离散傅里叶变换性质证明
离散序列的傅里叶变换

离散序列的傅里叶变换离散序列的傅里叶变换(Discrete Fourier Transform,简称DFT)是一种将离散序列从时域转换到频域的数学工具。
它在信号处理、图像处理、通信等领域扮演着重要角色。
本文将介绍离散序列的傅里叶变换的基本概念、性质以及在实际应用中的一些例子。
一、离散序列的傅里叶变换的基本概念离散序列的傅里叶变换是将一个离散序列转换为一系列复数的运算。
它的定义公式为:X(k) = Σx(n)e^(-j2πkn/N)其中,X(k)为频域上的复数序列,表示原始序列在频率为k的分量上的幅度和相位信息;x(n)为时域上的离散序列,表示原始序列在时间点n上的取值;N为序列的长度;e为自然对数的底数,j为虚数单位。
二、离散序列的傅里叶变换的性质离散序列的傅里叶变换具有一些重要的性质,包括线性性、平移性、对称性等。
1. 线性性:对于离散序列x(n)和y(n),以及任意常数a和b,有DFT(ax(n) + by(n)) = aDFT(x(n)) + bDFT(y(n))。
2. 平移性:如果将离散序列x(n)平移m个单位,则其傅里叶变换为X(k)e^(-j2πkm/N)。
3. 对称性:如果离散序列x(n)是实数序列且长度为N,则其傅里叶变换满足X(k) = X(N-k)。
三、离散序列的傅里叶变换的应用举例离散序列的傅里叶变换在实际应用中有着广泛的应用。
以下是几个常见的例子:1. 信号处理:在音乐、语音、图像等信号处理领域,离散序列的傅里叶变换可以用来分析信号的频谱特性,包括频率成分、能量分布等。
通过傅里叶变换,我们可以将时域上的信号转换为频域上的信号,从而更好地理解信号的特征。
2. 图像处理:在图像处理中,离散序列的傅里叶变换可以用来进行图像的滤波、增强、压缩等操作。
通过将图像转换到频域上,我们可以对不同频率分量进行处理,从而实现对图像的各种操作。
3. 通信系统:在通信系统中,离散序列的傅里叶变换可以用来实现信号的调制、解调、滤波等功能。
离散傅里叶变换性质

X [m] X [ N m]
实序列 实部周期偶对称,虚部 周期奇对称
当x[k]是实序列周期偶对称时:X [m] X [ N m]
实序列,周期偶对称 实序列,周期偶对称
当x[k]是实序列周期奇对称时: X [m] X [ N m]
实序列,周期奇对称 纯虚序列,周期奇对称
第2章 离散傅里叶变换(DFT)
问题的提出
有限长序列的傅里叶分析
离散傅里叶变换的性质 利用DFT计算线性卷积 利用DFT分析信号的频谱
离散傅里叶变换的性质
1. 线性
2. 循环位移
3. 对称性 4. 序列的循环卷积 5. 序列DFT与z变换的关系
离散傅里叶变换的性质
1. 线性
X1[m] DFTx1[k ]
k
-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
x[(k 2) 5 ]R N [k ]
k
0 1 2 3 4
DFT时域循环位移特性
mn ~ ~ DFS {x[k n]} WN X [m]
DFTx[( k n) N ]RN [k ]
mn WN X [m]
时域的循环位移对应频域的相移
DFT{ x [k ]} X [(m)N ]RN [m] X [ N m]
时域共轭 频域周期共轭 ~ DFT{x [(k ) N ]RN [k ]} X [m] 时域周期共轭 频域共轭
DFT性质
离散傅里叶变换的性质
3. 对称性 (symmetry)
当x[k]是实序列时:
DFT性质
离散傅里叶变换的性质
序列的循环卷积步骤: (1)补零
(2)周期延拓
[数字信号处理]离散傅里叶变换及其性质
![[数字信号处理]离散傅里叶变换及其性质](https://img.taocdn.com/s3/m/57c9df85dc88d0d233d4b14e852458fb770b3865.png)
[数字信号处理]离散傅⾥叶变换及其性质DFT定义
离散傅⾥叶变换的公式如下
X(k)=N−1
∑
n=0x(n)W nk N
其中W n是单位根,定义如下
W N=e−j 2πN
逆变换如下
x(n)=1
N
N−1
∑
k=0X(k)W−nk
N
性质
线性
如果有x1(n)和x2(n)两个有限长序列,长度分别为N1和N2,且
y(n)=ax1(n)+bx2(n),(a,b为常数)取变换区间长度N=[N1,N2]max
X1(k)=DFT[x1(n)]N;X2(k)=DFT[x2(n)]N 则y(n)的N点DFT为
Y(k)=DFT[y(n)]N=aX1(k)+bX2(k)循环移位性质
设x(n)为有限长序列,长度为M,则x(n)的循环移位定义为
y(n)=x((n+m))N R N(n)
如果⼀个序列移位之后,⼀些样值被移到了起始点前⾯,那他实际上会在后⾯再补回来,实际的顺序并没有变.
频域循环移位定理
如果X(k)=DFT[x(n)]N
Y(k)=X((k+l))N R N(k)
则y(n)=IDFT[Y(k)]N=W nl N x(n)
循环卷积定理
如果x_1(n)和x_2(n)是两个有限长序列,长度分别为M1和M2,且取循环卷积区间长度L≥max[M1,M2]
X1(k)是x1(n)的L点DFT
X2(k)是x2(n)的L点DFT
如果y(n)=x1(n)∗x2(n)=[∑L−1
m=0
x1(m)x2((n−m))L]R L(n),
那么他的的DFT为Y(k)=X1(k)X2(k)
Processing math: 100%。
DFT(离散傅里叶变换).

e
j
2 N
k
N
Im 2/N
X(e j)
Re 1
2
10
x(n)可以由X(k)表示,而x(n)的z变换X(z)和频谱 X(ej)都是由x(n)确定的,显然,X(z)和X(ej)也能用这N 个频谱抽样值X(k)来表示,这就是X(z)和 X(ej)的 内插 表达式。
① X(z )的内插表达式
N 1
X (z) x(n)zn n0
N 1
X (k) DFTx(n) x(n)W nk
n0
x(n) IDFT
X (k )
1
N 1
X (k )W nk
N k0
3
写成矩阵形式:
X (0) W 0 W 0
W0
W 0 x(0)
X (1)
W 0
W 11
W 12
W 1( N 1)
x(1)
X
(
N
----- k的奇函数
16
N 1
N 1
X (k) x(n)W nk [ x(n)W nk ]*
n0
n0
N 1
[ x(n)W n( N k ) ]*
n0
= X*(N k)
X(k) =X*(N k) =X(N k)
arg[X(k)] = arg[X*(N k)] = arg[X(N k)]
X(k)
X(k)
0 123 456 k N=6
0 123 45 N=5
k
17
在0 ~N 范围内,对于N/2点X(k)呈半周期偶对称
分布。 arg[X(k)]呈半周期奇对称分布。
但对于长度为N的X(k)有值的区间是0 ~N 1,因此对
离散时间傅里叶变换

X
(e
j
)
sin
N1
sin
1 2
2
连续时间非周期矩形脉冲傅里叶变换: X(j)2sinT1
4. x[n][n]
X(ej) 1
Xej xnejn nejn1
n
n
20
三、离散时间傅里叶变换的收敛性
例5.1,5.2是无限长序列
x[n]a|n|,|a|1; 其傅里叶变换存在。 x[n]anu[n]|,a|1
X * ( e j ) X ( e j )即,X * ( e j ) X ( e j )
因此:
X (ej)X (e j) RX ( e ej) RX ( e e j) X (ej) X (e j) Im X (ej) Im X (e j)
❖ 若 x[n] 是实偶信号,则 x[n]x[n],
x% [n]X(ej)
ak2(k02l) kN l
23
如图P263 Fig5.9:下页
X (e j ) 2 a 0 ( 2 l) 2 a 1 (0 2 l)
l
l
.. .2aN1 ((N1)02l) ,02/N l
如果周期函数中包含连续相继的N次谐波,则有:
X(ej)2k ak(2N k)
调制特性在信息传输中是极其重要的。
一定是以 2 为周期的,因此,频域的冲激应该是周
期性的冲激串:
2(0 2k)
k
对其作反变换有
xn 1 X ej ejnd
2 2
0 ejnd ej0n
2
22
可见, 2( 02k) F 1 ej0n k
由DFS ,有 ~ xnkNakejk0n,02N
因此,周期信号 ~xn 可表示为DTFT
第四章 离散傅立叶变换(DFT)

x ( n )W N
kn
n0
X ( k ) DSK [ x ( n )] N 点
x ( n )W N
k=0, 1, …, N-1
n0
式中的周期序列 ~ N 是有限长序列x(n)的周期延拓 x 序列,其定义为
~ (n ) xN
m
x ( n mN )
(4.2.3)
X(N-k)=X*(k) k
0 ,1, 2 , N 2 1
共需要N2/2次复数乘法,比直接按定义计算少一半。 对一般的复序列,DFT也有共轭对称性。
4.3.5 循环卷积定理 1) 两个有限长序列的循环卷积
设序列h(n)和x(n)的长度分别为N和M。h(n)与x(n)的L点
循环卷积定义为
1 e
8k
1 e
j
k
2
k
j
2
k
e
j
(e
k j
e e
j
2
k
)
k
16
16
k
j
16
e
j
(e
k
)
7 16
sin( sin(
2
k)
e
k=0, 1, 2, …, 15
k)
16
x(n)的幅频特性函数曲线、 8点DFT、 16点DFT和 32点DFT的模分别如图4.2.1(a)、 (b)、 (c)和(d)所示。
通常又定义周期序列的主值序列为
x N ( n ) ~N ( n ) R N ( n ) x
比较以上四种变换的计算式可得到:
1离散傅里叶变换的定义及物理意义2离散傅里叶变换的基本

的主值序列。
第3章 离散傅里叶变换(DFT)
周期延拓序列频谱完全由其离散傅里叶级数系数 X (k ) 确定,因此: X(k) 实质上是 x(n) 的周期延拓序列 x((n)) N 的频谱特性 观察 DFT[R4(n)]4= 4δ(k)。 根据DFT第二种物理解释可知,DFT[R4(n)]4 表示 R4(n)以4为周期的周期延拓序列R4((n))4的频谱特性,因 为R4 ((n))4是一个直流序列,只有直流成分(即零频率 成分),所以, DFT[R4(n)]4 = 4δ(k) 。
第3章 离散傅里叶变换(DFT)
|X(ejω)| (a)R4(n)的幅频特性图
4 3 2 1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
|X(k)|
(b)4点DFT的幅频特性图
5 4 3 2 1 0 0 0.5 1 1.5 2 2.5 3 3.5 4
|X(k)|
ω/π
ω/π
图3.1.3 例3.1.2程序运行结果
第3章 离散傅里叶变换(DFT)
3.2
3.2.1 线性性质
若x1(n)、x2(n)是两个有限长序列,长度为N1、N2,且
y(n)=ax1(n)+bx2(n)
a、b为常数,取N=max[N1, N2],则 y(n) 的 N 点DFT为
Y(k) = DFT[y(n)]N = aX1(k)+bX2(k) 0≤k≤N-1 其中 X1(k) 和 X2(k) 分别为 x1(n) 和 x2(n) 的N点DFT
x(n) x((n)) N
(3)最后取 x(n m) 的主值序列 x((n+m)) NRN(n) 得到有限长序列 x(n) 的循环移位序列 y(n)。
第3章离散时间傅里叶变换

第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。
与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。
本章将介绍离散时间系统的频域分析方法。
3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。
若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。
[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。
即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。