1 离散时间傅里叶变换的性质-
离散傅里叶变换性质

X [m] X [ N m]
实序列 实部周期偶对称,虚部 周期奇对称
当x[k]是实序列周期偶对称时:X [m] X [ N m]
实序列,周期偶对称 实序列,周期偶对称
当x[k]是实序列周期奇对称时: X [m] X [ N m]
实序列,周期奇对称 纯虚序列,周期奇对称
第2章 离散傅里叶变换(DFT)
问题的提出
有限长序列的傅里叶分析
离散傅里叶变换的性质 利用DFT计算线性卷积 利用DFT分析信号的频谱
离散傅里叶变换的性质
1. 线性
2. 循环位移
3. 对称性 4. 序列的循环卷积 5. 序列DFT与z变换的关系
离散傅里叶变换的性质
1. 线性
X1[m] DFTx1[k ]
k
-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
x[(k 2) 5 ]R N [k ]
k
0 1 2 3 4
DFT时域循环位移特性
mn ~ ~ DFS {x[k n]} WN X [m]
DFTx[( k n) N ]RN [k ]
mn WN X [m]
时域的循环位移对应频域的相移
DFT{ x [k ]} X [(m)N ]RN [m] X [ N m]
时域共轭 频域周期共轭 ~ DFT{x [(k ) N ]RN [k ]} X [m] 时域周期共轭 频域共轭
DFT性质
离散傅里叶变换的性质
3. 对称性 (symmetry)
当x[k]是实序列时:
DFT性质
离散傅里叶变换的性质
序列的循环卷积步骤: (1)补零
(2)周期延拓
离散傅里叶变换时移-概述说明以及解释

离散傅里叶变换时移-概述说明以及解释1.引言1.1 概述离散傅里叶变换(Discrete Fourier Transform,简称DFT)是一种将一个离散信号(或称时域信号)转换为频域表示的数学工具。
在现代信号处理和通信领域中,DFT被广泛应用于信号分析、滤波、频谱估计等领域。
DFT的概念源于傅里叶分析,它是将一个连续时间函数表示为一组基函数乘以一系列复数系数的线性组合。
而离散傅里叶变换则是将这一思想应用于离散信号,将离散时间序列转换为离散频率表示。
通过使用离散傅里叶变换,我们可以将一个时域上的离散信号转换为频域上的频谱表示,从而可以更加直观地观察信号的频率成分和能量分布。
离散傅里叶变换的时移性质是指当输入信号在时域上发生时移时,其在频域上的表示也随之发生相应的时移。
这一性质使得我们可以通过时移操作对信号进行处理和分析。
具体来说,如果我们对一个信号进行时移操作,即将信号中的每个样本向前或向后平移若干个位置,那么该信号在频域上的表示也会相应地发生同样的平移。
在本文中,我们将着重讨论离散傅里叶变换时移的原理和性质。
我们将介绍离散傅里叶变换的基本概念和原理,包括如何进行DFT变换、如何计算DFT系数以及DFT的逆变换等。
然后,我们将详细解释离散傅里叶变换的时移性质,包括时域上的时移操作如何在频域上体现以及时域和频域之间的变换关系等。
通过对离散傅里叶变换时移性质的研究,我们可以更好地理解信号在时域和频域之间的关系,以及对信号进行时移操作的影响。
同时,我们还将探讨离散傅里叶变换时移的应用,包括在信号处理、通信系统和图像处理等领域中的具体应用案例。
通过这些应用案例,我们将展示离散傅里叶变换时移的重要性以及它在实际问题中的实用价值。
1.2 文章结构文章结构部分的内容:本文主要分为三个部分:引言、正文和结论。
在引言部分,首先概述了离散傅里叶变换时移的主题,介绍了离散傅里叶变换的基本概念和原理。
接着,详细说明了本文的结构,即按照离散傅里叶变换时移的相关性质展开论述。
离散时间傅里叶变换.

第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。
与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。
本章将介绍离散时间系统的频域分析方法。
3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。
若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。
[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:图3-1离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。
即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。
1离散傅里叶变换的定义及物理意义2离散傅里叶变换的基本

的主值序列。
第3章 离散傅里叶变换(DFT)
周期延拓序列频谱完全由其离散傅里叶级数系数 X (k ) 确定,因此: X(k) 实质上是 x(n) 的周期延拓序列 x((n)) N 的频谱特性 观察 DFT[R4(n)]4= 4δ(k)。 根据DFT第二种物理解释可知,DFT[R4(n)]4 表示 R4(n)以4为周期的周期延拓序列R4((n))4的频谱特性,因 为R4 ((n))4是一个直流序列,只有直流成分(即零频率 成分),所以, DFT[R4(n)]4 = 4δ(k) 。
第3章 离散傅里叶变换(DFT)
|X(ejω)| (a)R4(n)的幅频特性图
4 3 2 1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
|X(k)|
(b)4点DFT的幅频特性图
5 4 3 2 1 0 0 0.5 1 1.5 2 2.5 3 3.5 4
|X(k)|
ω/π
ω/π
图3.1.3 例3.1.2程序运行结果
第3章 离散傅里叶变换(DFT)
3.2
3.2.1 线性性质
若x1(n)、x2(n)是两个有限长序列,长度为N1、N2,且
y(n)=ax1(n)+bx2(n)
a、b为常数,取N=max[N1, N2],则 y(n) 的 N 点DFT为
Y(k) = DFT[y(n)]N = aX1(k)+bX2(k) 0≤k≤N-1 其中 X1(k) 和 X2(k) 分别为 x1(n) 和 x2(n) 的N点DFT
x(n) x((n)) N
(3)最后取 x(n m) 的主值序列 x((n+m)) NRN(n) 得到有限长序列 x(n) 的循环移位序列 y(n)。
离散时间傅里叶变换

离散时间傅⾥叶变换1. 离散时间傅⾥叶变换的导出针对离散时间⾮周期序列,为了建⽴它的傅⾥叶变换表⽰,我们将采⽤与连续情况下完全类似的步骤进⾏。
考虑某⼀序列x[n],它具有有限持续期;也就是说,对于某个整数N1和N2,在 −N1⩽以外,x[n]=0。
下图给出了这种类型的⼀个信号。
由这个⾮周期信号可以构成⼀个周期序列\tilde x[n],使x[n]就是\tilde x[n]的⼀个周期。
随着N的增⼤,x[n]就在⼀个更长的时间间隔内与\tilde x[n]相⼀致。
⽽当N\to \infty,对任意有限时间值n⽽⾔,有\tilde x[n]=x[n]。
现在我们来考虑⼀下\tilde x[n]的傅⾥叶级数表⽰式\tag{1}\tilde x[n] = \sum_{k=(N)}a_ke^{jk{(2\pi/N)}n}\tag{2}a_k = \frac{1}{N} \sum_{n=(N)} \tilde x[n]e^{-jk{(2\pi/N)}n}因为在-N_1 \leqslant N \leqslant N_2区间的⼀个周期上\tilde x[n]=x[n],因此我们将上式的求和区间就选在这个周期上\tag{3}a_k = \frac{1}{N} \sum_{n=-N_1}^{N_2} x[n]e^{-jk{(2\pi/N)}n} = \frac{1}{N} \sum_{n=-\infty}^{+\infty} x[n]e^{-jk{(2\pi/N)}n}现定义函数\tag{4}X(e^{j\omega})=\sum_{n=-\infty}^{+\infty}x[n]e^{-j\omega n}可见这些系数a_k正⽐于X(e^{j\omega})的各样本值,即\tag{5}a_k = \frac{1}{N}X(e^{jk\omega_0})式中,\omega_0=2\pi/N⽤来记作在频域中的样本间隔。
离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换摘要本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。
同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。
1. 离散时间傅里叶变换1.1离散时间傅里叶变换及其逆变换离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展n j e ω-开,为离散时间信号和线性时不变系统提供了一种频域表示,其中是实频率ω变量。
时间序列x[n]的离散时间傅里叶变换定义如下:)(ωj e X (1.1)∑∞-∞=-=nnj j e n x e X ωω][)(通常是实变量的复数函数同时也是周期为的周期函数,并且)(ωj e X ωπ2的幅度函数和实部是的偶函数,而其相位函数和虚部是的奇函数。
)(ωj e X ωω这是由于:(1.2))()()(tan )()()()(sin )()()(cos )()(222ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X =+===由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从中算出:)(ωj e X 1(1.3)ωπωππωd e eX n x n j j )(21][⎰-=故可以称该式为离散时间傅里叶逆变换(IDTFT ),则式(1.1)和(1.3)构成了序列x[n]的离散时间傅里叶变换对。
上述定义给出了计算DTFT 的方法,对于大多数时间序列其DTFT 可以用收敛的几何级数形式表示,例如序列x[n]=,此时其傅里叶变换可以写成简单n α的封闭形式。
数字图像处理中的常用变换

一、离散傅里叶变换1.离散傅里叶变换的特点离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。
在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。
即使对无限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。
在实际应用中通常采用快速傅里叶变换以高效计算DFT。
DFT将空域变换到频域,很容易了解到图像的各空间频域的成分。
DFT的应用十分广泛,如:图像的特征提取、空间频率域滤波、图像恢复和纹理分析等。
2.离散傅里叶变换的性质1)线性性质2)比例性质3)可分离性4)平移性质5)图像中心化6)周期性7)共轭对称性8)旋转不变性9)卷积定理10)平均值二、离散余弦变换1.离散余弦变换简介为了快速有效地对图像进行处理和分析,常通过正交变换将图像变换到频域,利用频域的特有性质进行处理。
传统的正交变换多是复变换,运算量大,不易实时处理。
随着数字图像处理技术的发展,出现了以离散余弦变换(DCT)为代表的一大类正弦型实变换,均具有快速算法。
目前DCT变换在数据压缩,图像分析,信号的稀疏表示等方面有着广泛的应用。
由于其变换矩阵的基向量很近似于托普利兹(Toeplitz )矩阵的特征向量,而托普利兹矩阵又体现了人类语言及图像信号的相关特性,因此常被认为是对语音和图像信号的最佳变换。
对给定长度为N 的输入序列f(x),它的DCT 变换定义为:⎪⎭⎫ ⎝⎛+⨯=∑-=102)12(cos )()(2)(N x N x x f u C N u F μπ式中:1,,1,0u -=N ,式中的)(u C 的满足:⎪⎩⎪⎨⎧==其它1021)(u u C在数字图像处理中,通常使用二维DCT 变换,正变换为:⎪⎪⎭⎫ ⎝⎛++⨯=∑∑-=-=10102)12(cos 2)12(cos ),()()(2),(N x N y N v y N u x y x f v C u C N v u F ππ 其逆变换IDCT 为:⎪⎭⎫ ⎝⎛++⨯=∑∑-=-=10102)12(cos 2)12(cos ),()()(2),(N u N v N v y N u x v u F v C u C N y x f ππ 式中:1,,1,0u -=N ,1,,1,0v -=N 。
离散时间傅立叶变换(DTFT)

| X (e j ) | sin(N / 2) sin( / 2)
arg[ X (e j )] (N 1) arg[sin(N / 2)]
2
sin( / 2)
当N=4时,序列x(n)及其幅度谱与相位谱如下图示。
程序清单
clc; clear; y=[1 1 1 1]; x=0; n=[0:3]; w=0:0.01:2*pi; subplot(311); stem(n,y); xlabel('n'); ylabel('x(n)'); for n=0:3
xe (n) xe (n)
xo (n) xo(n)
xe (n)
1 2
[x(n)
x(n)]
xo (n)
1 2
[x(n)
x(n)]
(4)对序列x(n)旳X(ejω)
X(ejω)=Xe(ejω)+Xo(ejω)
Xe(ejω)=X*e(e-jω) Xo(ejω)=-X*o(e-jω)
X e (e j
)
对比上面两公式, 左边相等, 所以得到 xer(n)=xer(-n) xei(n)=-xei(-n)
(2)共轭反对称序列: 若满足下式: xO(n)=-x*O(-n) 则称xO(n)为共轭反对称序列。
共轭反对称序列旳性质:实部是奇函数, 虚部是偶函数。
例:共轭对称序列 共轭反对称序列
5-j -5+j
d
5、时域卷积定理
设
y(n)=x(n)*h(n),
则 Y(ejω)=X(ejω)·H(ejω)
时域卷积, 频域乘法
证明:
令k=n-m
y(n) x(m)h(n m)
m
Y (e j ) FT[ y(n)]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X (ej ) 4cos2 2
()
… p
4 …
0 p
…
p…
p
p
离散非周期序列DTFT的性质
3. 位移特性 (a) 时域位移特性
x[k n]DTFT X (ej )e jn
序列在时域的位移,对应其频域的相移。
例:已知x[k]如图所示,求y[k]=x[k-1]的频谱。
)
k
x[k ]e jk
d
1 2p
X (ej ) X (e j )d
2p
1
X (ej ) 2 d
2p 2p
例:已知x[k]为一有限长序列且
x[k] {1, 2,3, 4},不计算x[k]
的频谱 X(ej),直接确定下列表达式的值。
X R (e j ) X R (e j ) X I (e j ) X I (e j )
例:求序列x[k]={1,2,1;k=0,1,2}的幅度谱和相位谱。
解:
X (ej ) 1 2e j e j2 (1 e j )2
4cos2 2 ej
2 x[k]
1
X (ej ) 21 cos …
X (e j )
4
…
-1 0 1 k
解:
2 y[k]
1
0 12 k
Y (ej ) e-j X (ej )
4 Y (e j )
… p
… 0 p
p 0 p
( )
p
p
p
离散非周期序列DTFT的性质
3. 位移特性 (b) 频域位移特性
离散非周期序列DTFT的性质
※ 线性特性 ※ 对称特性 ※ 位移特性 ※ 卷积特性 ※ 微分特性 ※ Parseval定理
离散非周期序列DTFT的性质
1. 线性特性
若
x1[k]DTFT X1(ej )
x2[k]DTFT X 2 (ej )
则
ax1[k] bx2[k]DTFT aX1(ej ) bX 2 (ej )
1
2π
π π 2
π2 π
2π
Y(ej)
1
π π 2
பைடு நூலகம்
π2 π
离散非周期序列DTFT的性质
4. 卷积特性 (a) 时域卷积特性
x[k] h[k]DTFT X (ej )H (ej )
序列时域的卷积对应频域的乘积。
离散非周期序列DTFT的性质
4. 卷积特性 (b) 频域卷积特性
离散非周期序列DTFT的性质
2. 对称特性 x[k]DTFT X (e j )
x[k]DTFT X (ej )
当 x[k]是实序列时 X (ej ) X (e j )
幅度与相位
实部与虚部
X (e j ) X (e j )
( ) ( )
...
2π
Y (ej ) X (ej( π) ) X (ej( π) ) 2
例:已知x[k]的频谱如图所示,求y[k]的频谱。
X(ej)
1
解:
2π
π π 2 0 π 2 π
2π
X(ej(p)
1
2π
π π 2
π2 π
2π
X(ej(p)
ej 0k x[k]DTFT X (e j( 0 ) )
序列在时域的相移,对应其频域的频移。
例:已知x[k]的频谱如图所示,求y[k]的频谱。
x[k]
y[k]
...
X (e j ) 1
cos[pk ]
2π
π π/2 0 π/2 π
解: y[k] x[k]cosπk x[k](ejπk e jπk ) 2
X (ej ) 2 d
k
2π 2p
序列时域的能量等于频域的能量。
证明: k
x[k] 2
k
x[k ]x[k ]
k
x[k
]
1 2p
X
(e j
)
e j k
d
2p
1
2p
2p
X (ej
x[k]h[k]DTFT 1 π X (ej )H (ej( ) )d
2π π
序列时域的乘积对应频域的卷积。
离散非周期序列DTFT的性质
5. 频域微分特性
kx[k]DTFT j dX (ej )
d
离散非周期序列DTFT的性质
6. Parseval定理
x[k] 2 1
解: (1) (2) (3) (4)
3
3
X (ej0 ) x[k] e-jk0 x[k] 1 2 3 4 10
k 0
k 0
3
3
X (ejp ) x[k] e-jkp x[k] (1)k 1 2 3 4 2
k 0
k 0
π X (ej ) d 2px[0] 2p π
π
X (ej ) 2 d
3
2π
x[k] 2 60π
π
k 0