数模论文写作模板

合集下载

大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字第1篇一、小学数学建模_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。

叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。

二、小学数学建模的定位1.定位于儿童的生活经验儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。

_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。

同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的.挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。

2.定位于儿童的思维方式小学生的特点是年龄小,思维简单。

因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。

实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。

我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。

数学建模论文参考范文9700字

数学建模论文参考范文9700字

数学建模论文参考范文9700字数学建模论文范文篇一:数模论文范文Ⅰ、问题的重述石油是重要的战略资源,进入新世纪以来石油价格一路高涨且波动频繁,油价成为全球关注的焦点。

成品油的合理定价对国家经济发展及社会和谐稳定具有重要的意义,还关系到民生,石油储备等多方面的问题。

石油价格的变化深深影响着经济和社会的发展,由于石油的特殊战略地位,油价的波动已经成为各国政府、学者以及业界关注的焦点,每次油价上涨更是吸引了各方广泛的关注。

统计数据表明,自2009年以来,国内成品油价格共调整17次,其中12次上调,5次下调。

以北京为例,93号汽油的零售价也从5.33元/升上涨至目前的8.33元/升,涨幅约为56%。

油价的上涨引起了广大消费者的不满,每到成品油调价窗口期,油价话题总会引发热议;与此同时,现行的成品油定价机制也遭到了广泛质疑,定价机制改革的呼声也日益高涨。

成品油价格究竟多少合适,随之成为一个敏感而又复杂的问题。

当前我国成品油定价体制是否依然合理?现在的问题就是如何综合考虑各种影响成品油价格的因素如原油价格等提出一个合理的成品油定价机制。

试根据中国国情,收集相关数据,综合考虑各种因素,并通过数学建模的方法,就成品油定价机制进行定性分析与定量计算,得出明确、有说服力的结论。

最后,根据建模分析计算的结果,给国家发改委写一份报告,提出自己的新成品油价格机制,并说明新机制的优越性。

Ⅰ、问题的分析及思路2.1、问题分析石油价格过高会影响国民经济的积极性,影响社会稳定,过低又会影响企业的正常运转等,还需要考虑到与国际油价接轨以及我国特殊的国情,以及我国现行的石油价格机制所存在的不合理问题。

现行成品油价格机制是否合理,需要一个量化指标来判定,然而影响成品油定价机制的指标的相关关系和所反应结果的准确度都是模糊不清的。

应此我们需要基于FCE模糊综合评判算法建立一个评价模型,还需要基于AHP层次分析法得到在各级别指标的权重向量。

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。

建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。

本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。

从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。

但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。

其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。

二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。

他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。

同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。

但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。

因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。

三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。

建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。

把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。

全国数模优秀论文参考

全国数模优秀论文参考

全国数模优秀论文参考数学建模就是通过计算得到的结果来解释实际问题,并接受实际的检验,来建立数学模型的全过程。

本篇文章整理提供了两篇全国数模优秀论文范文供大家参考学习。

全国数模优秀范文一:溜井放矿量与磨损量计算式的数模摘要:在溜井放矿过程中,井筒井壁会随着井筒内矿石移动而同时产生磨损,这种磨损缓慢、渐进式连续发生的,均匀的向四周发展扩大。

提出了连续式的积分方程,推导出溜井井筒的磨损量与放矿量之间关系的数学模型。

用德兴铜矿的相关数据进行了计算,计算结果表明,该数学模型所提供的计算数据与实际井筒磨损情况接近,可为矿山规划、溜井设计与生产管理提供可靠的依据。

关键词:溜井放矿;放矿量;磨损量;数学模型在溜井放矿过程中,井筒必然产生磨损。

若管控不严,措施不当,会引起井筒破坏,影响生产,威胁安全,严重时井筒报废。

研究溜井放矿时的井筒磨损规律,减缓井筒磨损速度,延长服务年限,增加井筒通过矿量,是一个重要的研究课题。

本文就溜井放矿时井筒磨损规律进行探讨。

1、溜井放矿时井筒磨损人们在长期观察中发现,溜井在放矿过程中,井筒的井壁磨损呈现:贮矿段井筒磨损速度较小且均匀,井壁光滑[1];矿石对井壁的磨损轻微,溜井周边面磨损是均匀的[2];贮矿段溜井磨损均匀,上下磨损速度非常接近[3];全溜井的井壁光滑、完整,磨损轻微[4]。

根据以上的观察描述,溜井放矿的井筒磨损规律是:在放矿过程中,贮矿段的溜井井筒是以其中心线为中心,向四周磨损扩大是均匀的、相等的。

2、溜井磨损的计算式2.1、多项式的计算式根据上述井筒磨损规律,按照井筒磨损速度的计算公式U=r-r0Q(其中,U为井筒磨损速度,m/万t;r为经放矿磨损后的井筒半径,m;r0为初始的井筒半径,m;Q为放出的矿石量,万t),采用多项式推导出的溜井放矿量与井筒磨损量之间的计算公式为[5]:为溜井井筒初始直径,m溜井放矿的井筒磨损量与放矿量之间的关系是一个相互渐进且连续的过程。

上述使用多项式的推导过程,采用的是渐进式,但不是连续式。

数学建模优秀论文(精选范文10篇) 2021

数学建模优秀论文(精选范文10篇) 2021

根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。

数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。

关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。

广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。

一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。

如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。

一、二年级是学生初步感知数学得重要时期。

低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。

数学建模论文(精选4篇)

数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。

数学建模论文模板

数学建模论文模板

数学建模论文模板数学建模论文模板在学习和工作的日常里,大家都有写论文的经受,对论文很是熟识吧,借助论文可以有效训练我们运用理论和技能解决实际问题的的力量。

你知道论文怎样才能写的好吗?下面是我为大家整理的数学建模论文模板,欢迎阅读,盼望大家能够喜爱。

数学建模论文模板1数学建模随着人类的进步,科技的进展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。

强调数学应用及培育应用数学意识对推动素养教育的实施意义非常巨大。

数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高同学的综合素养。

本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,盼望得到同仁的关心和指正。

一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。

数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。

这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。

如与课本学问亲密联系的源于实际生活的应用题;与模向学科学问网络交汇点有联系的应用题;与现代科技进展、社会市场经济、环境爱护、实事政治等有关的应用题等。

其次、数学应用题的求解需要采纳数学建模的`方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。

第三、数学应用题涉及的学问点多。

是对综合运用数学学问和方法解决实际问题力量的检验,考查的是同学的综合力量,涉及的学问点一般在三个以上,假如某一学问点把握的不过关,很难将问题正确解答。

二、数学应用题如何建模第一层次:直接建模。

依据题设条件,套用现成的数学公式、定理等数学模型,注解图为:其次层次:直接建模。

可利用现成的数学模型,但必需概括这个数学模型,对应用题进行分析,然后确定解题所需要的详细数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。

数学建模论文范文【范本模板】

数学建模论文范文【范本模板】
4 符号说明
Xij0-1变量,表示第i号井在第j年的施工情况,Xij=1第i号井在第j年施工,Xij=0表示不施工
Zj第j年的总费用
Pj第j年的铺管道费用
Lj第j 年铺管道公里数
Wj第j 年的水量
Q管道供水量
Nj所有新建的水井在第j年的产水量
5 模型建立
决策变量为三年间铺设管道和打井的总费用.0—1变量Xij表示i号井j 年是否施工,为1则施工,产生费用,Pj表示第j年的铺路费用.所以第j年的总费用Zj=5*X1j+7*X2j+5*X3j+4*X4j+6*X5j+5*X6j+5*X7j+3*X8j+Pj
第二年花费7万元打造2号井,花费53万元铺管道7。669公里,共计60万元;
三年费用min Z=Z1+Z2+Z3
=5*X11+7*X21+5*X31+4*X41+6*X51+5*X61+5*X71+3*X81+P1+
5*X12+7*X22+5*X32+4*X42+6*X52+5*X62+5*X72+3*X82+P2+
5*X13+7*X23+5*X33+4*X43+6*X53+5*X63+5*X73+3*X83+P3
11.参考文献及参考书籍和网站
12.附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格。)
下面是范例:
1 问题的提出
位于我国西南地区的某个偏远贫困村,年平均降水量不足20mm,是典型的缺水地区。过去村民的日常生活和农业生产用水一方面靠的是每家每户自行建造的小蓄水池,用来屯积每逢下雨时获得的雨水,另一方面是利用村里现有的四口水井。由于近年来环境破坏,经常是一连数月滴雨不下,这些小蓄水池的功能完全丧失。而现有的四口水井经过多年使用后,年产水量也在逐渐减少,在表1中给出它们在近9年来的产水量粗略统计数字.2009年以来,由于水井的水远远不能满足需要,不仅各种农业生产全部停止,而且大量的村民每天要被迫翻山越岭到相隔十几里外去背水来维持日常生活。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、摘要
内容:
(1)用1、2句话说明原问题中要解决的问题;
(2)建立了什么模型(在数学上属于什么类型),建模的思想(思路),模型特点;
(3)算法思想(求解思路),特色;
(4)主要结果(数值结果,结论);(回答题目的全部“问题”)
(5)模型优点,结果检验;模型检验,灵敏度分析,有无改进,推广
要求
(1)特色和创新之处必须在这里强调;
(2)长度
(3)要确保准确、简明、条理、清晰、突出特色和创新点;
二、问题的提出
内容:
用自己的语言阐述背景,条件,要求;重点列出‘问题’也即要求;
要求:
(1)不是题目的完整拷贝
(2)根据自己的理解,用自己的语言清楚简明的阐述背景、条件和要求;
三、条件假设
内容
(1)根据题目中的条件做出假设
(2)根据题目中的要求做出假设;
要求
(1)合理性最重要;
(2)假设合理且全面,但不欣赏罗列大量的无关假设,关键性假设不能缺;
(3)合理假设作用:
简化问题,明确问题,限定模型的适用范围
四、符号约定
五、问题分析
1.名词解释
2.问题的背景分析
3.问题分析
六、模型建立
抽象要求
(1)模型的主要类别:初等模型、微分方程模型、差分方程模型、概率模型、统计预测模型、
优化模型、决策模型、图论模型等
(2)几种常见的建模目的:(对应相对(1)的方法)
描述或解释现实世界的各类现象,常采用机理型分析方法,探索研究对象的内在规律性;
预测感兴趣的时间爱你是否会发生,或者事物的房展趋势,常采用数理统计或模拟的方法;
优化管理、决策或者控制事物,需要合理地定义可量化的评价指标及评价方法;
(3)建模过程常见的几个要点:
模型的整体设计、合理的假设、建立数学结构、建立数学表达式;
(4)模型的要求:
明确、合理、简洁、具有一般性;
例如:有些论文不给出明确的模型,只是就赛题所给的特殊情况,用凑得方法给出结果,虽然结果大致对,但缺乏一般性,不是建模的正确思路;((与第三点对应))
(5)鼓励创新,特别欣赏独树一帜、标新立异,但要合理
(6)避免出现罗列一系列的模型,又不做评价的现象;
具体要求:
(1)基本模型:首先要有数学模型:数学公式、方案等;基本模型,要求完整,正确,简明(2)简化模型:要明确说明,简化思想,依据;简化后的模型尽可能给出;
七、模型求解
内容
(1)算法设计或选择,算法的思想依据,步骤;
(2)引用或建立必要的数学命题和定理;
(3)在不能给出精确解的情况下,需要给出不知一种解法(算法),并进行测试比较,给出评价。

为了说明你的算法好,你需要有一个参照与之比较,你可以从简单的最容易得到的算法开始,逐步改进,知道得到的满意解
(4)具体的表现在:对于离散问题,最简单的解可能只是做随机选择,然后用你的算法得到的解与之比较;
八、结果分析。

结果检验。

模型检验及修正、结果表示。

要求:
(1)最终的数值结果的正确性或合理性应当是第一位的;
(2)对数值结果或模拟结果进行必要的检验。

结果不正确的、不合理的、或误差较大时,分析原因,对算法、计算方法、或模型进行修正、改进;
(3)题目中要求回答的问题,数值结果,结论,需一一列出;
(4)列数据问题:考虑是否需要列出多组数据,或额外数据,对数据进行分析比较从而为各种方案提供依据;
(5)结果表示:要集中,一目了然,直观,便于比较分析
数值结果表示:精心设计表格;可能的话,用图形图表形式
求解方案,用图示最好。

对数值结果或模拟结果进行必要的检验
题目中要求回答的问题、数值结果、结论需一一列出;
(6)必要时对问题解答,作定行或者规律性的讨论;
(7)最后结论要明确;
九、模型稳定性及灵敏度分析
十、模型评价
1.模型优点(突出)
2.模型缺点(不回避)
十、模型改进
(1)不要玩弄新数学术语
十一、参考文献
十二、附录
建议事项:
1、小标题很重要;
只要读各个小标题,就能知道整篇论文的概要;
多设置标题,避免大段大段的文字,不见一个标题,(1,1.1),正文至少要设置两
级标题,使得每一小节都有一个清晰的目的目标。

每小节不要超过两段。

2、善于用图表
3、突出三要素:模型、算法、结果
论文评阅准则:
1)假设的合理性
2)建模的创造性
3)结果的合理性
4)表述的清晰性
摘要实例:
建模的后续工作:(重要)
(1)论文的检查:
模型的正确性、合理性、创新性;
结果的正确性、合理性;
文字表述清晰,分析精辟,摘要精彩;
建模前的思考:
答卷需要回答那几个问题——建模需要解决那些问题;
问题以怎样的方式回答——结果以怎样的形式表示;
每个问题要列出那些关键数据——建模需要计算那些关键数据
每个量要列出一组还是多组数——要计算一组还是多组数;
答卷要求原理:
准确——科学性
条理——逻辑性
简洁——数学美
创新——研究应用目标之一
实用——建模
● 1. 应用意识:要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理
解,便于实际应用;站在应用者的立场上想问题,处理问题。

● 2. 数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普
适性、科学性,不局限于本具体问题的解决。

● 3. 创新意识:建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;
不单纯为创新而创新。

相关文档
最新文档