼩实现问题:根据给定传递函数阵求对应的状态空间表达式,其解⽆穷多,但其中维数最⼩的那个状态空间表达式是最常⽤的.第五章线性定常系统综合1.状态反馈:将系统的每⼀个状态变量乘以相应的反馈系数,然后反馈到输⼊端与参考输⼊相加形成控制律,作为受控系统的控制输⼊.K为r*n维状态反馈系数阵或状态反馈增益阵2.输出反馈:采⽤输出⽮量y构成线性反馈律H为输出反馈增益阵3.从输出到状态⽮量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引⼊⼀个动态⼦系统来改善系统性能5.(1)状态反馈不改变受控系统的能控性(2)输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平⾯上所期望的位置,以获得所希望的动态性能 (1)采⽤状态反馈对系统任意配置极点的充要条件是∑0完全能控(2)对完全能控的单输⼊-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件[1]∑0完全能控[2]动态补偿器的阶数为n-1(3)对系统⽤从输出到x 线性反馈实现闭环极点任意配置充要条件是完全能观 7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输⼊-单输出系统,不能采⽤输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常⼯作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定 (1)对系统采⽤状态反馈能镇定的充要条件是其不能控⼦系统渐近稳定(2)对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观⼦系统是输出反馈能镇定的,其余⼦系统是渐近稳定的(3)对系统采⽤输出到x 反馈实现镇定充要条件是其不能观⼦系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输⼊输出相互关联的多变量系统的实现每个输出仅受相应的⼀个输⼊所控制,每个输⼊也仅能控制相应的⼀个输出11.系统解耦⽅法:前馈补偿器解耦和状态反馈解耦 12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u u y y 222++=+ ,试求其状态空间最⼩实现。
现代控制理论习题及答案

现代控制理论习题及答案现代控制理论习题及答案现代控制理论是控制工程领域的重要分支,它研究如何设计和分析控制系统,以实现对动态系统的稳定性、响应速度、精度等方面的要求。
在学习现代控制理论过程中,习题是一个非常重要的环节,通过解答习题可以帮助我们巩固理论知识,提高问题解决能力。
本文将介绍一些常见的现代控制理论习题及其答案,希望对读者有所帮助。
1. 题目:给定一个开环传递函数 G(s) = 10/(s+5),求其闭环传递函数 T(s) 和稳定性判断。
解答:闭环传递函数 T(s) 可以通过公式 T(s) = G(s) / (1 + G(s)) 计算得到。
代入G(s) 的表达式,得到 T(s) = 10/(s+15)。
稳定性判断可以通过判断开环传递函数G(s) 的极点是否在左半平面来进行。
由于 G(s) 的极点为 -5,位于左半平面,因此系统是稳定的。
2. 题目:给定一个系统的状态空间表达式为 dx/dt = Ax + Bu,其中 A = [[-1, 2], [0, -3]],B = [[1], [1]],求系统的传递函数表达式。
解答:系统的传递函数表达式可以通过状态空间表达式进行求解。
首先,计算系统的特征值,即矩阵 A 的特征值。
通过求解 det(sI - A) = 0,可以得到系统的特征值为 -1 和 -3。
然后,将特征值代入传递函数表达式的分母,得到传递函数的分母为 (s+1)(s+3)。
接下来,计算传递函数的分子,可以通过求解 C = D(sI - A)^(-1)B 得到,其中 C 和 D 分别为输出矩阵和输入矩阵。
代入给定的 A、B 矩阵,计算得到 C = [1, 0] 和 D = [0]。
因此,系统的传递函数表达式为 G(s) = C(sI - A)^(-1)B = [1, 0] * [(s+1)^(-1), -2(s+3)^(-1); 0, (s+3)^(-1)] * [1; 1] =(s+1)^(-1) + 2(s+3)^(-1)。
《现代控制理论》第三版_.习题答案

1 0 0 3 1 0 5 2 1 52 7 1 5 2 70 125 3 5 7 5 0 0 1 1 B 2 ; 2 5 5
1 0 a1 0 0 1 0 1 0 0 1 a2 3 7 5
0 B 0 1
C (b0 a0bn ) (bn1 an1bn ) 2 1 0
3 1 a 或者 2 2 1 a1 0 a0
e At I At 1 22 1 33 A t A t 2! 3! t2 t4 t6 t3 t5 1 4 16 64 , 4 16 t 2! 4! 6! 3! 5! 3 5 2 4 6 t t t t t t 4 16 64 , 1 4 16 64 3! 5! 2! 4! 6!
0 0 1 B M 1 0 0 0 0 1 M2
1 0 B 1 M1 B1 M2
1 B1 M1 B1 B2 M2
0
0 0 1 0 C 0 0 0 1
1-5. 根据微分方程, 写状态方程, 画模 拟结构图。
1 a2 a2 2 a1 3 2 a a a 1 2 2 a0
1 a2 a1
1 a2
12 b1 b0
b3 b 2 b1 1 b0
凯莱哈密顿法: 1,2 2 j
0 (t ) 1 1 e1t 1 2(e 2 jt e 2 jt ) (t ) 1 2t 4 2 jt 2 jt e j ( e e ) 2 1
《现代控制理论》刘豹著(第3版)课后习题答案(最完整版)

第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp n p b1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CC L L R L L R x x x 。
现代控制理论习题解答(第一章)

g
题 1-3 图 2
Y2 (s)
3
U (s)
K1
x6
x6
T1 1
T1
K2
x4
x4
T2 1
K3 x2
x2 1 T4
T2
x3
x3
x5
x5
K5
T5
1 T5
写成矩阵的形式得:
题 1-3 图 3
x 1
=− 1 T4
x1
+
1 T4
x2
x2 = K 3 (x4 − x3 )
x3 = x2
x 4
1⎤
R 2 C1 −1
R2C2
⎥ ⎥ ⎥
⎡ ⎢ ⎣
x1 x2
⎥⎦
⎤ ⎥ ⎦
+
⎡ ⎢ ⎢ ⎣
1
R1C1 0
⎤ ⎥⎥u i ⎦
y = u0 = [0
1]⎢⎡
⎣
x1 x2
⎤ ⎥ ⎦
(2)
设状态变量: x1 = iL 、 x2 = uc 而
1
根据基尔霍夫定律得: 整理得
•
iL = C uc
•
ui = R ⋅ iL + LiL + uc
(4) G(s)
=
s3
s2 + 2s + 3 + 3s 2 + 3s + 1
【解】: 此题多解,一般可以写成能控标准型、能观标准型或对角标准型,以下解法供参考。 (1)
⎡0 1
x
=
⎢ ⎢
0
0
⎢⎣− 6 −11
y = [1 1 1]x
0 ⎤ ⎡0⎤
1
⎥ ⎥
x
《现代控制理论》第三版 第三章.习题答案

0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 , 0 0 0 0 0 0 0 1 0 Co 0m 0m I m 0 0 0 0 0 1 第二步 : 判别该能观标准型实现的状态 是否完全能控。
T T T
0 1 0 Rc 0 0 1 ( 第 3 列 为 保 证 1 0 0 0 0 1 1 det Rc 0 ) Rc 1 0 0 0 1 0 0 1 4 ˆ R 1 AR 1 2 2 所以 A c c 0 0 2 ˆ R 1b 1 0 0T b
所以系统不能控不能观系统中a由系统模拟图可得状态空间表达式显然所以系统不可控系统显然所以系统不可观没有影响
第三章 作业
参考答案 3-1 (1) 法一:根据系统模拟结构图可以看出; 对应状态 x2 的方块是一个与输入 u 无联 系的孤立部分,于是不能控;状态 x4 对 输出 y 不产生任何影响, 于是不能观。 所以系统不能控不能观, 系统中 a, b, c, d 的取值对能控性与能观性没有影响。 法二: 由系统模拟图可得状态空间表 达式
Rank ( N ) 3 6 , 所以该能控标准型实现
不是最小实现。为此必须按能观性进行
结构分解。 第三步,构造变换矩阵 Ro1 ,将系统按能 观性进行结构分解。取 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 1 1 Ro ,求得 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 Ro 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 于是
《现代控制理论》刘豹著(第3版)课后习题答案(最完整版)

第一章习题答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp n p b1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CC L L R L L R x x x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 线性系统的状态空间分析与综合9-1 设系统的微分方程为u x x x=++23 其中u 为输入量,x 为输出量。
⑴ 设状态变量x x =1,xx =2,试列写动态方程; ⑵ 设状态变换211x x x +=,2122x x x --=,试确定变换矩阵T 及变换后的动态方程。
解:⑴ u x x x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡1032102121 ,[]⎥⎦⎤⎢⎣⎡=2101x x y ; ⑵ ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡2121x x T x x ,⎥⎦⎤⎢⎣⎡--=2111T ;⎥⎦⎤⎢⎣⎡--=-11121T ;AT T A 1-=,B T B 1-=,CT C =; 得,⎥⎦⎤⎢⎣⎡--=2111T ;u x x x x ⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡1110012121 ,[]⎥⎦⎤⎢⎣⎡=2111x x y 。
9-2 设系统的微分方程为u y y yy 66116=+++ 其中u 、y 分别系统为输入、输出量。
试列写可控标准型(即A 为友矩阵)及可观标准型(即A 为友矩阵转置)状态空间表达式,并画出状态变量图。
解:可控标准型和可观标准型状态空间表达式依次为,[]x y u x x 0061006116100010=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---= ;[]xy u x x 1000066101101600=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---= ; 可控标准型和可观标准型的状态变量图依次为,9-3 已知系统结构图如图所示,其状态变量为1x 、2x 、3x 。
试求动态方程,并画出状态变量图。
解:由图中信号关系得,31x x= ,u x x x 232212+--= ,32332x x x -= ,1x y =。
动态方程为 u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=020********* ,[]x y 001;状态变量图为9-4 已知双输入双-输出系统状态方程和输出方程23213213212161162u x x x xu u x xu x x+---=-+=+= ,32122112x x x y x x y -+=-=, 写出其向量-矩阵形式并画出状态变量图。
解:状态方程 u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=1012016116100010 ,x y ⎥⎦⎤⎢⎣⎡--=112011; 状态变量图为9-5 已知系统传递函数为3486)(22++++=s s s s s G ,试求出可控标准型(A 为友矩阵)、可观标准型(A 为友矩阵转置)、对角型(A 为对角阵)动态方程。
解:135.015.113452)(2++++=++++=s s s s s s G ;可控标准型、可观标准型和对角型依次为[]u x y u x x +=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=25104310 ;[]u x y u x x +=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=10254130 ;[]ux y u x x +=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=115.05.13001 。
9-6 已知系统传递函数为)2()1(5)(2++=s s s G , 试求约当型(A 为约当阵)动态方程。
解:2)1(5)1(525)(+++-++=s s s s G ;u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=555100110002 ,[]x y 011=。
9-7 已知系统的状态方程为u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=111101 ,初始条件为1)0(1=x ,0)0(2=x 。
试求系统在单位阶跃输入作用下的响应。
解法1:⎥⎦⎤⎢⎣⎡=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡---=Φ--t t t e te e s s L t 01101)(11; ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎰---t t t t t t t t t t t t t te e te e te e d e e t e e te e x 212111)(00100τττττ。
解法2:⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡--=+-=-s s s s s s s s s s x s Bu A s s x 21)1(111)1(11)1(1)}0()({)I ()(22221; ⎥⎦⎤⎢⎣⎡-==-t t te e s x L x 212)]([1。
9-8 已知系统的状态转移矩阵⎥⎦⎤⎢⎣⎡+-+---=Φ--------t t tt t t tt e e e e e e e e t 222232332223)(, 试求该系统的状态阵A 。
解:⎥⎦⎤⎢⎣⎡--=Φ==4321)(0t t A 。
(注:原题给出的)(t Φ不满足A =Φ)0( 及A t t A t )()()(Φ=Φ=Φ 。
) 9-9 已知系统动态方程u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=210311032010 ,[]x y 100=, 试求传递函数)(s G 。
解:B A s C s G 1)I ()(--=,[][]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++----+-----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-=-210231503620396710021031103201100)(22231s s s s s s s s s s s s s s s G ; 67372)(32--++=s s s s s G 。
9-10 试求所示系统的传递函数矩阵。
u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=1012016116100010 ,x y ⎥⎦⎤⎢⎣⎡--=112011。
解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+-++++++=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--=---2222311611666161166116161161001)I (s s s s s s s s s s s s s s s A s ; ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+-+++⎥⎦⎤⎢⎣⎡-+++=1012016116661611611201161161)(22223s s s s s s s s s s s s s G ; ⎥⎦⎤⎢⎣⎡-+-++--+++==442845429461161)(22223s s s s s s s s s s G 。
9-11 已知差分方程)(3)1(2)(2)1(3)2(k u k u k y k y k y ++=++++,试列写可控标准型(A 为友矩阵)离散动态方程,并求出1)(=k u 时的系统响应。
给定0)0(=y ,1)1(=y 。
解:系统的脉冲传递函数为2332)(2+++=z z z z G ,1)(-=z zz U ;)(10)(3210)1(k u k x k x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡--=+,[])(23)(k x k y =。
)2(32)1(2)1(65)2)(1)(1(32)}0(3)1()0()(){()(232++++-=++-+=+++=z z z z z z z z z z z y z y z y z U z G z Y ;322)1(65)(1++-+=k k k y 。
9-12 已知连续系统动态方程为u x x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=102010 ,[]x y 01=, 设采样周期s T 1=,试求离散化动态方程。
解:设)()(k u t u =,T k t kT )1(+<≤;⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=---)2/(10)]2(/[1/1201)(11s s s s s s A sI ,⎥⎦⎤⎢⎣⎡-=Φtt e e t 220)1(5.01)(; ⎥⎦⎤⎢⎣⎡-=Φ=Φ220)1(5.01)(e e T ,⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-Φ=Γ⎰)1(5.0)3(25.010)(220e e t d t T T ; )()1(5.0)3(25.0)(0)1(5.01)1(2222k u e e k x e e k x ⎥⎦⎤⎢⎣⎡--+⎥⎦⎤⎢⎣⎡-=+,[])(01)(k x k y =。
9-13 判断下列系统的状态可控性:⑴ u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=100041020122 ; ⑵ u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010********* ;⑶ u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=011000010010011 ; ⑷ u x x ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=121100040004;⑸ u x x⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11100000000000012111λλλλ ; ⑹ u x x ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11000000000100012111λλλλ 。
解:⑴ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=101000210U ,n U <=2rank ; 状态不完全可控;⑵ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=210111210U ,n U <=2rank ;状态不完全可控;⑶ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1101101010001U ,3rank 1=U ; 状态完全可控;⑷ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=11132821641U ,n U <=2rank ; 状态不完全可控;⑸ ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=3222231211312112111113210λλλλλλλλλλλU ,n U <=3rank ;状态不完全可控;⑹ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=322223121121111132103100λλλλλλλλλU ,4rank =U ;状态完全可控;9-14 已知bc ad =,试计算=⎥⎦⎤⎢⎣⎡100d c b a ? 解:矩阵A 的特征方程为 0)()(2=+-=s d a s s α, 据凯莱哈密尔定理得知:0)(2=+-A d a A ,k k A d a A )(1+=+;A d a A 99100)(+=;⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡d c b a d a d c b a 99100)(。
9-15 设系统状态方程为u b x a x ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡-=1110 ,且状态完全可控。
试求a 、b 。
解:⎥⎦⎤⎢⎣⎡-=11ab b b U ,01det 2≠--=b ab U ,只需b b a 1+≠。