初三数理化习题(含答)

合集下载

初三数学三角函数(含答案)

初三数学三角函数(含答案)

初中数学三角函数1、勾股定理:直角三角形两直角边 a 、b 的平方和等于斜边c 的平方。

a 2b 2c 24、任意锐角的正切值等于它的余角的余切值; 任意锐角的余切值等于它的余角的正切值。

tan A cot B cot A tan Bcot-1 ~3~6、 正弦、余弦的增减性:当0°w < 90°时,sin 随 的增大而增大,cos 随 的增大而减小7、 正切、余切的增减性:当0° < <90°时,tan 随 的增大而增大,cot 随 的增大而减小。

1、解直角三角形的定义:已知边和角(两个,其中必有一边)一所有未知的 边和角。

依据:①边的关系: a 2b 2c 2;②角的关系:A+B=90 °;③边角关系:三角函数的定义。

(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角; 俯角:视线在水平线下方的角(2)坡面的铅直高度 h 和水平宽度I 的比叫做坡度(坡比)。

用字母i 表示,即i y 。

坡度一 般写成1: m 的形式,如i 1:5等。

把坡面与水平面的夹角记作 (叫做坡角),那么h + i tan 。

l3、 从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。

如图 3, OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。

4、 指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。

如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30° (东北方向), 南 偏东45° (东南方向),南偏西60° (西南方向), 北偏西60° (西北方向)。

铅垂线*视线 ‘ 仰角水平线俯角1*视线初三数学三角函数综合试题一、填空题: 1、在 Rt △ ABC 中/C = 90°, a = 2, b = 3,则 cosA =_, sinB =_ , tanB = ___ 2、直角三角形 3、已知tan ABC 的面积为24cm 2,直角边AB 为6cm , / A 是锐角,则sinA = =—, 是锐角,贝U sin 12 + ) + cos 2(40 ° 4、 cos 2(50° — _______ ? 5、 如图1,机器人从A 点,沿着西南方向,行了个4,:2单位,至U 达 60°的方向上,贝U 原来 )—tan(30)tan(60 ° + 到原点O 在它的南偏东 保留根号).A 的坐标为B 点后观察 _ (结果 NMNC 0(2)10cm 周长为36cm 则一底角的正切值为_、3的山坡走了 50米,则他离地面 米高。

初三化学练习题及答案解析

初三化学练习题及答案解析

初三化学练习题及答案解析一、选择题1. 下列物质中,属于纯净物的是:A) 粗盐溶液 B) 水杨酸溶液C) 铁粉混合物 D) 醋酸溶液答案:B解析:纯净物是由一种物质组成的,不含任何杂质的物质。

选项B 中的水杨酸溶液是纯净物,其他选项均为混合物。

2. 燃烧是一种:A) 物理变化 B) 化学变化C) 不可逆变化 D) 可逆变化答案:B解析:燃烧是物质与氧气发生化学反应的过程,属于化学变化。

3. 常见的非金属元素有:A) 锂、钠、铝 B) 碳、氧、氯C) 铁、铜、银 D) 铂、金、铜答案:B解析:非金属元素主要包括碳、氧、氯等,选项B中的元素均为常见的非金属元素。

4. 下列物质中,属于固体的是:A) 饮用水 B) 溶液C) 空气 D) 铁粉答案:D解析:固体是物质的一种状态,在常温下保持一定形状和体积,选项D中的铁粉为固体物质。

5. 纯净水的沸点为:A) 0℃ B) 100℃C) 20℃ D) 80℃答案:B解析:纯净水的沸点为100℃,在常压下水开始沸腾的温度。

二、填空题1. 油和水的混合物可以通过_______分离。

答案:油水分离器解析:油和水的混合物可以通过油水分离器分离,油水分离器利用了油和水的密度差异,让油浮在水上,从而分离。

2. 酸性物质和碱性物质混合后的产物称为_______。

答案:盐解析:酸性物质和碱性物质反应生成盐,是中和反应的产物。

3. 燃烧过程中需要的三要素是_______。

答案:燃料、氧气、着火点解析:燃烧过程需要的三要素是燃料、氧气和一定的温度(着火点)。

4. 酸性溶液通常具有酸味和_______性。

答案:腐蚀解析:酸性溶液具有酸味和腐蚀性,可以腐蚀金属和有机物质。

5. 酸雨的主要成因是大气中________。

答案:二氧化硫和氮氧化物解析:酸雨的主要成因是大气中的二氧化硫和氮氧化物与雨水反应形成硫酸和硝酸而导致的。

三、解答题1. 简述物质的三态变化及其特点。

解析:物质的三态变化分别是固态、液态和气态。

2021北京西城初三一模数学(含答案)

2021北京西城初三一模数学(含答案)

2021北京西城初三一模数学2021.4 考生须知1.本试卷共7页,共三道大题,28道小题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上准确填写姓名、准考证号、考场号和座位号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

第1-8题均有四个选项,符合题意的选项只有一个。

1.右图是某几何体的三视图,该几何体是(A)圆柱(B)三棱锥(C)三棱柱(D)正方体2.2021年2月27日,由嫦娥五号带回的月球样品(月壤)正式入藏中国国家博物馆,盛放月球样品的容器整体造型借鉴自国家博物馆馆藏的系列青铜“尊”造型,以体现稳重大方之感,它的容器整体外部造型高38.44cm,象征地球与月亮的平均间距约384400km。

将384400用科学记数法表示应为(A)438.4410⨯(B)53.84410⨯(C)43.84410⨯(D)60.384410⨯3.下列图形中,是轴对称图形,但不是中心对称图形的是(A)(B)(C)(D)4.若实数a ,b 在数轴上的对应点的位置如图所示,则以下结论正确的是(A )0a b ->(B )0ab >(C )b a >-(D )2a b <5.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形的边数是(A )4(B )5(C )6(D )86.如图,AB 是O 的直径,CD 是弦(点C 不与点A ,点B 重合,且点C 与点D 位于直径AB 两侧),若∠AOD=110°,则∠BCD 等于(A )25° (B )35° (C )55° (D )70°7.春回大地万物生,“微故宫”微信公众号设计了互动游戏,与大家携手走过有故宫猫陪伴的四季。

游戏规则设计如下:每次在公众号对话框中回复【猫春图】,就可以随机抽取7款“猫春图”壁纸中的一款,抽取次数不限,假定平台设置每次发送每款图案的机会相同,小春随机抽取了两次,她两次都抽到“东风纸鸢”的概率是(A )17(B )27(C )149(D )2498.风寒效应是一种因刮风所引起的使体感温度较实际气温低的现象,科学家提出用风寒温度描述刮风时的体感温度,并通过大量实验找出了风寒温度和风速的关系。

初中数学代数式化简求值练习题(含答案)

初中数学代数式化简求值练习题(含答案)

初中数学代数式化简求值练习题(含答案)1、已知x=1,求代数式x²+x(x-2)+(x+1)(x-1)的值。

2、已知x= -2,求代数式3(x-1)²+4x(x+2)-10的值。

3、先化简,再求值:2(x-3)(x+2)-(3+x)(3-x)-3(x-1)2,其中x=-2。

4、先化简再求值∶(2x³-2y²)-3(x³y²+x³)+2(y²+y²x³),其中x=-1,y=2。

5、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。

6、先化简,再求值:5y(2x²y+3xy²)-3x(4xy²+3x²y),其中x=1,y=-1。

7、先化简,再求值:(3x²y-xy²)-2(xy²-3x²y),其中x=-2,y=3。

8、先化简,再求值:(3x²y-2xy²)-2(xy²-2x²y),其中x=2,y=-1。

9、若x²+2y²=5,求多项式(3x²-2xy+y²)-(x²-2xy-3y²)的值。

10、先化简,再求值:5x²+4-3x²-5x-2x²-5+6x,其中x=-3。

11、先化简,再求值:2(x+x²y)-2/3(3x²y+3/2x)-y²,其中x=1,y=-3。

12、先化简,再求值:(4x²y-3xy)+(-5x²y+2xy)-(2yx²-1),其中x=2,y=1/2。

13、先化简,再求值:2x²y-[2xy²-2(-x²y+4xy²)],其中x=1/2,y=-2。

2023年贵州省(初三学业水平考试)数学中考真题试卷 含详解

2023年贵州省(初三学业水平考试)数学中考真题试卷 含详解

贵州省2023年初中学业水平考试(中考)试卷卷数学同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25题,满分150分.考试时间为120分钟.考试形式闭卷.2.一律在答题卡相应位置作答,在试卷卷上答题视为无效.3.不能使用计算器.一、选择题(每小题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1.5的绝对值是()A.5±B.5C.5- D.2.如图所示的几何体,从正面看,得到的平面图形是()A. B. C. D.3.据中国经济网资料显示,今年一季度全国居民人均可支配收入平稳增长,全国居民人均可支配收入为10870元.10870这个数用科学记数法表示正确的是()A.50.108710⨯ B.41.08710⨯ C.31.08710⨯ D.310.8710⨯4.如图,,AB CD AC ∥与BD 相交于点E .若40C ∠=︒,则A ∠的度数是()A.39︒B.40︒C.41︒D.42︒5.化简11a a a +-结果正确的是()A.1 B.a C.1a D.1a-6.“石阡苔茶”是贵州十大名茶之一,在我国传统节日清明节前后,某茶叶经销商对甲、乙、丙、丁四种包装的苔茶(售价、利润均相同)在一段时间内的销售情况统计如下表,最终决定增加乙种包装苔茶的进货数量,影响经销商决策的统计量是()包装甲乙丙丁销售量(盒)15221810A.中位数B.平均数C.众数D.方差7.5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120︒,腰长为12m ,则底边上的高是()A.4mB.6mC.10mD.12m8.在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是()A.模出“北斗”小球的可能性最大B.摸出“天眼”小球的可能性最大C.摸出“高铁”小球的可能性最大D.摸出三种小球的可能性相同9.《孙子算经》中有这样一道题,大意为:今有100头鹿,每户分一头鹿后,还有剩余,将剩下的鹿按每3户共分一头,恰好分完,问:有多少户人家?若设有x 户人家,则下列方程正确的是()A.11003x += B.31100x += C.11003x x += D.11003x +=10.已知,二次数2y ax bx c =++的图象如图所示,则点(),P a b 所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,在四边形ABCD 中,AD BC ∥,5BC =,3CD =.按下列步骤作图:①以点D 为圆心,适当长度为半径画弧,分别交,DA DC 于E ,F 两点;②分别以点E ,F 为圆心以大于12EF 的长为半径画弧,两弧交于点P ;③连接DP 并延长交BC 于点G .则BG 的长是()A.2B.3C.4D.512.今年“五一”假期,小星一家驾车前往黄果树旅游,在行驶过程中,汽车离黄果树景点的路程y (km )与所用时间x (h )之间的函数关系的图象如图所示,下列说法正确的是()A.小星家离黄果树景点的路程为50kmB.小星从家出发第1小时的平均速度为75km/hC.小星从家出发2小时离景点的路程为125kmD.小星从家到黄果树景点的时间共用了3h二、填空题(每小题4分,共16分)13.因式分解:24x -=__________.14.如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,若贵阳北站的坐标是()2,7-,则龙洞堡机场的坐标是_______.15.若一元二次方程2310kx x -+=有两个相等的实数根,则k 的值是_______.16.如图,在矩形ABCD 中,点E 为矩形内一点,且1AB =,75,60AD BAE BCE =∠=︒∠=︒,则四边形ABCE 的面积是_______.三、解答题(本大题共9题,共98分,解答应写出必要的文字说明、证明过程或演算步骤)17.(1)计算:20(2)1)1-+--;(2)已知,1,3A a B a =-=-+.若A B >,求a 的取值范围.18.为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是()A .0~4小时B .4~6小时C .6~8小时D .8~小时及以上问题2:你体育镀炼的动力是()E .家长要求F .学校要求G .自己主动H .其他(1)参与本次调查的学生共有_______人,选择“自己主动”体育锻炼的学生有_______人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.19.为推动乡村振兴,政府大力扶持小型企业.根据市场需求,某小型企业为加快生产速度,需要更新生产设备,更新设备后生产效率比更新前提高了25%,设更新设备前每天生产x 件产品.解答下列问题:(1)更新设备后每天生产_______件产品(用含x 的式子表示);(2)更新设备前生产5000件产品比更新设备后生产6000件产品多用2天,求更新设备后每天生产多少件产品.20.如图,在Rt ABC △中,90C ∠=︒,延长CB 至D ,使得BD CB =,过点A ,D 分别作AE BD ,DE BA ∥,AE 与DE 相交于点E .下面是两位同学的对话:小星:由题目的已知条件,若连接BE ,则可证明BE CD ⊥.小红:由题目的已知条件,若连接CE ,则可证明CE DE =.(1)请你选择一位同学的说法,并进行证明;(2)连接AD ,若23CB AD AC ==,求AC 的长.21.如图,在平面直角坐标系中,四边形OABC 是矩形,反比例函数()0k y x x =>的图象分别与,AB BC 交于点()4,1D 和点E ,且点D 为AB 的中点.(1)求反比例函数的表达式和点E 的坐标;(2)若一次函数y x m =+与反比例函数()0k y x x=>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合),直接写出m 的取值范围.22.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A 为起点,沿途修建AB 、CD 两段长度相等的观光索道,最终到达山顶D 处,中途设计了一段与AF 平行的观光平台BC 为50m .索道AB 与AF 的夹角为15︒,CD 与水平线夹角为45︒,A B 、两处的水平距离AE 为576m ,DF AF ⊥,垂足为点F .(图中所有点都在同一平面内,点A E F 、、在同一水平线上)(1)求索道AB 的长(结果精确到1m );(2)求水平距离AF 的长(结果精确到1m ).(参考数据:sin150.25︒≈,cos150.96︒≈,tan150.26︒≈ 1.41≈)23.如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.24.如图①,是一座抛物线型拱桥,小星学习二次函数后,受到该图启示设计了一建筑物造型,它的截面图是抛物线的一部分(如图②所示),抛物线的顶点在C 处,对称轴OC 与水平线OA 垂直,9OC =,点A 在抛物线上,且点A 到对称轴的距离3OA =,点B 在抛物线上,点B 到对称轴的距离是1.(1)求抛物线的表达式;(2)如图②,为更加稳固,小星想在OC 上找一点P ,加装拉杆,PA PB ,同时使拉杆的长度之和最短,请你帮小星找到点P 的位置并求出坐标;(3)为了造型更加美观,小星重新设计抛物线,其表达式为221(0)y x bx b b =-++->,当46x ≤≤时,函数y 的值总大于等于9.求b 的取值范围.25.如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC 中,,90CA CB C =∠=︒,过点B 作射线BD AB ⊥,垂足为B ,点P 在CB 上.(1)【动手操作】如图②,若点P 在线段CB 上,画出射线PA ,并将射线PA 绕点P 逆时针旋转90︒与BD 交于点E ,根据题意在图中画出图形,图中PBE ∠的度数为_______度;(2)【问题探究】根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;(3)【拓展延伸】BA BP BE之间如图③,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90 与BD交于点E,探究线段,,的数量关系,并说明理由.贵州省2023年初中学业水平考试(中考)试卷卷数学一、选择题(每小题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1.5的绝对值是()A.5± B.5 C.5- D.【答案】B【分析】正数的绝对值是它本身,由此可解.【详解】解:5的绝对值是5,故选B .【点睛】本题考查绝对值,解题的关键是掌握正数的绝对值是它本身.2.如图所示的几何体,从正面看,得到的平面图形是()A. B. C. D.【答案】A【分析】根据从正面看得到的图象是主视图,可得答案.【详解】解:从正面看,得到的平面图形是一个等腰梯形,故选:A .【点睛】本题考查简单几何体的三视图,解题的关键是掌握主视图的定义.3.据中国经济网资料显示,今年一季度全国居民人均可支配收入平稳增长,全国居民人均可支配收入为10870元.10870这个数用科学记数法表示正确的是()A.50.108710⨯ B.41.08710⨯ C.31.08710⨯ D.310.8710⨯【答案】B【分析】将10870写成10n a ⨯的形式,其中110a ≤<,n 为正整数.【详解】解:41087 1.08710=⨯,故选:B .【点睛】本题考查科学记数法,解题的关键是掌握10n a ⨯中110a ≤<,n 与小数点移动位数相同.4.如图,,AB CD AC ∥与BD 相交于点E .若40C ∠=︒,则A ∠的度数是()A.39︒B.40︒C.41︒D.42︒【答案】B 【分析】根据“两直线平行,内错角相等”可直接得出答案.【详解】解: AB CD ,40C ∠=︒,∴40A C ∠=∠=︒,故选B .【点睛】本题考查平行线的性质,解题的关键是掌握“两直线平行,内错角相等”.5.化简11a a a +-结果正确的是()A.1B.aC.1aD.1a -【答案】A【分析】根据同分母分式加减运算法则进行计算即可.【详解】解:11111a a a a a ++--==,故A 正确.故选:A .【点睛】本题主要考查了分式加减,解题的关键是熟练掌握同分母分式加减运算法则,准确计算.6.“石阡苔茶”是贵州十大名茶之一,在我国传统节日清明节前后,某茶叶经销商对甲、乙、丙、丁四种包装的苔茶(售价、利润均相同)在一段时间内的销售情况统计如下表,最终决定增加乙种包装苔茶的进货数量,影响经销商决策的统计量是()包装甲乙丙丁销售量(盒)15221810A.中位数B.平均数C.众数D.方差【答案】C 【分析】根据众数的意义结合题意即可得到乙的销量最好,要多进即可得到答案.【详解】解:由表格可得,22181510>>>,众数是乙,故乙的销量最好,要多进,故选C .【点睛】本题考查众数的意义,根据众数最多销量最好多进货.7.5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120︒,腰长为12m ,则底边上的高是()A.4mB.6mC.10mD.12m【答案】B 【分析】作AD BC ⊥于点D ,根据等腰三角形的性质和三角形内角和定理可得()1180302B C BAC ∠=∠=︒-∠=︒,再根据含30度角的直角三角形的性质即可得出答案.【详解】解:如图,作AD BC ⊥于点D ,ABC 中,120BAC ∠=︒,AB AC =,∴()1180302B C BAC ∠=∠=︒-∠=︒, AD BC ⊥,∴11126m 22AD AB ==⨯=,故选B .【点睛】本题考查等腰三角形的性质,三角形内角和定理,含30度角的直角三角形的性质等,解题的关键是掌握30度角所对的直角边等于斜边的一半.8.在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是()A.模出“北斗”小球的可能性最大B.摸出“天眼”小球的可能性最大C.摸出“高铁”小球的可能性最大D.摸出三种小球的可能性相同【答案】C【分析】根据概率公式计算摸出三种小球的概率,即可得出答案.【详解】解:盒中小球总量为:32510++=(个),摸出“北斗”小球的概率为:310,摸出“天眼”小球的概率为:21105=,摸出“高铁”小球的概率为:51102=,因此摸出“高铁”小球的可能性最大.故选C .【点睛】本题考查判断事件发生可能性的大小,掌握概率公式是解题的关键.9.《孙子算经》中有这样一道题,大意为:今有100头鹿,每户分一头鹿后,还有剩余,将剩下的鹿按每3户共分一头,恰好分完,问:有多少户人家?若设有x 户人家,则下列方程正确的是()A.11003x += B.31100x += C.11003x x += D.11003x +=【答案】C【分析】每户分一头鹿需x 头鹿,每3户共分一头需13x 头鹿,一共分了100头鹿,由此列方程即可.【详解】解:x 户人家,每户分一头鹿需x 头鹿,每3户共分一头需13x 头鹿,由此可知11003x x +=,故选C .【点睛】本题考查列一元一次方程,解题的关键是正确理解题意.10.已知,二次数2y ax bx c =++的图象如图所示,则点(),P a b 所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D 【分析】首先根据二次函数的图象及性质判断a 和b 的符号,从而得出点(),P a b 所在象限.【详解】解:由图可知二次函数的图象开口向上,对称轴在y 轴右侧,∴0a >,02b a->,∴0b <,∴(),P a b 在第四象限,故选D .【点睛】本题考查二次函数的图象与系数的关系,以及判断点所在象限,解题的关键是根据二次函数的图象判断出a 和b 的符号.11.如图,在四边形ABCD 中,AD BC ∥,5BC =,3CD =.按下列步骤作图:①以点D 为圆心,适当长度为半径画弧,分别交,DA DC 于E ,F 两点;②分别以点E ,F 为圆心以大于12EF 的长为半径画弧,两弧交于点P ;③连接DP 并延长交BC 于点G .则BG 的长是()A.2B.3C.4D.5【答案】A 【分析】先根据作图过程判断DG 平分ADC ∠,根据平行线的性质和角平分线的定义可得CDG CGD ∠=∠,进而可得3CG CD ==,由此可解.【详解】解:由作图过程可知DG 平分ADC ∠,∴ADG CDG ∠=∠,AD BC ∥,∴ADG CGD ∠=∠,∴CDG CGD ∠=∠,∴3CG CD ==,∴532BG BC CG =-=-=,故选A .【点睛】本题考查角平分线的作图,平行线的性质,等腰三角形的判定,解题的关键是根据作图过程判断出DG 平分ADC ∠.12.今年“五一”假期,小星一家驾车前往黄果树旅游,在行驶过程中,汽车离黄果树景点的路程y (km )与所用时间x (h )之间的函数关系的图象如图所示,下列说法正确的是()A.小星家离黄果树景点的路程为50kmB.小星从家出发第1小时的平均速度为75km/hC.小星从家出发2小时离景点的路程为125kmD.小星从家到黄果树景点的时间共用了3h【答案】D 【分析】根据路程、速度、时间的关系,结合图象提供信息逐项判断即可.【详解】解:0x =时,200y =,因此小星家离黄果树景点的路程为50km ,故A 选项错误,不合题意;1x =时,150y =,因此小星从家出发第1小时的平均速度为50km/h ,故B 选项错误,不合题意;2x =时,75y =,因此小星从家出发2小时离景点的路程为75km ,故C 选项错误,不合题意;小明离家1小时后的行驶速度为1507575km/h 21-=-,从家出发2小时离景点的路程为75km ,还需要行驶1小时,因此小星从家到黄果树景点的时间共用了3h ,故D 选项正确,符合题意;故选D .【点睛】本题主要考查从函数图象获取信息,解题的关键是理解题意,看懂所给一次函数的图象.二、填空题(每小题4分,共16分)13.因式分解:24x -=__________.【答案】(+2)(-2)x x 【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-14.如图,是贵阳市城市轨道交通运营部分示意图,以喷水池为原点,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系,若贵阳北站的坐标是()2,7-,则龙洞堡机场的坐标是_______.【答案】()9,4-【分析】根据题意,一个方格代表一个单位,在方格中数出洞堡机场与喷水池的水平距离和垂直距离,再根据洞堡机场在平面直角坐标系的第三象限即可求解.【详解】解:如图,以喷水池为原点,分别以正东、正北方向为x 轴、y 轴的正方向建立平面直角坐标系, 若贵阳北站的坐标是()2,7-,∴方格中一个小格代表一个单位,洞堡机场与喷水池的水平距离又9个单位长度,与喷水池的垂直距离又4个单位长度,且在平面直角坐标系的第三象限,∴龙洞堡机场的坐标是()9,4-,故答案为:()9,4-.【点睛】本题考查了平面直角坐标系点的坐标,掌握在平面直角坐标系中确定一个坐标需要找出距离坐标原点的水平距离和垂直距离是解题的关键.15.若一元二次方程2310kx x -+=有两个相等的实数根,则k 的值是_______.【答案】94【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程2310kx x -+=有两个相等的实数根,∴()22Δ43400b ac k k ⎧=-=--=⎪⎨≠⎪⎩,∴94k =,故答案为:94.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=->,则方程有两个不相等的实数根,若240b ac ∆=-=,则方程有两个相等的实数根,若24<0b ac ∆=-,则方程没有实数根.16.如图,在矩形ABCD 中,点E 为矩形内一点,且1AB =,75,60AD BAE BCE =∠=︒∠=︒,则四边形ABCE 的面积是_______.【答案】2312-【分析】连接AC ,可得30ACE BCA ︒∠=∠=,即AC 平分BCE ∠,在BC 上截取CF CE =,连接AF ,证明ACF ACE △≌△,进而可得ABF △为等腰直角三角形,则四边形ABCE 的面积ABC ACE ABC ACF S S S S =+=+ ,代入数据求解即可.【详解】解:如图,连接AC ,矩形ABCD 中,1AB =,AD =,∴BC AD ==90B Ð=°,∴3tan3AB ACB BC ∠===,tan BC BAC AB ∠==,∴30ACB ∠=︒,60BAC ∠=︒,60BCE ∠=︒,75BAE ∠=︒,∴30ACE BCA ︒∠=∠=,15CAE BAE BAC ∠︒=∠-∠=,在BC 上截取CF CE =,连接AF ,则ACE ACF ∠=∠,∵AC AC =,∴ACF ACE △≌△,∴15CAF CAE ︒∠=∠=,ACE ACF S S = ,∴301545AFB CAF ACB ︒+︒=︒∠=∠+∠=,∴45AFB BAF ︒∠=∠=,∴1AB FB ==,∴1FC BC BF =-=,∴四边形ABCE 的面积)111123111122222ABC ACE ABC ACF S S S S AB BC CF AB -=+=+=⋅+⋅=⨯+⨯-⨯= .故答案为:2312-.【点睛】本题考查矩形的性质,根据特殊角三角函数值求角的度数,等腰三角形的判定和性质,三角形外角的性质等,综合性较强,解题的关键是正确作出辅助线,将四边形ABCE 的面积转化为ABC ACF S S + .三、解答题(本大题共9题,共98分,解答应写出必要的文字说明、证明过程或演算步骤)17.(1)计算:20(2)1)1-+--;(2)已知,1,3A a B a =-=-+.若A B >,求a 的取值范围.【答案】(1)4;(2)2a >【分析】(1)先计算乘方和零次幂,再进行加减运算;(2)根据A B >列关于a 的不等式,求出不等式的解集即可.【详解】解:(1)20(2)1)1-+--411=+-4=;(2)由A B >得:13a a ->-+,移项,得31a a +>+,合并同类项,得24a >,系数化为1,得2a >,即a 的取值范围为:2a >.【点睛】本题考查实数的混合运算,解一元一次不等式,解题的关键是掌握零次幂的运算法则(任何非0数的零次幂等于1),以及一元一次不等式的求解步骤.18.为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是()A .0~4小时B .4~6小时C .6~8小时D .8~小时及以上问题2:你体育镀炼的动力是()E .家长要求F .学校要求G .自己主动H .其他(1)参与本次调查的学生共有_______人,选择“自己主动”体育锻炼的学生有_______人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.【答案】(1)200,122(2)442人(3)见解析【分析】(1)先根据条形统计图求出参与调查的人数,再用参与调查的人数乘以选择“自己主动”体育锻炼的学生人数占比即可得到答案;(2)用2600乘以样本中每周体育锻炼8小时以上的人数占比即可得到答案;(3)从建议学生加强锻炼的角度出发进行描述即可.【小问1详解】解:36725834200+++=人,∴参与本次调查的学生共有200人,∴选择“自己主动”体育锻炼的学生有20061%122⨯=人,故答案为:200,122;【小问2详解】解:342600442200⨯=人,∴估计全校可评为“运动之星”的人数为442人;【小问3详解】解:体育锻炼是强身健体的一个非常好的途径,只有有一个良好的身体状况,才能更好的把自己的精力投入到学习中,因此建议学生多多主动加强每周的体育锻炼时间.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,用样本估计总体,正确读懂统计图是解题的关键.19.为推动乡村振兴,政府大力扶持小型企业.根据市场需求,某小型企业为加快生产速度,需要更新生产设备,更新设备后生产效率比更新前提高了25%,设更新设备前每天生产x 件产品.解答下列问题:(1)更新设备后每天生产_______件产品(用含x 的式子表示);(2)更新设备前生产5000件产品比更新设备后生产6000件产品多用2天,求更新设备后每天生产多少件产品.【答案】(1)1.25x(2)125件【分析】(1)根据“更新设备后生产效率比更新前提高了25%”列代数式即可;(2)根据题意列分式方程,解方程即可.【小问1详解】解: 更新设备前每天生产x 件产品,更新设备后生产效率比更新前提高了25%,∴更新设备后每天生产产品数量为:()125% 1.25x x +=(件),故答案为:1.25x ;【小问2详解】解:由题意知:500060002 1.25x x-=,去分母,得6250 2.56000x -=,解得100x =,经检验,100x =是所列分式方程的解,1.25100125⨯=(件),因此更新设备后每天生产125件产品.【点睛】本题考查分式方程的实际应用,解题的关键是根据所给数量关系正确列出方程.20.如图,在Rt ABC △中,90C ∠=︒,延长CB 至D ,使得BD CB =,过点A ,D 分别作AE BD ,DE BA ∥,AE 与DE 相交于点E .下面是两位同学的对话:小星:由题目的已知条件,若连接BE ,则可证明BE CD ⊥.小红:由题目的已知条件,若连接CE ,则可证明CE DE =.(1)请你选择一位同学的说法,并进行证明;(2)连接AD ,若22,3CB AD AC ==,求AC 的长.【答案】(1)见解析(2)32【分析】(1)选择小星的说法,先证四边形AEDB 是平行四边形,推出AE BD =,再证明四边形AEBC 是矩形,即可得出BE CD ⊥;选择小红的说法,根据四边形AEBC 是矩形,可得CE AB =,根据四边形AEDB 是平行四边形,可得DE AB =,即可证明CE DE =;(2)根据BD CB =,23CB AC =可得43CD AC =,再用勾股定理解Rt ACD △即可.【小问1详解】证明:①选择小星的说法,证明如下:如图,连接BE , AE BD ,DE BA ∥,∴四边形AEDB 是平行四边形,∴AE BD =,BD CB =,∴AE CB =,又 AE BD ,点D 在CB 的延长线上,∴AE CB ∥,∴四边形AEBC 是平行四边形,又 90C ∠=︒,∴四边形AEBC 是矩形,∴BE CD ⊥;②选择小红的说法,证明如下:如图,连接CE ,BE ,由①可知四边形AEBC 是矩形,∴CE AB =,四边形AEDB 是平行四边形,∴DE AB =,∴CE DE =.【小问2详解】解:如图,连接AD ,BD CB =,23CB AC =,∴243CD CB AC AC ==,∴43CD AC =,在Rt ACD △中,222AD CD AC =+,∴(22243AC AC ⎛⎫=+ ⎪⎝⎭,解得AC =即AC 的长为【点睛】本题考查平行四边形的判定与性质,矩形的判定与性质,勾股定理等,解题的关键是掌握平行四边形和矩形的判定方法.21.如图,在平面直角坐标系中,四边形OABC 是矩形,反比例函数()0k y x x =>的图象分别与,AB BC 交于点()4,1D 和点E ,且点D 为AB 的中点.(1)求反比例函数的表达式和点E 的坐标;(2)若一次函数y x m =+与反比例函数()0k y x x=>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合),直接写出m 的取值范围.【答案】(1)反比例函数解析式为4y x=,()22E ,(2)30m -≤≤【分析】(1)根据矩形的性质得到BC OA AB OA ∥,⊥,再由()4,1D 是AB 的中点得到()42B ,,从而得到点E 的纵坐标为2,利用待定系数法求出反比例函数解析式,进而求出点E 的坐标即可;(2)求出直线y x m =+恰好经过D 和恰好经过E 时m 的值,即可得到答案.【小问1详解】解:∵四边形OABC 是矩形,∴BC OA AB OA ∥,⊥,∵()4,1D 是AB 的中点,∴()42B ,,∴点E 的纵坐标为2,∵反比例函数()0k y x x =>的图象分别与,AB BC 交于点()4,1D 和点E ,∴14k =,∴4k =,∴反比例函数解析式为4y x=,在4y x =中,当42y x==时,2x =,∴()22E ,;【小问2详解】解:当直线y x m =+经过点()22E ,时,则22m +=,解得0m =;当直线y x m =+经过点()41D ,时,则41m +=,解得3m =-;∵一次函数y x m =+与反比例函数()0k y x x=>的图象相交于点M ,当点M 在反比例函数图象上,D E 之间的部分时(点M 可与点,D E 重合),∴30m -≤≤.【点睛】本题主要考查了求一次函数解析式,一次函数与反比例函数综合,矩形的性质等等,灵活运用所学知识是解题的关键.22.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A 为起点,沿途修建AB 、CD 两段长度相等的观光索道,最终到达山顶D 处,中途设计了一段与AF 平行的观光平台BC 为50m .索道AB 与AF 的夹角为15︒,CD 与水平线夹角为45︒,A B 、两处的水平距离AE 为576m ,DF AF ⊥,垂足为点F .(图中所有点都在同一平面内,点A E F 、、在同一水平线上)(1)求索道AB 的长(结果精确到1m );(2)求水平距离AF 的长(结果精确到1m ).(参考数据:sin150.25︒≈,cos150.96︒≈,tan150.26︒≈ 1.41≈)【答案】(1)600m(2)1049m【分析】(1)根据BAE ∠的余玄直接求解即可得到答案;(2)根据AB 、CD 两段长度相等及CD 与水平线夹角为45︒求出C 到DF 的距离即可得到答案;【小问1详解】解:∵A B 、两处的水平距离AE 为576m ,索道AB 与AF 的夹角为15︒,∴576600m cos150.96AE AB ===︒;【小问2详解】解:∵AB 、CD 两段长度相等,CD 与水平线夹角为45︒,∴600m CD =, 1.41cos 45600600423m 22CG CD =︒=⨯=⨯=,∴576504231049m AF AE BC CG =++=++=;【点睛】本题考查解直角三角形解决实际应用题,解题的关键是熟练掌握几种三角函数.23.如图,已知O 是等边三角形ABC 的外接圆,连接CO 并延长交AB 于点D ,交O 于点E ,连接EA ,EB .(1)写出图中一个度数为30︒的角:_______,图中与ACD 全等的三角形是_______;(2)求证:AED CEB ∽△△;(3)连接OA ,OB ,判断四边形OAEB 的形状,并说明理由.【答案】(1)1∠、2∠、3∠、4∠;BCD △;(2)证明见详解;(3)四边形OAEB 是菱形;【分析】(1)根据外接圆得到CO 是ACB ∠的角平分线,即可得到30︒的角,根据垂径定理得到90ADC BDC ∠=∠=︒,即可得到答案;(2)根据(1)得到3=2∠∠,根据垂径定理得到5660∠=∠=︒,即可得到证明;(3)连接OA ,OB ,结合5660∠=∠=︒得到OAE △,OBE △是等边三角形,从而得到OA OB AE EB r ====,即可得到证明;【小问1详解】解:∵O 是等边三角形ABC 的外接圆,∴CO 是ACB ∠的角平分线,60ACB ABC CAB ∠=∠=∠=︒,∴1230∠=∠=︒,∵CE 是O 的直径,∴90CAE CBE ∠=∠=︒,∴3430∠=∠=︒,。

人教版数学九年级下册综合练习题(含答案)

人教版数学九年级下册综合练习题(含答案)

人教版数学九年级下册综合练习题一、选择题1.计算tan 60°+|-3sin 30°|-cos245°的结果等于()A. 1 B. 2 C. 3 D. 42.下列各点中,在函数y=-图象上的是()A. (-2,-4) B. (2,3) C. (-1,6) D.3.如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为()A. 3B.C. 3或D. 4或4.已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()A. 6个B. 7个C. 8个D. 9个5.如图所示的几何体,其俯视图是()A. B. C. D.6.下列四个立体图形中,主视图为矩形的有()A. 1个 B. 2个 C. 3个 D. 4个7.在Rt△ABC中,∠C=90°,在下列条件中不能解直角三角形的是()A.已知a和A B.已知c和b C.已知A和B D.已知a和B8.手鼓是鼓中的一个大类别,是一种打击乐器.如图是我国某少数民族手鼓的轮廓图,其俯视图是()A. B. C. D.9.一个正常人在做激烈运动时,心跳速度加快,当运动停止下来后,心跳次数N(次)与时间s(分)的函数关系图象大致是( )A.B. C. D.10.点A(1,y1)、B(3,y2)是反比例函数y=图象上的两点,则y1、y2的大小关系是()A.y1>y2 B.y1=y2 C.y1<y2 D.不能确定二、填空题11.已知矩形ABCD的四个顶点均在反比例函数y=的图象上,且点A的横坐标是2,则矩形ABCD 的面积为______________.12.圆柱的体积是100,圆柱的底面积S与高h的关系式是________________.13.△ABC中,∠C=90°,BC=5,AC=3,那么sin B=________.14.如图,在平面直角坐标系xOy中,直线y=x+3与坐标轴交于A、B两点,坐标平面内有一点P(m,3),若以P、B、O三点为顶点的三角形与△AOB相似,则m=________.15.在Rt△ABC中,∠C=90°,AC=5,BC=12,则sin A=______________.16.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积为_________ cm2.(结果可保留根号).17.若函数y=4x与y=的图象有一个交点是,则另一个交点坐标是__________________.18.在Rt△ABC中,∠C=90°,BC=10,若△ABC的面积为,则∠A=________.19.如果物体的俯视图是一个圆,该物体可能是________.(写两种可能)20.如图,A(2,1),B(1,-1),以O为位似中心,按比例尺1∶2,把△AOB放大,则点A的对应点A′的坐标为____________.三、解答题21.我们知道:选用同一长度单位量得两条线段AB、CD的长度分别是m,n,那么就说两条线段的比AB∶CD=m∶n,如果把表示成比值k,那么=k,或AB=kCD.请完成以下问题:(1)四条线段a,b,c,d中,如果______________,那么这四条线段a,b,c,d叫做成比例线.(2)已知==2,那么=__________,=________;(3)如果=,那么=成立吗?请用两种方法说明其中的理由.(4)如果===m,求m的值.22.如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m.设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成的矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.23.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.(1)请写出这个反比例函数的解析式; (2)蓄电池的电压是多少?(3)完成下表:(4)如果以此蓄电池为电源的用电器的限制电流不能超过10 A,那么用电器可变电阻应控制在什么范围?24.如图,两座建筑物的水平距离BC=30 m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.25.如图,已知A(-4,2),B(-2,6),C(0,4)是直角坐标系平面上三点.(1)把△ABC向右平移4个单位再向下平移1个单位,得到△A1B1C1,画出平移后的图形;(2)若△ABC内部有一点P(a,b),则平移后它的对应点Pl的坐标为__________;(3)以原点O为位似中心,将△ABC缩小为原来的一半,得到△A2B2C2,请在所给的坐标系中作出所有满足条件的图形.26.如图,用下面的方法可以画△AOB的内接等边三角形,阅读后解答相应问题.画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;③连接C′D′,则△C′D′E′是△AOB的内接等边三角形.(1)求证:△C′D′E′是等边三角形;(2)求作:内接于已知△ABC的矩形DEFG,使它的边EF在BC上,顶点D,G分别在AB,AC上,且DE:EF=1∶2.27.如图,△ABC中,D是AC的中点,E是BC延长线上一点,过A作AH∥BE,连接ED并延长交AB于F,交AH于H.(1)求证:AH=CE; (2)如果AB=4AF,EH=8,求DF的长.28.如图,O为△ABC内一点,点D,E,F分别为OA,OB,OC的中点,求证:△DEF∽△ABC.答案解析1.【答案】D【解析】tan 60°+|-3sin 30°|-cos245°=×+3×-2=3+-=4.故选D.2.【答案】C【解析】A.∵(-2)×(-4)=8≠-6,∴此点不在反比例函数的图象上,故本选项错误;B.∵2×3=6≠-6,∴此点不在反比例函数的图象上,故本选项错误;C.∵(-1)×6=-6,∴此点在反比例函数的图象上,故本选项正确;D.∵×3=-≠-6,∴此点不在反比例函数的图象上,故本选项错误.故选C.3.【答案】C【解析】∵△DCE和△ABC相似,∠ACD=∠ABC,AC=6,AB=4,CD=2,∴∠A=∠DCE,∴=或=,即=或=解得,CE=3或CE=.故选C.4.【答案】B【解析】综合三视图可知,这个几何体的底层有4个小正方体,第二层有2个小正方体,第三层有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+2+1=7个.故选B.5.【答案】D【解析】从上边看是一个同心圆,内圆是虚线,故选D.6.【答案】B【解析】长方体主视图为矩形;球主视图为圆;圆锥主视图为三角形;圆柱主视图为矩形;因此主视图为矩形的有2个,故选B.7.【答案】C【解析】∵已知a和A,在Rt△ABC中,∠C=90°,∴∠B=∠C-∠A,c=,b=c sin B.故选项A错误.∵已知c和b,在Rt△ABC中,∠C=90°,∴a=,sin A=,sin B=.故选项B错误.∵在Rt△ABC中,∠C=90°,已知A和B,∠A+∠B=∠C=90°,∴只能知道直角三角形的三个角的大小,而三条边无法确定大小.故选项C正确.∵已知a和B,在Rt△ABC中,∠C=90°,∴∠A=∠C-∠B,c=,b=c sin B.故选项D错误.故选C.8.【答案】A【解析】从上边看是一个同心圆,故选A.9.【答案】D【解析】正常人做激烈运动停止下来后心跳次数随着时间的延长由快到慢逐渐趋向安静时正常心跳次数,即此段时间心跳次数N(次)与时间s(分)成反比例关系,所以其图象大致是选项D中的图象.10.【答案】A【解析】∵反比例函数y=中的9>0,∴经过第一、三象限,且在每一象限内y随x的增大而减小,又∵A(1,y1)、B(3,y2)都位于第一象限,且1<3,∴y1>y2,故选A.11.【答案】【解析】如图所示,根据点A在反比例函数y=的图象上,且点A的横坐标是2,可得A,根据矩形和双曲线的对称性,可得B,D,由两点间距离公式,可得AB==,AD==,∴矩形ABCD的面积=AB×AD=×=,故答案为.12.【答案】S=【解析】根据等量关系“圆柱底面积=圆柱体积÷圆柱高”即可列出关系式.由题意,得底面积S关于高h的函数关系式是S=.13.【答案】【解析】∵在△ABC中,∠C=90°,BC=5,AC=3,∴AB===,∴sin B===.14.【答案】±4或±【解析】∵直线y=x+3与坐标轴交于A、B两点,∴点A(-4,0),点B(0,3),∵P(m,3),∵∠AOB=∠OBP=90°,∴当=时,△AOB∽△PBO,∴BP=OA=4,∴m=±4;当=时,△AOB∽△OBP,∴BP==,∴m=±.15.【答案】【解析】如图所示,∵∠C=90°,AC=5,BC=12,∴AB==13,∴sin A=.16.【答案】(360+75)【解析】根据该几何体的三视图知道其是一个六棱柱,∵其高为12 cm,底面半径为5 cm,∴其侧面积为6×5×12=360 cm2密封纸盒的底面积为(5+10)××2×2=75cm2,∴这个密封纸盒的表面积为(75+360) m2;故答案为(360+75).17.【答案】【解析】正比例函数y=4x与反比例函数y=的图象均关于原点对称,则其交点也关于原点对称,那么关于原点的对称点为.故答案为.18.【答案】60°【解析】∵在Rt△ABC中,∠C=90°,BC=10,若△ABC的面积为,∴S=AC·BC=,∴AC=,∵tan A===,∴∠A=60°.19.【答案】圆柱或球体【解析】如果物体的俯视图是一个圆,该物体可能是圆柱或球体.20.【答案】(4,2)或(-4,-2)【解析】∵以O为位似中心,按比例尺1∶2,把△AOB放大,∴点A的对应点A′的坐标为(2×2,2×1)或(-2×2,-2×1),即(4,2)或(-4,-2).21.【答案】解(1)四条线段a,b,c,d中,如果a∶b=c∶d,那么这四条线段a,b,c,d叫做成比例线段;(2)∵==2,∴a=2b,c=2d,∴==3,==3.(3)如果=,那么=成立.理由如下:证明一:∵=,∴-1=-1,即-=-,∴=;证明二:设==k,那么a=kb,c=kd,∵==k-1,==k-1,∴=;(4)①当x+y+z=0时,y+z=-x,z+x=-y,x+y=-z,∴m为其中任何一个比值,即m==-1;②x+y+z≠0时,m===2.所以m=2或-1.【解析】(1)根据成比例线段的定义作答;(2)由==2,得a=2b,c=2d,代入计算即可求解;(3)利用等式的性质两边减去1即可证明;设==k,那么a=kb,c=kd,代入即可证明;(4)可分x+y+z=0和x+y+z≠0两种情况代入求值和利用等比性质求解.22.【答案】解(1)由题意,得xy=60,即y=.∴所求的函数关系式为y=.(2)由y=,且x,y都是正整数,x可取1,2,3,4,5,6,10,12,15,20,30,60,又∵2x+y≤26,0<y≤12,∴符合条件的有x=5时,y=12;x=6时,y=10;x=10时,y=6.答:满足条件的围建方案有AD=5 m,DC=12 m或AD=6 m,DC=10 m或AD=10 m,DC=6 m.【解析】(1)由面积=长×宽,列出y与x之间的函数关系式;(2)由AD与DC均是正整数知,x、y的值均是60的因数,所以x=1,2,3,4,5,6,10,12,15,20,30,60.再根据三边材料总长不超过26 m,AB边长不超过12 m,得到关于x、y的不等式,然后将x的可能取值代入验证,得到AD和DC的长.23.【答案】解(1)电流I是电阻R的反比例函数,设I=,∵图象经过(9,4),∴4=,解得k=4×9=36,∴I=;(2)蓄电池的电压是4×9=36;(3)填表如下:(4)∵I≤10,I=,∴≤10,∴R≥3.6,即用电器可变电阻应控制在3.6欧以上的范围内.【解析】(1)先由电流I是电阻R的反比例函数,可设I=,将点(9,4),利用待定系数法即可求出这个反比例函数的解析式;(2)根据电压=电流×电阻即可求解;(3)将R的值分别代入(1)中所求的函数解析式,即可求出对应的I值,从而完成图表;(4)将I≤10代入(1)中所求的函数解析式即可确定电阻的取值范围.24.【答案】解延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=30 m,∠EAD=30°,∴ED=AE tan 30°=10m,在Rt△ABC中,∠BAC=30°,BC=30 m,∴AB=30m,则CD=EC-ED=AB-ED=30-10=20m.【解析】延长CD,交AE于点E,可得DE⊥AE,在直角三角形ABC中,由题意确定出AB的长,进而确定出EC的长,在直角三角形AED中,由题意求出ED的长,由EC-ED求出DC的长即可.25.【答案】解(1)如图所示,△A1B1C1即为所求;(2)∵△ABC向右平移4个单位再向下平移1个单位,得到△A1B1C1,∴点P(a,b)的对应点P1的坐标为(a+4,b-1),【解析】(1)根据向右平移4个单位再向下平移1个单位得到△A1B1C1,画出平移后的图形即可;(2)根据向右平移4个单位再向下平移1个单位,可知横坐标增加4,纵坐标减小1;(3)根据以原点O为位似中心,将△ABC缩小为原来的一半,得到△A2B2C2即可.26.【答案】(1)证明∵E′C′∥EC,E′D′∥ED,∴△OCE∽△OC′E′,△ODE∽△OD′E′,∴CE∶C′E′=OE∶OE′,DE∶D′E′=OE∶OE′,∠CEO=∠C′E′O,∠DEO=∠D′E′O,∴CE∶C′E′=DE∶D′E′,∠CED=∠C′E′D′,∴△CDE∽△C′D′E′,∵△CDE是等边三角形,∴△C′D′E′是等边三角形;(2)解画法:①在△ABC内画矩形D′E′F′G′,使点D′在AB上,点G′在AC上,且D′E′∶D′G′=1∶2;②连接AE′并延长,交BC于点E,连接AF′并延长交BC于点F,过点E作ED∥E′D′交AB于点D,过点F作FG∥F′G′,交AC于点G;③连接DG,则矩形DEFG是△ABC的内接四边形.【解析】(1)根据作法可知:E′C′∥EC,E′D′∥ED,可证得△OCE∽△OC′E′,△ODE∽△OD′E′,根据相似可证得对应边的比相等,对应角相等,即可根据对应边的比成比例且夹角相等的三角形相似,可证得△CDE∽△C′D′E′,即可得结果;(2)类似(1)的作法.27.【答案】(1)证明∵AH∥BE,D是AC的中点,∴△ADH≌△CDE,∴AH=CE.(2)解∵AB=4AF,AH∥BE,∴AF∶AB=HF∶HE=1∶4,∴HF=EH=2,∵AH∥BE,D是AC的中点,∴点D也是EH的中点,即HD=EH=4,∴FD=HD-HF=2.【解析】(1)由于点D是AC的中点,AH∥CE,由平行线的性质知,可推出△ADH≌△CDE,故可得AH=CE;(2)由平行线分对应线段成比例的性质知,AF∶AB=HF∶HE=1∶4,求得HF的值,由AH∥BE,D 是AC的中点可得,点D也是EH的中点,求得HD的值,故有FD=HD-HF.28.【答案】证明∵D、E、F分别是OA、OB、OC的中点,∴DE=AB,EF=BC,DF=AC,即==,∴ABC∽△DEF.【解析】先根据三角形中位线性质得到DE=AB,EF=BC,DF=AC,则可利用三组对应边的比相等的两个三角形相似得到结论.。

九年级数学圆知识点及习题(含答案)

九年级数学圆知识点及习题(含答案)

九年级数学圆知识点及习题(含答案)1.圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形, 圆心是它的对称中心。

3.垂直于弦的直径平分这条弦 ,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等 ,那么它们所对应的其余各组量都分别相等。

5.同弧或等弧所对的圆周角相等 ,都等于它所对的圆心角的一半。

6.直径所对的圆周角是 90° ,90°所对的弦是直径。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8.与三角形各边都相切的圆叫做三角形的内切圆 ,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。

9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角2、与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外 ,②点在圆上 ,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交 ,②相切 ,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含 ,②相内切 ,③相交 ,④相外切 ,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线, 切线长相等,这点与圆心之间的连线平分这两条切线的夹角。

2023年中考数学-----方程的实际应用篇专项练习题(含答案解析)

2023年中考数学-----方程的实际应用篇专项练习题(含答案解析)

2023年中考数学-----方程的实际应用篇专项练习题(含答案解析)1.中国“最美扶贫高铁”之一的“张吉怀高铁”开通后,张家界到怀化的运行时间由原来的3.5小时缩短至1小时,运行里程缩短了40千米.已知高铁的平均速度比普通列车的平均速度每小时快200千米,求高铁的平均速度.【分析】设高铁的平均速度为xkm/h,由运行里程缩短了40千米得:x+40=3.5(x﹣200),可解得高铁的平均速度为296km/h.【解答】解:设高铁的平均速度为xkm/h,则普通列车的平均速度为(x﹣200)km/h,由题意得:x+40=3.5(x﹣200),解得:x=296,答:高铁的平均速度为296km/h.2.在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【分析】(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,利用路程=速度×时间,结合甲追上乙时二者的行驶路程相等,即可得出关于x的一元一次方程,解之即可求出乙骑行的速度,再将其代入1.2x中即可求出甲骑行的速度;(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,利用时间=路程÷速度,结合乙比甲多用20分钟,即可得出关于y的分式方程,解之经检验后即可求出乙骑行的速度,再将其代入1.2y中即可求出甲骑行的速度.【解答】解:(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,依题意得:×1.2x=2+x,解得:x=20,∴1.2x=1.2×20=24.答:甲骑行的速度为24千米/时.(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,依题意得:﹣=,解得:y=15,经检验,y=15是原方程的解,且符合题意,∴1.2y=1.2×15=18.答:甲骑行的速度为18千米/时.3.为改善村容村貌,阳光村计划购买一批桂花树和芒果树.已知桂花树的单价比芒果树的单价多40元,购买3棵桂花树和2棵芒果树共需370元.(1)桂花树和芒果树的单价各是多少元?(2)若该村一次性购买这两种树共60棵,且桂花树不少于35棵.设购买桂花树的棵数为n,总费用为w元,求w关于n的函数关系式,并求出该村按怎样的方案购买时,费用最低?最低费用为多少元?【分析】(1)设桂花树的单价是x元,可得:3x+2(x﹣40)=370,解得桂花树的单价是90元,芒果树的单价是50元;(2)根据题意得w=40n+3000,由一次函数性质得购买桂花树35棵,购买芒果树25棵时,费用最低,最低费用为4400元.【解答】解:(1)设桂花树的单价是x元,则芒果树的单价是(x﹣40)元,根据题意得:3x+2(x﹣40)=370,解得x=90,∴x﹣40=90﹣40=50,答:桂花树的单价是90元,芒果树的单价是50元;(2)根据题意得:w=90n+50(60﹣n)=40n+3000,∴w关于n的函数关系式为w=40n+3000,∵40>0,∴w随n的增大而增大,∵桂花树不少于35棵,∴n≥35,∴n=35时,w取最小值,最小值为40×35+3000=4400(元),此时60﹣n=60﹣35=25(棵),答:w关于n的函数关系式为w=40n+3000,购买桂花树35棵,购买芒果树25棵时,费用最低,最低费用为4400元.4.某水果经营户从水果批发市场批发水果进行零售,部分水果批发价格与零售价格如下表:(1)第一天,该经营户用1700元批发了菠萝和苹果共300kg,当日全部售出,求这两种水果获得的总利润?(2)第二天,该经营户依然用1700元批发了菠萝和苹果,当日销售结束清点盘存时发现进货单丢失,只记得这两种水果的批发量均为正整数且菠萝的进货量不低于88kg,这两种水果已全部售出且总利润高于第一天这两种水果的总利润,请通过计算说明该经营户第二天批发这两种水果可能的方案有哪些?【分析】(1)设第一天,该经营户批发了菠萝xkg,苹果ykg,根据该经营户用1700元批发了菠萝和苹果共300kg,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再利用总利润=每千克的销售利润×销售数量(购进数量),即可求出结论;(2)设购进mkg菠萝,则购进kg苹果,根据“菠萝的进货量不低于88kg,且这两种水果已全部售出且总利润高于第一天这两种水果的总利润”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m,均为正整数,即可得出各进货方案.【解答】解:(1)设第一天,该经营户批发了菠萝xkg,苹果ykg,依题意得:,解得:,∴(6﹣5)x+(8﹣6)y=(6﹣5)×100+(8﹣6)×200=500(元).答:这两种水果获得的总利润为500元.(2)设购进mkg菠萝,则购进kg苹果,依题意得:,解得:88≤m<100.又∵m,均为正整数,∴m可以为88,94,∴该经营户第二天共有2种批发水果的方案,方案1:购进88kg菠萝,210kg苹果;方案2:购进94kg菠萝,205kg苹果.5.某经销商计划购进A,B两种农产品.已知购进A种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元.(1)A,B两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A,B两种农产品共40件,且A种农产品的件数不超过B种农产品件数的3倍.如果该经销商将购进的农产品按照A种每件160元,B种每件200元的价格全部售出,那么购进A,B两种农产品各多少件时获利最多?【分析】(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,根据“购进A 种农产品2件,B种农产品3件,共需690元;购进A种农产品1件,B种农产品4件,共需720元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,利用总价=单价×数量,结合购进A种农产品的件数不超过B种农产品件数的3倍且总价不超过5400元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,设两种农产品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.【解答】解:(1)设每件A种农产品的价格是x元,每件B种农产品的价格是y元,依题意得:,解得:.答:每件A种农产品的价格是120元,每件B种农产品的价格是150元.(2)设该经销商购进m件A种农产品,则购进(40﹣m)件B种农产品,依题意得:,解得:20≤m≤30.设两种农产品全部售出后获得的总利润为w元,则w=(160﹣120)m+(200﹣150)(40﹣m)=﹣10m+2000.∵﹣10<0,∴w随m的增大而减小,∴当m=20时,w取得最大值,此时40﹣m=40﹣20=20.答:当购进20件A种农产品,20件B种农产品时获利最多.6.在某市组织的农机推广活动中,甲、乙两人分别操控A、B两种型号的收割机参加水稻收割比赛.已知乙每小时收割的亩数比甲少40%,两人各收割6亩水稻,乙则比甲多用0.4小时完成任务;甲、乙在收割过程中对应收稻谷有一定的遗落或破损,损失率分别为3%,2%.(1)甲、乙两人操控A、B型号收割机每小时各能收割多少亩水稻?(2)某水稻种植大户有与比赛中规格相同的100亩待收水稻,邀请甲、乙两人操控原收割机一同前去完成收割任务,要求平均损失率不超过2.4%,则最多安排甲收割多少小时?【分析】(1)设甲操控A型号收割机每小时收割x亩水稻,则乙操控B型号收割机每小时收割(1﹣40%)x亩水稻,利用工作时间=工作总量÷工作效率,结合乙比甲多用0.4小时完成任务,即可得出关于x的分式方程,解之经检验后即可求出甲操控A型号收割机每小时收割水稻的亩数,再将其代入(1﹣40)x中即可求出乙操控B型号收割机每小时收割水稻的亩数;(2)设安排甲收割y小时,则安排乙收割小时,根据要求平均损失率不超过2.4%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设甲操控A型号收割机每小时收割x亩水稻,则乙操控B型号收割机每小时收割(1﹣40%)x亩水稻,依题意得:﹣=0.4,解得:x=10,经检验,x=10是原方程的解,且符合题意,∴(1﹣40%)x=(1﹣40%)×10=6.答:甲操控A型号收割机每小时收割10亩水稻,乙操控B型号收割机每小时收割6亩水稻.(2)设安排甲收割y小时,则安排乙收割小时,依题意得:3%×10y+2%×6×≤2.4%×100,解得:y≤4.答:最多安排甲收割4小时.7.习近平总书记在主持召开中央农村工作会议中指出:“坚持中国人的饭碗任何时候都要牢牢端在自己手中,饭碗主要装中国粮.”某粮食生产基地为了落实习近平总书记的重要讲话精神,积极扩大粮食生产规模,计划投入一笔资金购买甲、乙两种农机具,已知1件甲种农机具比1件乙种农机具多1万元,用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同.(1)求购买1件甲种农机具和1件乙种农机具各需多少万元?(2)若该粮食生产基地计划购买甲、乙两种农机具共20件,且购买的总费用不超过46万元,则甲种农机具最多能购买多少件?【分析】(1)设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)万元,利用数量=总价÷单价,结合用15万元购买甲种农机具的数量和用10万元购买乙种农机具的数量相同,即可得出关于x的分式方程,解之经检验后即可得出购买1件乙种农机具所需费用,再将其代入(x+1)中即可求出购买1件甲种农机具所需费用;(2)设购买m件甲种农机具,则购买(20﹣m)件乙种农机具,利用总价=单价×数量,结合总价不超过46万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设购买1件乙种农机具需要x万元,则购买1件甲种农机具需要(x+1)万元,依题意得:=,解得:x=2,经检验,x=2是原方程的解,且符合题意,∴x+1=2+1=3.答:购买1件甲种农机具需要3万元,1件乙种农机具需要2万元.(2)设购买m件甲种农机具,则购买(20﹣m)件乙种农机具,依题意得:3m+2(20﹣m)≤46,解得:m≤6.答:甲种农机具最多能购买6件.8.金鹰酒店有140间客房需安装空调,承包给甲、乙两个工程队合作安装,每间客房都安装同一品牌同样规格的一台空调,已知甲工程队每天比乙工程队多安装5台,甲工程队的安装任务有80台,两队同时安装.问:(1)甲、乙两个工程队每天各安装多少台空调,才能同时完成任务?(2)金鹰酒店响应“绿色环保”要求,空调的最低温度设定不低于26℃,每台空调每小时耗电1.5度;据预估,每天至少有100间客房有旅客住宿,旅客住宿时平均每天开空调约8小时.若电费0.8元/度,请你估计该酒店每天所有客房空调所用电费W(单位:元)的范围?【分析】(1)设乙工程队每天安装x台空调,则甲工程队每天安装(x+5)台空调,根据甲、乙两个工程队同时完成安装任务,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每天有m(100≤m≤140)间客房有旅客住宿,利用每天所有客房空调所用电费W=电费的单价×每天旅客住宿耗电总数,即可得出W关于m的函数关系式,再利用一次函数上点的坐标特征,即可求出W的取值范围.【解答】解:(1)设乙工程队每天安装x台空调,则甲工程队每天安装(x+5)台空调,依题意得:=,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴x+5=15+5=20.答:甲工程队每天安装20台空调,乙工程队每天安装15台空调,才能同时完成任务.(2)设每天有m (100≤m ≤140)间客房有旅客住宿,则W =0.8×1.5×8m =9.6m . ∵9.6>0,∴W 随m 的增大而增大,∴9.6×100≤W ≤9.6×140,即960≤W ≤1344.答:该酒店每天所有客房空调所用电费W (单位:元)的范围为不少于960元且不超过1344元.9.今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元,由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的32,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?【分析】(1)设去年每吨土豆的平均价格是x 元,则第一次采购每吨土豆的平均价格为(x +200)元,第二次采购每吨土豆的平均价格为(x ﹣500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列出分式方程求解即可;(2)先求出今年采购的土豆数,根据采购的土豆需不超过60天加工完毕,加工成薯片的土豆数量不少于加工成淀粉的土豆数量的,据此列出不等式组并求解,然后由一次函数的性质求出最大利润即可.【解答】解:(1)设去年每吨土豆的平均价格是x元,则今年第一次采购每吨土豆的平均价格为(x+200)元,第二次采购每吨土豆的平均价格为(x﹣200)元,由题意得:×2=,解得:x=2200,经检验,x=2200是原分式方程的解,且符合题意,答:去年每吨土豆的平均价格是2200元;(2)由(1)得:今年采购的土豆数为:×3=375(吨),设应将m吨土豆加工成薯片,则应将(375﹣m)吨加工成淀粉,由题意得:,解得:150≤m≤175,设总利润为y元,则y=700m+400(375﹣m)=300m+150000,∵300>0,∴y随m的增大而增大,∴当m=175时,y的值最大=300×175+150000=202500,答:为获得最大利润,应将175吨土豆加工成薯片,最大利润是202500元.10.如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.【分析】(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据扩充后的矩形绿地面积为800m,即可得出关于x的一元二次方程,解之即可得出x 的值,将其正值分别代入(35+x)及(15+x)中,即可得出结论;(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据实地测量发现新的矩形绿地的长宽之比为5:3,即可得出关于y的一元一次方程,解之即可得出y值,再利用矩形的面积计算公式,即可求出新的矩形绿地面积.【解答】解:(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据题意得:(35+x)(15+x)=800,整理得:x2+50x﹣275=0解得:x1=5,x2=﹣55(不符合题意,舍去),∴35+x=35+5=40,15+x=15+5=20.答:新的矩形绿地的长为40m,宽为20m.(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据题意得:(35+y):(15+y)=5:3,即3(35+y)=5(15+y),解得:y=15,∴(35+y)(15+y)=(35+15)×(15+15)=1500.答:新的矩形绿地面积为1500m2.11.建设美丽城市,改造老旧小区.某市2019年投入资金1000万元,2021年投入资金1440万元,现假定每年投入资金的增长率相同.(1)求该市改造老旧小区投入资金的年平均增长率;(2)2021年老旧小区改造的平均费用为每个80万元.2022年为提高老旧小区品质,每个小区改造费用增加15%.如果投入资金年增长率保持不变,求该市在2022年最多可以改造多少个老旧小区?【分析】(1)设该市改造老旧小区投入资金的年平均增长率为x,利用2021年投入资金金额=2019年投入资金金额×(1+年平均增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设该市在2022年可以改造y个老旧小区,根据2022年改造老旧小区所需资金不多于2022年投入资金金额,即可得出关于y的一元一次不等式,解之取其中的最大整数值即可得出结论.【解答】解:(1)设该市改造老旧小区投入资金的年平均增长率为x,依题意得:1000(1+x)2=1440,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市改造老旧小区投入资金的年平均增长率为20%.(2)设该市在2022年可以改造y个老旧小区,依题意得:80×(1+15%)y≤1440×(1+20%),解得:y≤,又∵y为整数,∴y的最大值为18.答:该市在2022年最多可以改造18个老旧小区.12.南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表.用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价﹣进价)(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?【分析】(1)利用总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出a的值;(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,根据真丝围巾进货件数不低于真丝衬衣件数的2倍,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,设两种商品全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w 关于x的函数关系式,再利用一次函数的性质,即可解决最值问题;(3)设每件真丝围巾降价y元,利用总利润=每件的销售利润×销售数量,结合要保证销售利润不低于原来最大利润的90%,即可得出关于y的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)依题意得:50a+80×25=15000,解得:a=260.答:a的值为260.(2)设购进真丝衬衣x件,则购进真丝围巾(300﹣x)件,依题意得:300﹣x≥2x,解得:x≤100.设两种商品全部售出后获得的总利润为w元,则w=(300﹣260)x+(100﹣80)(300﹣x)=20x+6000.∵20>0,∴w随x的增大而增大,∴当x=100时,w取得最大值,最大值=20×100+6000=8000,此时300﹣x=300﹣100=200.答:当购进真丝衬衣100件,真丝围巾200件时,才能使本次销售获得的利润最大,最大利润是8000元.(3)设每件真丝围巾降价y元,依题意得:(300﹣260)×100+(100﹣80)××200+(100﹣y﹣80)××200≥8000×90%,解得:y≤8.答:每件真丝围巾最多降价8元.13.为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践基地开展劳动实践活动.在此次活动中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:3000元.(1)参加此次劳动实践活动的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案?(3)学校租车总费用最少是多少元?【分析】(1)设参加此次劳动实践活动的老师有x人,可得:30x+7=31x﹣1,即可解得参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人;(2)根据每位老师负责一辆车的组织工作,知一共租8辆车,设租甲型客车m辆,可得:,解得m的范围,解得一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,由一次函数性质得学校租车总费用最少是2800元.【解答】解:(1)设参加此次劳动实践活动的老师有x人,参加此次劳动实践活动的学生有(30x+7)人,根据题意得:30x+7=31x﹣1,解得x=8,∴30x+7=30×8+7=247,答:参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人;(2)师生总数为247+8=255(人),∵每位老师负责一辆车的组织工作,∴一共租8辆车,设租甲型客车m辆,则租乙型客车(8﹣m)辆,根据题意得:,解得3≤m≤5.5,∵m为整数,∴m可取3、4、5,∴一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)∵7×35=245<255,8×35=280>255,∴租车总费用最少时,至少租8两辆车,设租甲型客车m辆,则租乙型客车(8﹣m)辆,由(2)知:3≤m≤5.5,设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,∵80>0,∴w随m的增大而增大,∴m=3时,w取最小值,最小值为80×3+2560=2800(元),答:学校租车总费用最少是2800元.14.金师傅近期准备换车,看中了价格相同的两款国产车.(2)若燃油车的每千米行驶费用比新能源车多0.54元.①分别求出这两款车的每千米行驶费用.②若燃油车和新能源车每年的其它费用分别为4800元和7500元.问:每年行驶里程为多少千米时,买新能源车的年费用更低?(年费用=年行驶费用+年其它费用)【分析】(1)根据表中的信息,可以计算出新能源车的每千米行驶费用;(2)①根据燃油车的每千米行驶费用比新能源车多0.54元和表中的信息,可以列出相应的分式方程,然后求解即可,注意分式方程要检验;②根据题意,可以列出相应的不等式,然后求解即可.【解答】解:(1)由表格可得,新能源车的每千米行驶费用为:=(元),即新能源车的每千米行驶费用为元;(2)①∵燃油车的每千米行驶费用比新能源车多0.54元,∴﹣=0.54,解得a=600,经检验,a=600是原分式方程的解,∴=0.6,=0.06,答:燃油车的每千米行驶费用为0.6元,新能源车的每千米行驶费用为0.06元;②设每年行驶里程为xkm,由题意得:0.6x+4800>0.06x+7500,解得x>5000,答:当每年行驶里程大于5000km时,买新能源车的年费用更低.15.2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?【分析】(1)设购进A款钥匙扣x件,B款钥匙扣y件,利用总价=单价×数量,结合该网店第一次用850元购进A、B两款钥匙扣共30件,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进m件A款钥匙扣,则购进(80﹣m)件B款钥匙扣,利用总价=单价×数量,结合总价不超过2200元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,利用总利润=每件的销售利润×销售数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题;(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出(78﹣2a)件,利用平均每天销售B款钥匙扣获得的总利润=每件的销售利润×平均每天的销售量,即可得出关于a的一元二次方程,解之即可得出结论.【解答】解:(1)设购进A款钥匙扣x件,B款钥匙扣y件,依题意得:,解得:.答:购进A款钥匙扣20件,B款钥匙扣10件.(2)设购进m件A款钥匙扣,则购进(80﹣m)件B款钥匙扣,依题意得:30m+25(80﹣m)≤2200,解得:m≤40.设再次购进的A、B两款冰墩墩钥匙扣全部售出后获得的总利润为w元,则w=(45﹣30)m+(37﹣25)(80﹣m)=3m+960.∵3>0,∴w随m的增大而增大,∴当m=40时,w取得最大值,最大值=3×40+960=1080,此时80﹣m=80﹣40=40.答:当购进40件A款钥匙扣,40件B款钥匙扣时,才能获得最大销售利润,最大销售利润是1080元.(3)设B款钥匙扣的售价定为a元,则每件的销售利润为(a﹣25)元,平均每天可售出4+2(37﹣a)=(78﹣2a)件,依题意得:(a﹣25)(78﹣2a)=90,整理得:a2﹣64a+1020=0,解得:a1=30,a2=34.答:将销售价定为每件30元或34元时,才能使B款钥匙扣平均每天销售利润为90元.16.某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大.该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨.(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加m%.5月份每吨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。

(表为:x≥0)常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数:①定义及表示法②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.0<a<1时1/a>1;a>1时,1/a<1;D.积为1。

4.相反数:①定义及表示法②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n为自然数)7.绝对值:①定义(两种):代数定义:几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律)3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷×5);C.(有括号时)由“小”到“中”到“大”。

三、应用举例(略)附:典型例题1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.2.已知:a-b=-2且ab<0,(a≠0,b≠0),判断a、b的符号。

第二章代数式★重点★代数式的有关概念及性质,代数式的运算☆内容提要☆一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式没有加减运算的整式叫做单项式。

(数字与字母的积—包括单独的一个数或字母)几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如,=x, =│x│等。

4.系数与指数区别与联系:①从位置上看;②从表示的意义上看5.同类项及其合并条件:①字母相同;②相同字母的指数相同合并依据:乘法分配律6.根式表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

7.算术平方根⑴正数a的正的平方根([a≥0—与“平方根”的区别]);⑵算术平方根与绝对值①联系:都是非负数,=│a│②区别:│a│中,a为一切实数; 中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9.指数⑴( —幂,乘方运算)①a>0时,>0;②a<0时,>0(n是偶数),<0(n是奇数)⑵零指数:=1(a≠0)负整指数:=1/ (a≠0,p是正整数)二、运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则2.分式的性质⑴基本性质:= (m≠0)⑵符号法则:⑶繁分式:①定义;②化简方法(两种)3.整式运算法则(去括号、添括号法则)4.幂的运算性质:①·= ;②÷= ;③= ;④= ;⑤技巧:5.乘法法则:⑴单×单;⑵单×多;⑶多×多。

6.乘法公式:(正、逆用)(a+b)(a-b)=(a±b) =7.除法法则:⑴单÷单;⑵多÷单。

8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

9.算术根的性质:=; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A. ;B. ;C. .11.科学记数法:(1≤a<10,n是整数=三、应用举例(略)四、数式综合运算(略)第三章统计初步★重点★☆内容提要☆一、重要概念1.总体:考察对象的全体。

2.个体:总体中每一个考察对象。

3.样本:从总体中抽出的一部分个体。

4.样本容量:样本中个体的数目。

5.众数:一组数据中,出现次数最多的数据。

6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)二、计算方法1.样本平均数:⑴;⑵若,,…,,则(a—常数,,,…,接近较整的常数a);⑶加权平均数:;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。

通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。

2.样本方差:⑴;⑵若, ,…, ,则(a—接近、、…、的平均数的较“整”的常数);若、、…、较“小”较“整”,则;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。

3.样本标准差:三、应用举例(略)第四章直线形★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。

☆内容提要☆一、直线、相交线、平行线1.线段、射线、直线三者的区别与联系从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

2.线段的中点及表示3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)4.两点间的距离(三个距离:点-点;点-线;线-线)5.角(平角、周角、直角、锐角、钝角)6.互为余角、互为补角及表示方法7.角的平分线及其表示8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区别与联系)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成13.公理、定理14.逆命题二、三角形分类:⑴按边分;⑵按角分1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。

⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。

⑶角与边:在同一三角形中,3.三角形的主要线段讨论:①定义②××线的交点—三角形的×心③性质①高线②中线③角平分线④中垂线⑤中位线⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质5.全等三角形⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)⑵特殊三角形全等的判定:①一般方法②专用方法6.三角形的面积⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要辅助线⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线8.证明方法⑴直接证法:综合法、分析法⑵间接证法—反证法:①反设②归谬③结论⑶证线段相等、角相等常通过证三角形全等⑷证线段倍分关系:加倍法、折半法⑸证线段和差关系:延结法、截余法⑹证面积关系:将面积表示出来三、四边形分类表:1.一般性质(角)⑴内角和:360°⑵顺次连结各边中点得平行四边形。

推论1:顺次连结对角线相等的四边形各边中点得菱形。

推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

⑶外角和:360°2.特殊四边形⑴研究它们的一般方法:⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定⑶判定步骤:四边形→平行四边形→矩形→正方形┗→菱形——↑⑷对角线的纽带作用:3.对称图形⑴轴对称(定义及性质);⑵中心对称(定义及性质)4.有关定理:①平行线等分线段定理及其推论1、2②三角形、梯形的中位线定理③平行线间的距离处处相等。

(如,找下图中面积相等的三角形)5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。

6.作图:任意等分线段。

四、应用举例(略)第五章方程(组)★重点★一元一次、一元二次方程,二元一次方程组的解法;方程的有关应用题(特别是行程、工程问题)☆内容提要☆一、基本概念1.方程、方程的解(根)、方程组的解、解方程(组)2.分类:二、解方程的依据—等式性质1.a=b←→a+c=b+c2.a=b←→ac=bc (c≠0)三、解法1.一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化成1→解。

2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法②加减法四、一元二次方程1.定义及一般形式:2.解法:⑴直接开平方法(注意特征)⑵配方法(注意步骤—推倒求根公式)⑶公式法:⑷因式分解法(特征:左边=0)3.根的判别式:4.根与系数顶的关系:逆定理:若,则以为根的一元二次方程是:。

5.常用等式:五、可化为一元二次方程的方程1.分式方程⑴定义⑵基本思想:⑶基本解法:①去分母法②换元法(如,)⑷验根及方法2.无理方程⑴定义⑵基本思想:⑶基本解法:①乘方法(注意技巧!!)②换元法(例,)⑷验根及方法3.简单的二元二次方程组由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

六、列方程(组)解应用题一概述列方程(组)解应用题是中学数学联系实际的一个重要方面。

其具体步骤是:⑴审题。

理解题意。

弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。

①直接未知数②间接未知数(往往二者兼用)。

一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。

一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答案。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。

在这个过程中,列方程起着承前启后的作用。

因此,列方程是解应用题的关键。

二常用的相等关系1.行程问题(匀速运动)基本关系:s=vt⑴相遇问题(同时出发):+ = ;⑵追及问题(同时出发):若甲出发t小时后,乙才出发,而后在B处追上甲,则⑶水中航行:;2.配料问题:溶质=溶液×浓度溶液=溶质+溶剂3.增长率问题:4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。

相关文档
最新文档