【原创】R语言数据可视化分析报告(附代码数据)

合集下载

【原创】R语言Shiny表格数据分析可视化案例报告(附代码数据)

【原创】R语言Shiny表格数据分析可视化案例报告(附代码数据)

【原创】R语⾔Shiny表格数据分析可视化案例报告(附代码数据)
R语⾔Shiny表格数据分析可视化案例报告
表格是⼯作和⽣活中常见的数据呈现⽅式,例如公司的很多报表就需要⽤到表格。

当我们展⽰数据的时候,⽤户当然不希望只看到⼀个静态的页⾯,所以就需要⼀些简单的交互功能:排序、查找、筛选等等。

基础的需求并不难实现,但当我们使⽤其他⽹页技术做这件事情的时候,既要做前端,也要做后端,代码量也不会少。

对技术⼩⽩来说,使⽤ R Shiny 做这样的事情就很容易了。

Shiny 是 R 社区⾥⾯⼀个⾮常出名的包,⽤来制作各类交互式⽹络应⽤,我们熟知的谢益辉就是其中的⼀位作者。

先睹为快看看 Shiny 能做出什么样的效果:
可以看出来, Shiny 简直天⽣就是为了交互⽽存在的。

Shiny 也提供了⾮常丰富的 widgets ,⼏乎覆盖了我们对 UI 的全部需求:
DT 也是谢⽼⼤写的包,是 JavaScript DataTables 库的R接⼝,R的数据对象可以直接通过 DT 呈现为HTML的表格。

不仅如此, DT 本⾝还⾃动⽀持筛选、分页、排序等功能,⾮常的强⼤。

⼀⾔以蔽之, Shiny + DT 是交互式呈现表格的⾮常好的⼀个⽅案。

下⾯以我最近做的⼀个表格为例,最终效果是这样的:。

【最新】R语言数据可视化 PPT课件教案讲义(附代码数据)图文

【最新】R语言数据可视化 PPT课件教案讲义(附代码数据)图文

中级图形
basic 3d scatter plot
mpg
25
30
35
500 400 300 200 100 2 3 4 5 6 0
10
15
1
wt
disp
20
中级图形
气泡图 概念:用点的大小表示第三个变量的值 函数:symbols() symbols(x,y,circle=radius)
中级图形
scatter plot matrix via var package
100 200 300 400 2 3 4 5
100 20Leabharlann 300 400dispdrat
5
wt
2
3
4
10
15
20
25
30
3.0
3.5
4.0
4.5
5.0
3.0 3.5 4.0 4.5 5.0
10 15
20
25 30
mpg
中级图形
分组散点图 概念:以某个因子为条件绘制两个变量的散点图
> library(car) > library(ggplot2) > attach(mtcars) > scatterplot(mpg~wt|cyl)
> scatterplot(mpg~wt|cyl,data=mtcars,lwd=2,main="scatter plot of mpg vs. weight by # cylinders",xlab="height of car",ylab="miles per gallon",legend.plot=TRUE,id.method="identity",labels=s(mtcars),bo xplots="xy")

【最新】R语言关联分析模型报告案例附代码数据

【最新】R语言关联分析模型报告案例附代码数据

【最新】R语⾔关联分析模型报告案例附代码数据【原创】附代码数据有问题到淘宝找“⼤数据部落”就可以了关联分析⽬录⼀、概括 (1)⼆、数据清洗 (1)2.1公⽴学费(NPT4_PUB) (1)2.2毕业率(Graduation.rate) (1)2.3贷款率(GRAD_DEBT_MDN_SUPP) (2)2.4偿还率(RPY_3YR_RT_SUPP) (2)2.5毕业薪⽔(MD_EARN_WNE_P10)。

(3)2.6 私⽴学费(NPT4_PRIV) (3)2.7 ⼊学率(ADM_RATE_ALL) (4)三、Apriori算法 (4)3.1 相关概念 (5)3.2 算法流程 (6)3.3 优缺点 (7)四、模型建⽴及结果 (8)4.1 公⽴模型 (8)4.2 私⽴模型 (11)⼀、概括对7703条样本数据,分别根据公⽴学费和私⽴学费差异,建⽴公⽴模型和私⽴模型,进⾏关联分析。

⼆、数据清洗2.1公⽴学费(NPT4_PUB)此字段,存在4个负值,与实际情况不符,故将此四个值重新定义为NULL。

重新定义后,NULL值的占⽐为75%,占⽐很⼤,不能直接将NULL值删除或者进⾏插补,故将NULL单独作为⼀个取值分组。

对⾮NULL的值按照等⽐原则进⾏分组,分组结果如下:A:[0,5896]B:(5896,7754]C:(7754, 9975]D:(9975, 13819]E:(13819, +]分组后取值分布为:2.2毕业率(Graduation.rate)将PrivacySuppressed值重新定义为NULL,重新定义后,NULL值的占⽐为20%,占⽐较⼤,不适合直接删除或进⾏插补,故将NULL单独作为⼀个取值分组。

对⾮NULL值根据等⽐原则进⾏分组,分组结果如下:A:[0,0.29]B:(0.29,0.47]C:(0.47, 0.61]D:(0.61, 0.75]E:(0.75, +]分组后取值分布为:2.3贷款率(GRAD_DEBT_MDN_SUPP)将PrivacySuppressed值重新定义为NULL,重新定义后,NULL值的占⽐为20%,占⽐较⼤,不适合直接删除或进⾏插补,故将NULL单独作为⼀个取值分组。

【原创】R语言城镇居民人均消费数据主成分,聚类分析报告.pdf(附代码数据)

【原创】R语言城镇居民人均消费数据主成分,聚类分析报告.pdf(附代码数据)

有问题到百度搜索“大数据部落”就可以了欢迎登陆官网:/datablog我国城镇居民人均消费支出研究有问题到百度搜索“大数据部落”就可以了欢迎登陆官网:/datablog摘要:近年来,随着我们经济的快速发展,居民的消费结构也发生了巨大变化,人们开始根据自身的需求选择多种多样的商品,而且人们在实现物质需求满足的同时,还在不断追求精神需求的满足。

对此,本文先使用R语言对城镇居民人均总消费支出以及恩格尔系数的总体现状进行数据可视化,接着运用主成分和聚类分析法对我国31个省级行政区(不含港澳台)城镇居民消费结构进行综合评价。

共提取2个主成分,分别命名为日常必需品消费成分、非日常必需品成分,并将31个省区市主成分综合得分进行排名和聚类分析,结果分为四类。

最终得出相关结论,体现不同地区的经济发展、城镇居民消费结构、消费偏好的差异性以及其中的联系。

关键词:城镇居民人均消费;数据可视化;主成分分析;聚类分析有问题到百度搜索“大数据部落”就可以了欢迎登陆官网:/datablog有问题到百度搜索“大数据部落”就可以了欢迎登陆官网:/datablog目录一、引言 (4)1.1研究背景及意义 (4)1.2研究方法及数据来源 (4)二、我国城镇居民人均消费支出现状分析 (5)2.1各地区城镇居民人均总消费支出 (5)2.2恩格尔系数分析 (6)三、城镇居民人均消费支出的统计建模分析 (8)3.1主成分分析 (8)3.1.1计算相关矩阵 (8)3.1.2计算相关矩阵的特征值和主成分负荷 (8)3.1.3确定主成分 (9)3.1.4主成分得分 (9)3.1.5计算主成分C1,C2的系数 (10)3.1.6各省、市、自治区的主成分得分排名 (10)3.1.7主成分作图 (12)3.2聚类分析 (13)3.2.1聚类分析结果分析 (13)四、结论及建议 (16)有问题到百度搜索“大数据部落”就可以了欢迎登陆官网:/datablog附录: (17)―、引言1.1研究背景及意义人均消费支出指居民用于满足家庭日常生活消费的全部支出,包括购买实物支出和服务性消费支出。

【原创】r语言层次聚类案例附代码数据

【原创】r语言层次聚类案例附代码数据

####################################################################### ############ 聚类分析####################################################################### a=cbind(农业总产值 ,林业总产值, 牧业总产值, 渔业总产值, 农村居民家庭拥有生产性固定资产原值, 农村居民家庭经营耕地面积)# ⭞↚⭞Ѡ⭞䠅㚐㊱rownames(a)=mydata$地区detach(mydata)hc1=hclust(dist(scale(a)),"ward.D2")cbind(hc1$merge,hc1$height)### [,1] [,2] [,3]## [1,] -22 -24 0.1562347## [2,] -2 -29 0.4954046## [3,] -12 -20 0.6158525## [4,] -4 1 0.7459837## [5,] -5 -7 0.8431761## [6,] -27 4 0.8502919## [7,] -28 -30 0.9238256## [8,] 2 7 0.9982795## [9,] -1 -9 1.0586066## [10,] -14 3 1.0996796## [11,] -16 -23 1.1292437## [12,] -25 10 1.2758523## [13,] -13 -19 1.4055256## [14,] -3 11 1.4555952## [15,] -21 6 1.6495578## [16,] -10 -17 1.7462669## [17,] 9 15 1.7988319## [18,] -18 12 1.8498860## [19,] -6 -11 1.9536216## [20,] -8 5 2.1881307## [21,] -15 16 2.5009589## [22,] -31 20 2.7312571## [23,] 13 18 3.0129164## [24,] 8 17 3.0616119## [25,] 19 23 3.2580779## [26,] 14 21 4.3774794## [27,] -26 22 5.2122229## [28,] 25 26 6.0403304## [29,] 24 27 8.3310723## [30,] 28 29 11.4082257plot(hc1,hang=-2,ylab="欧氏距离",main="ward ")cutree(hc1,3)## 北京天津河北山西内蒙辽宁吉林黑龙江上海江苏## 1 1 2 1 3 2 3 3 1 2## 浙江安徽福建江西山东河南湖北湖南广东广西## 2 2 2 2 2 2 2 2 2 2## 海南重庆四川贵州云南西藏陕西甘肃青海宁夏## 1 1 2 1 2 3 1 1 1 1## 新疆## 3library(NbClust)# 加载包res<-NbClust(a, distance ="euclidean", min.nc=2, max.nc=8,method ="complete", index ="ch")res$All.index## 2 3 4 5 6 7 8## 22.4859 64.2952 95.0505 91.2070 112.2167 126.6607 125.0580res$Best.nc## Number_clusters Value_Index## 7.0000 126.6607res$Best.partition## 北京天津河北山西内蒙辽宁吉林黑龙江上海江苏## 1 2 2 3 4 5 5 4 6 1## 浙江安徽福建江西山东河南湖北湖南广东广西## 5 1 1 3 2 1 3 3 3 1## 海南重庆四川贵州云南西藏陕西甘肃青海宁夏## 1 1 1 1 2 7 1 2 5 5## 新疆## 4####################################################################### ############ 因子分析####################################################################### x=ascale(x,center=T,scale=T)## 农业总产值林业总产值牧业总产值渔业总产值## 北京 -1.22777296 -0.68966546 -1.0576108 -0.717868590## 天津 -1.20072019 -1.32628581 -1.1287831 -0.587405030## 河北 1.44015787 -0.40768816 1.2735925 -0.276307864## 山西 -0.60736290 -0.39313054 -0.8459665 -0.730089499## 内蒙 -0.31173176 -0.16449038 0.3536925 -0.682760278## 辽宁 0.02317599 0.21376291 1.0886323 0.905582647## 吉林 -0.31664133 -0.16033106 0.3705164 -0.661159286## 黑龙江 0.73000004 0.28496065 0.6928325 -0.543827843## 上海 -1.22304555 -1.24358878 -1.1769433 -0.598687930## 江苏 1.32304764 -0.14014613 0.5106958 2.558246143## 浙江 -0.25945707 0.37842297 -0.4799669 1.088655075## 安徽 0.32193142 1.20245730 0.3549653 0.277626262## 福建 -0.22816878 1.77681021 -0.5790521 1.668371030## 江西 -0.46544975 1.43990544 -0.1820088 0.139953438## 山东 2.22835882 -0.05133246 2.0610374 2.643122498## 河南 2.22683767 0.36264203 2.0166955 -0.521101240## 湖北 0.88705181 -0.13647615 0.6684891 0.925656025## 湖南 1.03609706 1.81987138 0.8945726 -0.002409428## 广东 0.65132842 1.36442604 0.3760463 1.697020485## 广西 0.19109441 1.64358969 0.2862654 0.136415807## 海南 -0.95958625 0.32594217 -0.9698633 -0.119446069## 重庆 -0.61246376 -0.82851329 -0.6191076 -0.632081027## 四川 1.13921636 0.49292656 2.0375425 -0.313747797## 贵州 -0.59146827 -0.69749477 -0.6664339 -0.677051827## 云南 -0.10569354 1.40222691 0.0524867 -0.583545796## 西藏 -1.33060989 -1.32909946 -1.1967954 -0.752065694## 陕西 0.01099770 -0.64550329 -0.4072439 -0.713500151## 甘肃 -0.48272891 -1.11489458 -0.9441448 -0.747831257## 青海 -1.27264229 -1.30451055 -1.0825979 -0.751154486## 宁夏 -1.16021392 -1.24089745 -1.1284759 -0.716850181## 新疆 0.14646191 -0.83389594 -0.5730687 -0.711758136## 农村居民家庭拥有生产性固定资产原值农村居民家庭经营耕地面积## 北京 -0.521919855 -0.69519658 ## 天津 -0.036498322 -0.33578982 ## 河北 0.004069841 -0.23262677 ## 山西 -0.824825602 -0.02962851 ## 内蒙 1.179852466 2.59936535## 辽宁 0.730243656 0.39633505## 吉林 0.724094855 1.89053536## 黑龙江 1.396721068 3.65096289## 上海 -1.404513394 -0.77506475 ## 江苏 -0.340308064 -0.44560856 ## 浙江 0.499884752 -0.68188522 ## 安徽 -0.279565363 -0.23262677 ## 福建 -0.618739413 -0.61865625 ## 江西 -0.805278639 -0.33911766 ## 山东 0.133404538 -0.31582278 ## 河南 -0.500048919 -0.32247846 ## 湖北 -0.721961668 -0.29252790 ## 湖南 -0.917381131 -0.45559208 ## 广东 -0.957062704 -0.68521306 ## 广西 -0.615649655 -0.40567447 ## 海南 -0.663204069 -0.58537785 ## 重庆 -0.570175555 -0.43229719 ## 四川 -0.420353046 -0.48221480 ## 贵州 -0.604823220 -0.46890344 ## 云南 0.118332502 -0.32913414 ## 西藏 3.590383141 -0.23262677 ## 陕西 -0.572497480 -0.35575687 ## 甘肃 0.165991341 0.04358397## 青海 0.415065901 -0.25259382 ## 宁夏 0.655330865 0.36638449## 新疆 1.761431173 1.05524743 ## attr(,"scaled:center")## 农业总产值林业总产值## 1514.206129 111.20612 9## 牧业总产值渔业总产值## 877.092581 280.83903 2## 农村居民家庭拥有生产性固定资产原值农村居民家庭经营耕地面积## 17865.076774 2.58903 2## attr(,"scaled:scale")## 农业总产值林业总产值## 1097.854553 81.74416 7## 牧业总产值渔业总产值## 683.552567 373.13101 0## 农村居民家庭拥有生产性固定资产原值农村居民家庭经营耕地面积## 9767.757883 3.00495 2cor(x)### 农业总产值林业总产值牧业总产值## 农业总产值 1.00000000 0.4304367 0.9148545 ## 林业总产值 0.43043666 1.0000000 0.4593615 ## 牧业总产值 0.91485445 0.4593615 1.0000000 ## 渔业总产值 0.51598365 0.4351225 0.4103977 ## 农村居民家庭拥有生产性固定资产原值 -0.16652881 -0.3495913 -0.1017802## 农村居民家庭经营耕地面积 0.04040478 -0.0961515 0.1426829## 渔业总产值## 农业总产值 0.5159836## 林业总产值 0.4351225## 牧业总产值 0.4103977## 渔业总产值 1.0000000## 农村居民家庭拥有生产性固定资产原值 -0.2131248## 农村居民家庭经营耕地面积 -0.2669966## 农村居民家庭拥有生产性固定资产原值## 农业总产值 -0.1665288 ## 林业总产值 -0.3495913 ## 牧业总产值 -0.1017802 ## 渔业总产值 -0.2131248 ## 农村居民家庭拥有生产性固定资产原值 1.0000000 ## 农村居民家庭经营耕地面积 0.5316341 ## 农村居民家庭经营耕地面积## 农业总产值 0.04040478## 林业总产值 -0.09615150## 牧业总产值 0.14268286## 渔业总产值 -0.26699659## 农村居民家庭拥有生产性固定资产原值 0.53163410## 农村居民家庭经营耕地面积 1.00000000FA=factanal(x,3,scores="regression")FA#### Call:## factanal(x = x, factors = 3, scores = "regression")#### Uniquenesses:## 农业总产值林业总产值## 0.134 0.64 9## 牧业总产值渔业总产值## 0.005 0.00 5## 农村居民家庭拥有生产性固定资产原值农村居民家庭经营耕地面积## 0.005 0.61 0#### Loadings:## Factor1 Factor2 Factor3## 农业总产值 0.902 0.231## 林业总产值 0.460 -0.274 0.253## 牧业总产值 0.989 0.100## 渔业总产值 0.335 -0.172 0.924## 农村居民家庭拥有生产性固定资产原值 -0.185 0.980## 农村居民家庭经营耕地面积 0.120 0.569 -0.227#### Factor1 Factor2 Factor3## SS loadings 2.164 1.396 1.032## Proportion Var 0.361 0.233 0.172## Cumulative Var 0.361 0.593 0.765#### The degrees of freedom for the model is 0 and the fit was 0.0338A=FA$loadings#D=diag(FA$uniquenesses)#cancha=cor(x)-A%*%t(A)-Dsum(cancha^2)## [1] 0.01188033FA$scores## Factor1 Factor2 Factor3## 北京 -0.9595745 -0.700059511 -0.55760316## 天津 -1.0947804 -0.236528598 -0.28377148## 河北 1.3398849 0.269241913 -0.72734450## 山西 -0.6949304 -0.952525400 -0.71168863## 内蒙 0.3022926 1.274620864 -0.61477840## 辽宁 0.9086974 0.898645857 0.80686141## 吉林 0.3617131 0.823049845 -0.69568729## 黑龙江 0.6377695 1.558056539 -0.53064438## 上海 -1.0020542 -1.600313046 -0.58279912## 江苏 0.2978404 -0.338175607 2.58332275## 浙江 -0.6586307 0.351125849 1.47562686## 安徽 0.3633716 -0.220261996 0.12915299## 福建 -0.7017677 -0.799773443 1.90201088## 江西 -0.1252221 -0.843258690 0.03964935## 山东 1.8098550 0.433178408 2.27098864## 河南 2.1841524 -0.072629248 -1.35570609## 湖北 0.6625677 -0.618906179 0.64211420## 湖南 1.0200226 -0.733225411 -0.50075826## 广东 0.3057090 -0.945233885 1.54225085## 广西 0.3420343 -0.562216144 -0.07785160## 海南 -0.9131785 -0.847172077 0.04381513## 重庆 -0.5087268 -0.661768675 -0.62025496## 四川 2.1397385 -0.003827953 -1.11031362## 贵州 -0.5463126 -0.703696201 -0.66210885## 云南 0.1044516 0.146947680 -0.63418799## 西藏 -1.5214222 3.342858193 0.36144124## 陕西 -0.2687306 -0.616728372 -0.78286620## 甘肃 -0.8904189 0.010720625 -0.48059064## 青海 -1.0791206 0.225711752 -0.37974261## 宁夏 -1.1481591 0.456190239 -0.27546552## 新疆 -0.6670714 1.665952673 -0.21307102FA=factanal(x,3,scores="regression")#FA#### Call:## factanal(x = x, factors = 3, scores = "regression")#### Uniquenesses:## 农业总产值林业总产值## 0.134 0.64 9## 牧业总产值渔业总产值## 0.005 0.00 5## 农村居民家庭拥有生产性固定资产原值农村居民家庭经营耕地面积## 0.005 0.61 0#### Loadings:## Factor1 Factor2 Factor3## 农业总产值 0.902 0.231## 林业总产值 0.460 -0.274 0.253## 牧业总产值 0.989 0.100## 渔业总产值 0.335 -0.172 0.924## 农村居民家庭拥有生产性固定资产原值 -0.185 0.980## 农村居民家庭经营耕地面积 0.120 0.569 -0.227#### Factor1 Factor2 Factor3## SS loadings 2.164 1.396 1.032## Proportion Var 0.361 0.233 0.172## Cumulative Var 0.361 0.593 0.765#### The degrees of freedom for the model is 0 and the fit was 0.0338 biplot(FA$scores,FA$loadings)######################################################################## ########## 主成分分析####################################################################### # mydata<-read.csv("cosume.csv",header=TRUE)x=aPCA=princomp(x)# 分分析summary(PCA)## Importance of components:## Comp.1 Comp.2 Comp.3 Comp.4## Standard deviation 9611.2440729 1.248877e+03 3.201426e+02 2.211289e+02## Proportion of Variance 0.9817713 1.657641e-02 1.089277e-03 5.1968 75e-04## Cumulative Proportion 0.9817713 9.983477e-01 9.994370e-01 9.9995 67e-01## Comp.5 Comp.6## Standard deviation 6.377898e+01 2.299907e+00## Proportion of Variance 4.323210e-05 5.621753e-08## Cumulative Proportion 9.999999e-01 1.000000e+00plot(PCA)screeplot(PCA,type="lines")# ⻄⭞ഴPCA$loadings##### Loadings:## Comp.1 Comp.2 Comp.3 Comp.4 Comp. 5## 农业总产值 0.847 0.529 ## 林业总产值 -0.994 ## 牧业总产值 0.510 0.340 -0.786 ## 渔业总产值 0.147 -0.939 -0.304 ## 农村居民家庭拥有生产性固定资产原值 1.000 ## 农村居民家庭经营耕地面积## Comp.6## 农业总产值## 林业总产值## 牧业总产值## 渔业总产值## 农村居民家庭拥有生产性固定资产原值## 农村居民家庭经营耕地面积 1.000#### Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6## SS loadings 1.000 1.000 1.000 1.000 1.000 1.000## Proportion Var 0.167 0.167 0.167 0.167 0.167 0.167## Cumulative Var 0.167 0.333 0.500 0.667 0.833 1.000diag(1/sqrt(diag(cor(x))))%*%eigen(cor(x))$vectors%*%diag(sqrt(eigen(co r(x))$values))# ৕⭞⭞䠅фѱᡆ分的⭞ީ⭞䱫## [,1] [,2] [,3] [,4] [,5]## [1,] 0.8748914 0.33002393 -0.05962134 -0.2919961 0.03333473## [2,] 0.7199843 -0.09695761 0.39747812 0.5280225 0.18691501## [3,] 0.8358325 0.42778470 0.06215717 -0.2657004 0.10009450## [4,] 0.7239860 -0.13749802 -0.54651176 0.3113087 -0.24595467## [5,] -0.4283184 0.72257821 -0.37626680 0.2240839 0.32017966## [6,] -0.1942551 0.86197649 0.26492953 0.1648656 -0.34904716## [,6]## [1,] 0.189001599## [2,] 0.022088666## [3,] -0.184133750## [4,] -0.029268951## [5,] 0.010900009## [6,] 0.007698218print(-loadings(PCA),cutoff=0.001)#### Loadings:## Comp.1 Comp.2 Comp.3 Comp.4 Comp. 5## 农业总产值 0.019 -0.847 0.041 -0.529 0.027 ## 林业总产值 0.003 -0.026 0.036 0.096 0.994 ## 牧业总产值 0.007 -0.510 -0.340 0.786 -0.077 ## 渔业总产值 0.008 -0.147 0.939 0.304 -0.068 ## 农村居民家庭拥有生产性固定资产原值 -1.000 -0.021 0.006 -0.002 0.002 ## 农村居民家庭经营耕地面积 -0.003 0.003 ## Comp.6## 农业总产值## 林业总产值 0.003## 牧业总产值 0.001## 渔业总产值 -0.002## 农村居民家庭拥有生产性固定资产原值## 农村居民家庭经营耕地面积 -1.000#### Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6## SS loadings 1.000 1.000 1.000 1.000 1.000 1.000## Proportion Var 0.167 0.167 0.167 0.167 0.167 0.167## Cumulative Var 0.167 0.333 0.500 0.667 0.833 1.000####################################################################### ##### 条形图####################################################################### country<-mydata$地区percent<-mydata$农业总产值d<-data.frame(country,percent)# png("d:\\test2.png",width=2048,height=2048)f<-function(name,value) {xsize=200plot(0, 0,xlab="",ylab="",axes=FALSE,xlim=c(-xsize,xsize),ylim=c(-xsize,xsize))for(i in 1:length(name)){info =name[i]percent =value[i]k =(1:(360*percent/100)*10)/10r=xsize*(length(name)-i+1)/length(name)#print(r)x=r*sin(k/180*pi)y=r*cos(k/180*pi)text(-18,r,info,pos=2,cex=0.7)text(-9,r,paste(percent,"%"),cex=0.7)lines(x,y,col="red")}}f(country,percent)####################################################################### ###### 柱状图####################################################################### library(RColorBrewer)pv<-percentid<-countrycol<-c(brewer.pal(9, "YlOrRd")[1:9],brewer.pal(9, "Blues")[1:9]) barplot(pv,col=col,horiz =TRUE,xlim=c(-8000.00,5000))title(main=list("农业总产值",cex=2),sub="",ylab="地区")text(y=seq(from=0.7,length.out=31,by=1.2),x=-450.00,labels=id)legend("topleft",legend=rev(id),pch=10,col=rev(col),ncol=2)。

R语言arima模型时间序列分析报告(附代码数据)

R语言arima模型时间序列分析报告(附代码数据)

R语言arima模型时间序列分析报告(附代码数据)【原创】定制撰写数据分析可视化项目案例调研报告(附代码数据)有问题到淘宝找“大数据部落”就可以了R语言arima模型时间序列分析报告library(openxlsx)data=read.xlsx("hs300.xlsx")XXX收盘价(元)`date=data$日期date=as.Date(as.numeric(date),origin="1899-12-30")#1998-07-05#绘制时间序列图plot(date,timeseries)timeseriesdiff<-diff(timeseries,differences=1)plot(date[-1],timeseriesdiff)【原创】定制撰写数据分析可视化项目案例调研报告(附代码数据)有问题到淘宝找“大数据部落”就可以了#时间序列分析之ARIMA模型预测#我们可以通过键入下面的代码来得到时间序列(数据存于“timeseries”)的一阶差分,并画出差分序列的图:#时间序列分析之ARIMA模型预测#从一阶差分的图中可以看出,数据仍是不平稳的。

我们继续差分。

【原创】定制撰写数据分析可视化项目案例调研报告(附代码数据)有问题到淘宝找“大数据部落”就可以了#时间序列分析之ARIMA模型预测#二次差分(上面)后的时间序列在均值和方差上确实看起来像是平稳的,随着时间推移,时间序列的水平和方差大致保持不变。

因此,看起来我们需要对data进行两次差分以得到平稳序列。

#第二步,找到合适的ARIMA模型#如果你的时间序列是平稳的,或者你通过做n次差分转化为一个平稳时间序列,接下来就是要选择合适的ARIMA模型,这意味着需要寻找ARIMA(p,d,q)中合适的p值和q值。

为了得到这些,通常需要检查[平稳时间序列的(自)相关图和偏相关图。

#我们使用R中的“acf()”和“pacf”函数来分别(自)相关图和偏相关图。

R语言实验报告范文

R语言实验报告范文实验报告:基于R语言的数据分析摘要:本实验基于R语言进行数据分析,主要从数据类型、数据预处理、数据可视化以及数据分析四个方面进行了详细的探索和实践。

实验结果表明,R语言作为一种强大的数据分析工具,在数据处理和可视化方面具有较高的效率和灵活性。

一、引言数据分析在现代科学研究和商业决策中扮演着重要角色。

随着大数据时代的到来,数据分析的方法和工具也得到了极大发展。

R语言作为一种开源的数据分析工具,被广泛应用于数据科学领域。

本实验旨在通过使用R语言进行数据分析,展示R语言在数据处理和可视化方面的应用能力。

二、材料与方法1.数据集:本实验使用了一个包含学生身高、体重、年龄和成绩的数据集。

2.R语言版本:R语言版本为3.6.1三、结果与讨论1.数据类型处理在数据分析中,需要对数据进行适当的处理和转换。

R语言提供了丰富的数据类型和操作函数。

在本实验中,我们使用了R语言中的函数将数据从字符型转换为数值型,并进行了缺失值处理。

同时,我们还进行了数据类型的检查和转换。

2.数据预处理数据预处理是数据分析中的重要一步。

在本实验中,我们使用R语言中的函数处理了异常值、重复值和离群值。

通过计算均值、中位数和四分位数,我们对数据进行了描述性统计,并进行了异常值和离群值的检测和处理。

3.数据可视化数据可视化是数据分析的重要手段之一、R语言提供了丰富的绘图函数和包,可以用于生成各种类型的图表。

在本实验中,我们使用了ggplot2包绘制了散点图、直方图和箱线图等图表。

这些图表直观地展示了数据的分布情况和特点。

4.数据分析数据分析是数据分析的核心环节。

在本实验中,我们使用R语言中的函数进行了相关性分析和回归分析。

通过计算相关系数和回归系数,我们探索了数据之间的关系,并对学生成绩进行了预测。

四、结论本实验通过使用R语言进行数据分析,展示了R语言在数据处理和可视化方面的强大能力。

通过将数据从字符型转换为数值型、处理异常值和离群值,我们获取了可靠的数据集。

【原创】R语言数据可视化分析报告(附代码数据)

echo=TRUE
Vis 3这个图形是用另一个数据集菱形建立的,也是内置在ggplot2包中的数据集。
library(ggthemes)
ggplot(diamonds)+geom_density(aes(price,fill=cut,color=cut),alpha=0.4,size=0.5)+labs(title='Diamond Price Density',x='Diamond Price (USD)',y='Density')+theme_economist()
library(ggplot2)
ggplot(mpg,aes(class,fill=trans))+geom_bar(position="stack")
echo=TRUE
可见2这个boxplot也是使用mpg数据集建立的。
ggplot(mpg)+geom_boxplot(aes(manufacturer,hwy))+theme_classic()+coord_flip()+labs(y="Highway Fuel Efficiency (mile/gallon)",x="Vehicle Manufacturer")
echo=TRUE
另外,我正在使用ggplot2软件包来将线性模型拟合到框架内的所有数据上。
ggplot(iris,aes(Sepal.Length,Petal.Length))+geom_point()+geom_smooth(method=lm)+theme_minimal()+theme(panel.grid.major=element_line(size=1),panel.grid.minor=element_line(size=0.7))+labs(title='relationship between Petal and Sepal Length',x='Iris Sepal Length',y='Iris Petal Length')

【原创】R语言用Rshiny探索广义线性混合模型(GLMM)和线性混合模型(LMM)数据分析报告(附代码数据)

咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablogR语言用Rshiny探索lme4广义线性混合模型(GLMM)和线性混合模型(LMM)数据分析报告随着lme4软件包的改进,使用广义线性混合模型(GLMM)和线性混合模型(LMM)的工作变得越来越容易。

当我们发现自己在工作中越来越多地使用这些模型时,我们(作者)开发了一套工具,用于简化和加快与的merMod对象进行交互的常见任务lme4。

该软件包提供了那些工具。

安装# development versionlibrary(devtools)install_github("jknowles/merTools")# CRAN version -- coming sooninstall.packages("merTools")咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablogRshiny的应用程序和演示演示此应用程序功能的最简单方法是使用捆绑的Shiny应用程序,该应用程序会在此处启动许多指标以帮助探索模型。

去做这个:devtools::install_github("jknowles/merTools")library(merTools)m1 <- lmer(y ~ service + lectage + studage + (1|d) + (1|s), data=InstEval)shinyMer(m1, simData = InstEval[1:100, ]) # just try the first 100 rows of data在第一个选项卡上,该功能提供了用户选择的数据的预测间隔,这些预测间隔是使用predictInterval包中的功能计算得出的。

通过从固定效应和随机效应项的模拟分布中进行采咨询QQ:3025393450有问题百度搜索“”就可以了欢迎登陆官网:/datablog样,并将这些模拟估计值组合起来,可以为每个观测值生成预测分布,从而快速计算出预测间隔。

【原创】R语言NBA数据分析案例附代码数据

Rplot.jpeg写在前面的话莎士比亚说过:“一千个人眼里有一千个哈姆雷特。

” 这就像不同的球迷心中都有自己心爱的球星与球队。

在NBA70多载的历史长河中,演绎过无数次的经典对决,而总决赛的PK更是荡气回肠、精彩绝伦。

作为缔造者,这些伟大的球队更是承载着一代球迷的回忆,如果想要选出最强的球队,无疑是鸡蛋里挑骨头,几乎是一项不可能完成的任务。

然而我们经常会在比如虎扑论坛看到关于最强冠军队伍的讨论,这说明JRs对这个话题的执着热情。

虽然这是一件仁者见仁智者见智的事情,亦或者部分狂热球迷会带着爱屋及乌的那份支持与期待。

实则一场球赛的成败关乎太多因素,有许多LIVE偶然无法预测,作为一个狂热的球迷,结合多年的看比赛及实战经验,同时结合历史上多场经典赛事,今天结合真实数据来揭秘一场球赛成功背后哪些必不可缺少的因素。

接下来且听小编一本正经的胡说八道!!最强冠军球队候选人•时间:公牛王朝元年(90~91赛季)— 1516赛季,因为公牛王朝是绝大多数球迷最初的NBA记忆,而数据方面只记录到1516赛季,所以只能忽略今年这只勇士队了。

•连续两年或者三年内两次打入总决赛的冠军队伍,出于考虑到队伍持久、稳定的竞争力。

候选人登场数据预处理待处理数据•team_season.csv•team_playoff.csv数据处理过程•数据时间太过散乱,不方便进行分类处理,故需要针对时间区间添加“赛季”列•选出上面十个总冠军队伍常规赛、季后赛,球队与对手的各项数据均值•计算冠军队伍的高阶数据:进攻效率值和防守效率值,并实现数据可视化失误=mean(失误,na.rm = TRUE),犯规=mean(犯规,na.rm = TRUE),得分=mean(得分,na.rm = TRUE))return(team_season_General)}#对手赛季数据处理常规赛表现回顾1.jpg•胜负分上双总共有三支队伍:球队赛季胜负分公牛91~92 10.360832 公牛95~96 12.376957 勇士14~15 10.097561 •常规赛战力最差的三支队伍:球队赛季胜负分火箭94~95 1.187669总结乔帮主带队伍是扛扛的,火箭夺冠之路走得确实辛苦,真是一场一场拼出来的,湖人由于伤病再加上自己得意又爱浪的特点,时不时出现注意力不集中,放松的毛病乔丹.jpg 季后赛表现回顾2.jpg•胜负分上双总共有二支队伍:球队赛季胜负分公牛95~96 11.722222 湖人00~01 12.750000•季后赛战力最差的三支队伍:球队赛季胜负分火箭94~95 2.772727 马刺02~03 3.069444总结00-01赛季的湖人常规赛装死,季后赛才露出自己的獠牙,各队被打服,心痛AI一分钟,95-96赛季的公牛队堪称完美,常规赛与季后赛一样大杀四方,乔帮主表示无压力,任凭“手套”垃圾话和全场领防。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据可视化分析报告
可见1此图形是一个传统的堆积条形图。 这个图形在内置于ggplot2库中的mpg数据集上工作。
library(ggplot2)
ggplot(mpg,aes(class,fill=trans))+geom_bar(position="stack")
echo=TRUE
可见2这个boxplot也是使用mpg数据集建立的。
Vis 3这个图形是用另一个数据集菱形建立的,也是内置在ggplot2包中的数据集。
library(ggthemes)
ggplot(diamonds)+geom_density(aes(price,fill=cut,color=cut),alpha=0.4,size=0.5)+labs(title='Diamond Price Density',x='Diamond Price (USD)',y='Density')+theme_economist()
ggplot(mpg)+geom_boxplot(aes(manufacturer,hwy))+theme_classic()+coord_flip()+labs(y="Highway Fuel Efficiency (mile/gallon)",x="Vehicle Manufacturer")eFra bibliotekho=TRUE
ggplot(iris,aes(x=iris$Sepal.Length,y=iris$Petal.Length,fill=Species,color=Species))+geom_point()+theme_minimal()+labs(x="Iris Sepal Length",y="Iris Petal Length",title="Relationship between Sepal and Petal Length")+geom_smooth(method=lm,se=FALSE)+theme(legend.position="bottom")
echo=TRUE
Vis 5 Finally, in this vis I extend on the last example, by plotting the same data but using an additional channel to communicate species level differences. Again I fit a linear model to the data but this time one for each species, and add additional theme and labeling modicitations.
echo=TRUE
echo=TRUE
另外,我正在使用ggplot2软件包来将线性模型拟合到框架内的所有数据上。
ggplot(iris,aes(Sepal.Length,Petal.Length))+geom_point()+geom_smooth(method=lm)+theme_minimal()+theme(panel.grid.major=element_line(size=1),panel.grid.minor=element_line(size=0.7))+labs(title='relationship between Petal and Sepal Length',x='Iris Sepal Length',y='Iris Petal Length')
相关文档
最新文档