《概率》统计与概率PPT(事件之间的关系与运算)
合集下载
《概率》统计与概率PPT(事件之间的关系与运算)

课前篇自主预习
一
二
一、事件的关系
1.填空.
定义
表示法
包含
关系
一般地,如果事件 A 发生,则
事件 B 一定发生,则称“A 包 B⊇A(或 A⊆B)
含于 B”(或“B 包含 A”)
相等
关系
A⊆B 且 B⊆A
A=B
图示
课前篇自主预习
一
二
2.做一做:掷一枚硬币三次,得到如下三个事件:事件A为3次正面
向上,事件B为只有1次正面向上,事件C为至少有1次正面向上.试判
探究一
探究二
探究三
探究四
思维辨析
当堂检测
方法总结事件间运算方法
(1)利用事件间运算的定义,列出同一条件下的试验所有可能出现
的结果,分析并利用这些结果进行事件间的运算.
(2)利用Venn图,借助集合间运算的思想,分析同一条件下的试验
所有可能出现的结果,把这些结果在图中列出,进行运算.
课堂篇探究学习
探究一
还可能是丙或丁,所以不是对立事件.故选C.
课堂篇探究学习
探究一
探究二
探究三
探究四
思维辨析
当堂检测
事件的运算
例2 在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1
点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事
件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于
课前篇自主预习
一
二
2.如何理解互斥事件与对立事件?
提示:(1)事件A与事件B互斥表示事件A与事件B不可能同时发生,
即A与B两个事件同时发生的概率是0.
(2)互斥事件是指事件A与事件B在任何一次试验中都不会同时发
《概率论与数理统计》高教版PPT

P(A) = A中样本点的个数 / 样本点总数
30 July 2013
华东师范大学
第一章 随机事件与概率
第35页
注 意
• 抛一枚硬币三次 抛三枚硬币一次
• Ω1={(正正正), (反正正), (正反正), (正正反),
(正反反), (反正反), (反反正), (反反反)}
此样本空间中的样本点等可能. • Ω2={(三正), (二正一反), (二反一正), (三反)} 此样本空间中的样本点不等可能.
第一章 随机事件与概率
第30页
注 意
求排列、组合时,要掌握和注意: 加法原则、乘法原则.
30 July 2013
华东师范大学
第一章 随机事件与概率
第31页
加法原理
完成某件事情有 n 类途径, 在第一类途径中有m1种方 法,在第二类途径中有m2种方法,依次类推,在第 n 类 途径中有mn种方法,则完成这件事共有 m1+m2+…+mn种 不同的方法.
事件运算的图示
AB
AB
AB
30 July 2013
华东师范大学
第一章 随机事件与概率
第16页
德莫根公式
A B A B;
A B A B
A A;
i 1 i i 1 i
n
n
A A
i 1 i i 1
n
n
i
30 July 2013
华东师范大学
第一章 随机事件与概率
六根草,头两两相接、 尾两两相接。求成环的概率.
解:用乘法原则直接计算
所求概率为
6 4 4 2 2 1 8 6 5 4 3 2 1 15
《概率》统计与概率PPT(事件之间的关系与运算)(完美版)

பைடு நூலகம்
课前篇自主预习
一
二
2.做一做:掷一枚硬币三次,得到如下三个事件:事件A为3次正面
向上,事件B为只有1次正面向上,事件C为至少有1次正面向上.试判
断A,B,C之间的包含关系.
解:当事件A发生时,事件C一定发生,当事件B发生时,事件C一定
发生,因此A⊆C,B⊆C;当事件A发生时,事件B一定不发生,当事件B发
事件的概率可知,P=1-P(A)=1-0.1=0.9.
《概率》统计与概率PPT(事件之间的 关系与 运算)
《概率》统计与概率PPT(事件之间的 关系与 运算)
课堂篇探究学习
探究一
探究二
探究三
探究四
思维辨析
当堂检测
互斥事件与对立事件的判定
例1某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,
以它们不是对立事件.
(2)“至少有1名男生”包括2名男生和1男1女两种结果,与事件“全
《概率》统计与概率PPT(事件之间的 关系与 运算)
课堂篇探究学习
探究一
探究二
探究三
探究四
思维辨析
当堂检测
解:从3名男生和2名女生中任选2人有如下三种结果:2名男生,2名
女生,1男1女.
(1)“恰有1名男生”指1男1女,与“恰有2名男生”不能同时发生,它们
是互斥事件;但是当选取的结果是2名女生时,该两事件都不发生,所
判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对
立事件:
(1)“恰有1名男生”与“恰有2名男生”;
(2)“至少有1名男生”与“全是男生”;
(3)“至少有1名男生”与“全是女生”;
(4)“至少有一名男生”与“至少有一名女生”.
课前篇自主预习
一
二
2.做一做:掷一枚硬币三次,得到如下三个事件:事件A为3次正面
向上,事件B为只有1次正面向上,事件C为至少有1次正面向上.试判
断A,B,C之间的包含关系.
解:当事件A发生时,事件C一定发生,当事件B发生时,事件C一定
发生,因此A⊆C,B⊆C;当事件A发生时,事件B一定不发生,当事件B发
事件的概率可知,P=1-P(A)=1-0.1=0.9.
《概率》统计与概率PPT(事件之间的 关系与 运算)
《概率》统计与概率PPT(事件之间的 关系与 运算)
课堂篇探究学习
探究一
探究二
探究三
探究四
思维辨析
当堂检测
互斥事件与对立事件的判定
例1某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,
以它们不是对立事件.
(2)“至少有1名男生”包括2名男生和1男1女两种结果,与事件“全
《概率》统计与概率PPT(事件之间的 关系与 运算)
课堂篇探究学习
探究一
探究二
探究三
探究四
思维辨析
当堂检测
解:从3名男生和2名女生中任选2人有如下三种结果:2名男生,2名
女生,1男1女.
(1)“恰有1名男生”指1男1女,与“恰有2名男生”不能同时发生,它们
是互斥事件;但是当选取的结果是2名女生时,该两事件都不发生,所
判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对
立事件:
(1)“恰有1名男生”与“恰有2名男生”;
(2)“至少有1名男生”与“全是男生”;
(3)“至少有1名男生”与“全是女生”;
(4)“至少有一名男生”与“至少有一名女生”.
《概率论与数理统计》全套课件PPT(完整版)

m?????若对于一随机试验每个样本点出现是等可能的样本空间所含的样本点个数为无穷多个且具有非零的有限的几何度量即则称这一随机试验是一几何概型的20义定义当随机试验的样本空间是某个区域并且任量意一点落在度量长度面积体积相同的子区域是等可能的则事件a的概率可定义为?mamap??说明当古典概型的试验结果为连续无穷多个时就归结为几何概率
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
P(B| A) P(AB) P(A)
为在事件A发生的条件下事件B发生的条件概率2.9
2. 性质: 条件概率符合概率定义中的三个条件, 即
10 对于每一个事件B, 有 1 P(B | A) 0.
20 P(S | A) 1.
30 设B1 , B2 ,两两互不相容, 则
P( Bi | A) P(B i | A).
i1
i1
此外, 条件概率具有无条件概率类似性质.例如:
(1) P( | A) 0.
(2) 设B1 ,B2 ,, Bn两两互不相容,则
n
n
P( Bi | A) P(B i | A).
30
i1
i1
(3) P(B | A) 1 P(B | A).
(4) P(B C | A) P(B | A) P(C | A) - P(BC | A).
在其中计算B发生的概率, 从而得到P(B|A). 例2. 在1, 2, 3, 4, 5这5个数码中, 每次取一个数码, 取后不放回, 连取两次, 求在第1次取到偶数的条 件下, 第2次取到奇数的概率.
32
(二) 乘法公式: 由条件概率定义, 立即可得P(A) 0, 则有 P(AB) P(A)P(B | A).
注 当A=S时, P(B|S)=P(B), 条件概率化为无 条件概率, 因此无条件概率可看成条件概率.
概率论绪论PPT课件

也可以按某种标准把支出分为高、 中、低三档. 这时,样本点有(高,高), (高,中),…,(低,低)等9种,样本空 间就由这9个样本点构成 .
引入样本空间后,事件便可以表示为 样本空间的子集 .
例如,掷一颗骰子,观察出现的点数
样本空间:
Ω = { i :i=1,2,3,4,5,6}
B = {1,3,5}
计学是概率论的一种应用. 但是它们是两个并列 的数学分支学科,并无从属关系.
概率论是一门研究客观世界随机现象数量 规律的 数学分支学科. —— 其起源与博弈问题 有关.
16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;17世纪中叶,法国数学家B. 帕 斯卡、荷兰数学家C. 惠更斯 基于排列组合的方 法,研究了较复杂 的赌博问题, 解决了“ 合理 分配赌注问题” ( 即得分问题 ).
A1, A2,..., An 构成一个完备事件组.
举例
例1:掷一颗骰子的试验,观察其出现的点 数:事件A表示{出现奇数点};事件B表示 {出现点数小于5};事件C表示{出现小于5 的偶数点}。用列举法表_示_ 事件:
Ω ,A+B,A-B,B-A,AB,AC, A B
例2:设A、B、C为三个随机事件,表示下列 事件:
序论
第二次世界大战军事上的需要以及大工业 与管理的复杂化产生了运筹学、系统论、信息 论、控制论与数理统计学等学科.
数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考察的 问题作出推断或预测,直至为采取一定的决策 和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:《概率论》是数理统计学的基础,数理统
引入样本空间后,事件便可以表示为 样本空间的子集 .
例如,掷一颗骰子,观察出现的点数
样本空间:
Ω = { i :i=1,2,3,4,5,6}
B = {1,3,5}
计学是概率论的一种应用. 但是它们是两个并列 的数学分支学科,并无从属关系.
概率论是一门研究客观世界随机现象数量 规律的 数学分支学科. —— 其起源与博弈问题 有关.
16世纪意大利学者开始研究掷骰子等赌博 中的一些问题;17世纪中叶,法国数学家B. 帕 斯卡、荷兰数学家C. 惠更斯 基于排列组合的方 法,研究了较复杂 的赌博问题, 解决了“ 合理 分配赌注问题” ( 即得分问题 ).
A1, A2,..., An 构成一个完备事件组.
举例
例1:掷一颗骰子的试验,观察其出现的点 数:事件A表示{出现奇数点};事件B表示 {出现点数小于5};事件C表示{出现小于5 的偶数点}。用列举法表_示_ 事件:
Ω ,A+B,A-B,B-A,AB,AC, A B
例2:设A、B、C为三个随机事件,表示下列 事件:
序论
第二次世界大战军事上的需要以及大工业 与管理的复杂化产生了运筹学、系统论、信息 论、控制论与数理统计学等学科.
数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考察的 问题作出推断或预测,直至为采取一定的决策 和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:《概率论》是数理统计学的基础,数理统
《概率》统计与概率PPT_优质精选事件之间的关系与运算)

P P T背景:www.1ppt.c om /be ij ing/
P P T图表:www.1ppt.c om /tubia o/
P P T下载:www.1ppt.c om /xia za i/
PPT教程: /powerpoint/
资料下载:www.1ppt.c om /zilia o/
P P T背景:www.1ppt.c om /be ij ing/
P P T图表:www.1ppt.c om /tubia o/
P P T下载:www.1ppt.c om /xia za i/
PPT教程: /powerpoint/
资料下载:www.1ppt.c om /zilia o/
P P T素材:www.1ppt.c om /suc a i/
P P T背景:www.1ppt.c om /be ij ing/
P P T图表:www.1ppt.c om /tubia o/
P P T下载:www.1ppt.c om /xia za i/
PPT教程: /powerpoint/
定义
2 事件之间的关系与运算
2 2
一般地,对于事件 事件之间的关系与运算
事件之间的关系与运算
A
与事件
2 事件之间的关系与运算
2 2 2
事件之间的关系与运算
B,如果事件 事件之间的关系与运算 包含 事件之间的关系与运算
A
发生,则事件
2 2
事 事件件之之间间的的关关系系与与运运算算B_一__定__发__生___,称事件 B 包含
语文课件:/kejian/y uwen/ 数学课件:/kejian/shuxue/
英语课件:/kejian/y ingy u/ 美术课件:/kejian/meishu/
人教B版高中数学必修二课件 《统计与概率的应用》统计与概率名师优秀课件

5.4 统计与概率的应用
第五章 统计与概率
考点 统计与概 率的意义 统计与概 率的应用
学习目标 通过实例进一步理解统计与 概率的意义及应用 能用统计与概率的知识解决 实际生活中的问题
核心素养 数学抽象 数学抽象、 数学运算
判断正误(正确的打“√”,错误的打“×”) (1)事件 A 发生的概率很小时,该事件为不可能事件.( × ) (2)某医院治愈某种病的概率为 0.8,则 10 个人去治疗,一定有 8 人能治愈.( × ) (3)平时的多次比赛中,小明获胜的次数比小华的高,所以这次 比赛应选小明参加.( √ )
解:可以提出如下 2 个方案(答案不唯一). (方案 1)在箱内放置 100 个乒乓球,其中 1 个为黄球,99 个为 白球.顾客一次摸出一个乒乓球,摸到黄球为中大奖,否则中 小奖. (方案 2)在箱内放置 25 个乒乓球,其中 3 个为黄球,22 个为白 球,顾客一次摸出 2 个乒乓球,摸到 2 个黄球中大奖,否则中 小奖.
的概率是多少?
【解】 用 A 表示事件“对这次调整表示反对”,B 表示“对 这次调整不发表看法”,由互斥事件的概率加法公式,得 P(A∪B)=P(A)+P(B)=13070+13060=17030=0.73,因此随机选取 一个被调查者,他对这次调整表示反对或不发表看法的概率是 0.73.
概率在决策问题中的应用 (1)由于概率反映了随机事件发生的可能性的大小,概率是频率 的近似值与稳定值,所以可以用样本出现的频率近似地估计总 体中该结果出现的概率. (2)实际生活与生产中常常用随机事件发生的概率来估计某个 生物种群中个别生物种类的数量、某批次的产品中不合格产品 的数量等.
概率在决策中的应用
某地政府准备对当地的农村产业结构进行调整,为此政
第五章 统计与概率
考点 统计与概 率的意义 统计与概 率的应用
学习目标 通过实例进一步理解统计与 概率的意义及应用 能用统计与概率的知识解决 实际生活中的问题
核心素养 数学抽象 数学抽象、 数学运算
判断正误(正确的打“√”,错误的打“×”) (1)事件 A 发生的概率很小时,该事件为不可能事件.( × ) (2)某医院治愈某种病的概率为 0.8,则 10 个人去治疗,一定有 8 人能治愈.( × ) (3)平时的多次比赛中,小明获胜的次数比小华的高,所以这次 比赛应选小明参加.( √ )
解:可以提出如下 2 个方案(答案不唯一). (方案 1)在箱内放置 100 个乒乓球,其中 1 个为黄球,99 个为 白球.顾客一次摸出一个乒乓球,摸到黄球为中大奖,否则中 小奖. (方案 2)在箱内放置 25 个乒乓球,其中 3 个为黄球,22 个为白 球,顾客一次摸出 2 个乒乓球,摸到 2 个黄球中大奖,否则中 小奖.
的概率是多少?
【解】 用 A 表示事件“对这次调整表示反对”,B 表示“对 这次调整不发表看法”,由互斥事件的概率加法公式,得 P(A∪B)=P(A)+P(B)=13070+13060=17030=0.73,因此随机选取 一个被调查者,他对这次调整表示反对或不发表看法的概率是 0.73.
概率在决策问题中的应用 (1)由于概率反映了随机事件发生的可能性的大小,概率是频率 的近似值与稳定值,所以可以用样本出现的频率近似地估计总 体中该结果出现的概率. (2)实际生活与生产中常常用随机事件发生的概率来估计某个 生物种群中个别生物种类的数量、某批次的产品中不合格产品 的数量等.
概率在决策中的应用
某地政府准备对当地的农村产业结构进行调整,为此政
海南大学《概率论与数理统计》课件-第一二三四章

x2 f ( x)d x;
x1
(4) 若 f ( x) 在点 x 处连续,则有 F( x) f ( x).
注意 对于任意可能值 a ,连续型随机变量取 a 的概率等于零.即
P{ X a} 0.
10、 均匀分布 定义 设连续型随机变量X 具有概率密度
例如某无f些线( x元电) 件元 或件0b,设的1 a备寿, 的命其a寿,电它命x,力服设从b,备指的数寿分命布,. 则称动物X 的在寿区命间等(a都,b)服区从间指上数服分从布均. 匀分布, 记为 X ~ U(a,b).
代表事件 A 在试验中发生的概率,它与试验总
数
n 有关。若
lim
n
npn
0
则
lim
n
Cnk
pnk
1 pn
nk
k
k!e
8、 连续型随机变量及其概率密度
设X为 随 机 变 量,F ( x)为X 的 分 布 函 数,若 存 在 非 负 函 数f ( x),使 对 于 任 意 实 数x 有
x
F ( x) f (t)d t,
第一章 随机事件及其概率
1 了解样本空间的概念,理解随机事件的概念,重 点掌握随机事件的关系和运算。 2 理解概率和条件概率的概念,掌握概率的基本性 质,能利用古典概型和几何概型计算一些事件的 概率。 3 掌握概率的加法公式、条件概率公式、乘法公式、 全概率公式和贝叶斯公式计算过事件的概率的方 法 4 理解事件独立性的概念,会利用事件独立性进行 事件概率计算。 5 理解独立重复试验的概率,掌握利用伯努利概型 计算过事件概率的方法。
(3) F () lim F ( x) 0, F () lim F( x) 1;
x
x