机械设计齿轮传动资料

合集下载

机械基础之齿轮传动的设计

机械基础之齿轮传动的设计

机械基础之齿轮传动的设计齿轮传动是机械传动的一种常见形式,广泛应用于冶金、化工、轻工等领域。

正确的齿轮传动设计可以保证机器设备的正常运行,提高传动效率和可靠性。

一、齿轮传动的基本原理齿轮传动是利用齿轮间的啮合来实现传动的。

齿轮传动的优点有传动可靠性高、传递效率高,并且在传递扭矩大的情况下具有优势。

齿轮传动由传动齿轮和被动齿轮组成,传动齿轮将传递力矩传递给被动齿轮,并将其旋转。

传动齿轮和被动齿轮要求相互啮合,且在相互运转时还必须平稳和具有足够的承载能力。

二、齿轮传动的设计要点齿轮传动的设计要点主要包括齿轮尺寸计算、齿轮耐用性、传动精度计算等。

其中齿轮尺寸计算是齿轮传动设计中的重要环节。

1. 齿轮尺寸计算齿轮尺寸计算是指通过计算齿轮参数来确定齿轮的尺寸,主要包括模数、压力角、齿数和齿轮转动半径等参数。

齿轮尺寸的计算要考虑被动齿轮的载荷、啮合角、轴向力和齿轮材料强度等因素。

2. 齿轮材料选择齿轮材料应选用高强度、高硬度、高耐磨性和高精度的材料,例如合金钢、硬化钢、钛合金等。

选择齿轮材料时,还应考虑到齿轮使用环境的特点和齿轮的耐用性。

3. 传动误差控制齿轮传动的传动误差包括齿轮啮合误差、轴向误差和径向误差。

在齿轮传动设计中,要通过合理的设计和加工来控制传动误差,从而提高齿轮传动的传动精度和可靠性。

三、齿轮传动的安装和调试齿轮传动的安装和调试是确保齿轮传动正常运行的关键环节。

在齿轮传动安装前,需要检查齿轮的尺寸精度、齿轮材料和齿轮的表面质量。

同时,齿轮的安装也需要注意各种参数的匹配,例如齿轮啮合间隙和传动轴心的误差等。

在齿轮传动调试时,需要进行实际运转试验,检查传动效率和齿轮传动噪声等因素。

如果发现问题,需要及时调整齿轮传动的参数或者重新设计齿轮传动。

四、结论齿轮传动是机械传动的常见形式,其设计要点包括齿轮尺寸计算、齿轮耐用性、传动精度计算等。

正确的齿轮传动设计可以保证机器设备的正常运行,提高传动效率和可靠性。

机械设计 齿轮传动

机械设计 齿轮传动

第九节 齿轮传动的失效形式及计算准则
3、齿面胶合
齿面胶合
高速重载传动中,常因啮合区温度 升高而引起润滑失效,致使齿面金 属直接接触而相互粘连。当齿面向 对滑动时,较软的齿面沿滑动方向 被撕下而形成沟纹。
措施
1、提高齿面硬度 2、减小齿面粗糙度 低速 3、增加润滑油粘度 高速
4、加抗胶合添加剂
第九节§齿1轮1-1传动轮的齿失的效失形效式形及式计算准则
模数m不能成为衡量齿轮接触强度的依据。
第十三节 直齿圆柱齿轮传动的齿面接触强度计算
齿面接触疲劳强度计算公式的说明
1)强度计算公式中,“+”号用于外啮合;“—”号用于内啮合。 2接进)触行配强计对度算齿设。轮计的时接,触应应将力[均σ相H1]同、,[即σσHH21]=σ中H2数。值在较用小公的式代进入行公齿式面 3)在齿轮的齿宽系数、材料及传动比已选定的情况下,影响齿 轮齿面接触疲劳强度的主要因素是齿轮直径。小齿轮直径(或传 动中心距)越大,齿轮的齿面接触强度就越高。所以在其他条件 不变的情况下,小齿轮的齿数选的适当多些可提高齿轮传动的接 触强度。 4)许用接触应力的计算
O2
赫兹公式
H
1 1
Fn •
1
2
b
1 12
1
2 2
E1
E2
“+”用于外啮合,“-”用于内啮合 节圆处齿廓曲率半径 实验表明:齿根部分靠近节点处最容易发
生点蚀,故取节点处的应力作为计算依据。
1
N1C
d1
s in
2
2
N2C
d2
s in
2
传动比 i= z2 /z1 = d2 /d1
中心距 a=(d2 ± d1)/2 = d1(i ±1)/2 或 d1 = 2a /(i ±1)

机械设计6—齿轮传动

机械设计6—齿轮传动
承载一定即 H一定:b↑ → d1一定: d↑ → b ↑ , σH↓
d1↓ ,v ↓,KV ↓ a↓
d↓ → b ↓ , σ H ↑
但 d↑↑→ b ↑↑,易承载不均,Kβ ↑
∴ 应合理选用d ,参见表10-7 ☆设计结果中小齿轮齿宽 b1=b+(5~10)mm,大齿轮齿宽 b2=b, 且要圆整。为什么?
齿轮传动获得广泛应用的原因之一。
优点
3. 效率高; 可达99%,常用的机械传动中,效率最高。 4. 结构紧凑。 1. 制造及安装精度要求高; 2. 成本高。
缺点
二、齿轮传动的分类
1. 按两轴线位置分:平行轴、相交轴、交错轴 2. 按工作条件分: 开式传动:低速传动,润滑条件差,易磨损; 半开式传动:装有简单的防护罩,但仍不能严密防止杂物侵入;
又T1= 9.55x106P/n1 = 9.55x106P/1440≤301138, 解得Pmax= 45.4 kW
§6-6 标准斜齿圆柱齿轮传动的强度计算
一、齿面接触疲劳强度计算 失效形式、计算准则同直齿轮。 不同之处:1)∵有,接触线倾斜→↑接触强度,用考虑。 2)接触线长度随啮合位置而变化。
d — 齿宽系数 (表10-7) d = b/d1
[ H]— 齿轮许用齿面接触应力 (MPa)
[ H] = KHN. σHlim / SH
Hlim — 图10-21 ,SH =1 (一般可靠度) KHN — 接触寿命系数, 由应力循环次数N=60njLh和材
料查图10-19 2. 设计公式 d 1 3. 重要说明
5. 齿面塑性变形
常发生在低速重载软齿面齿轮传动中。 齿面在过大的摩擦力作用下处于屈服状态,产生沿摩擦力 方向的齿面材料的塑性流动,从而使齿面正常轮廓曲线被损坏。

机械设计基础中的齿轮传动设计

机械设计基础中的齿轮传动设计

机械设计基础中的齿轮传动设计齿轮传动是机械设计中常见的一种传动方式,广泛应用于各种机械装置中。

在机械设计基础中,了解齿轮传动的设计原理和方法对于设计出高效可靠的机械装置具有重要意义。

本文将介绍齿轮传动设计的基本知识和注意事项。

一、齿轮传动的基本原理齿轮传动是利用齿轮间的啮合来传递动力和运动的一种机械传动方式。

它由主动齿轮和从动齿轮组成,通过不同大小的齿轮啮合,实现运动和力的传递。

在齿轮传动设计中,需要考虑的基本参数有模数、齿数、压力角、齿轮间隙等。

模数是齿轮齿数与齿轮直径的比值,用来表示齿轮的尺寸大小;齿数是指齿轮上的齿的数量,决定了传动的速比;压力角是齿轮齿面与轴线之间的夹角,对齿轮的强度和传动性能有影响;齿轮间隙则是齿轮啮合时齿与齿之间的间隙,影响传动的精度和噪声。

二、齿轮传动设计的步骤在进行齿轮传动设计时,需要遵循一定的步骤,确保传动装置的性能和可靠性。

1. 确定传动比传动比是指主从动齿轮的齿数比值,决定了传动装置的输出速度和扭矩。

根据所需的输出速度和扭矩,选择合适的齿轮齿数组合,计算得出传动比。

2. 选择模数和齿轮参数根据传动比和要求的齿轮尺寸,选择合适的模数和齿数。

在进行选型时,需要考虑齿轮的强度、噪声和传动精度等要求。

3. 计算齿轮尺寸根据所选的模数和齿数,计算得出齿轮的尺寸和几何参数。

包括齿轮的外径、根圆直径、齿宽等。

4. 进行强度校核根据所选的齿轮尺寸和材料,进行强度校核。

通过计算齿轮的接触应力、弯曲应力和疲劳寿命等参数,判断齿轮的强度是否满足要求。

5. 进行传动效率计算根据齿轮的啮合条件和传动设计参数,计算传动的效率。

传动效率是指输入功率和输出功率之间的比值,可以评估传动装置的能量转换效率。

三、齿轮传动设计的注意事项在进行齿轮传动设计时,需要注意以下几点,以确保传动装置的性能和可靠性。

1. 合理选择齿轮材料齿轮传动中,对材料的选择要满足一定的强度和硬度要求。

常用的齿轮材料有合金钢、碳素钢等。

机械设计 齿轮传动

机械设计  齿轮传动
[ H ]
2
2.轮齿弯曲疲劳强度的计算
斜齿圆柱齿轮传动的强度计算是在直 齿轮的基础上,考虑斜齿轮的特点进行修 正,齿根弯曲疲劳强度校核公式为:
F
1.6KT1 bmn2 z1
YFaYSa
1.6KT1 cos
bmn2 z1
YFaYSa
[ F ]
取齿宽系数 d b / d1 ,由上式可得设计 公式为:
齿根高
h f 1 h f 2 1.2m
齿高(顶隙系数 c* =0.2) h1 h2 2.2m
顶隙
c 0.2m
齿顶圆直径 齿根圆直径
da1 d1 2m cos1
d f 1 d1 2.4m cos1
二. 标准直齿锥齿轮的参数及几何尺寸计算
锥距 R 1
2
d12
d
2 2
m 2
z12
z
2 2
(1)齿廓接触线是斜线,一对齿是逐渐 进入啮合和逐渐脱离啮合的,故运转平稳, 噪声小。
(2)重合度较大,并随齿宽和螺旋角的 增大而增大,故承载能力较高,运转平稳, 适于高速传动。
(3)最少齿数小于直齿轮的。
斜齿轮的主要缺点是斜齿齿面受法向力Fn时会产生轴向分 力Fa,需要安装推力轴承,从而使结构复杂化。为了克服这一 缺点,可采用人字齿轮,但制造较困难,成本较高。
一对直齿轮啮合时,沿整个齿宽同时进入啮合,并 沿整个齿宽同时脱离啮合。因此传动平稳性差,冲击 噪声大,不适于高速传动。 一对斜齿轮啮合时,齿面上的接触线由短变长,再 由长变短,减少了传动时的冲击和噪音,提高了传动 平稳性,故斜齿轮适用于重载高速传动。
2.啮合特点
与直齿轮相比,斜齿轮具有以下优点:
列球面渐开线的集合,就组成了球面渐开面。

机械设计基础齿轮传动

机械设计基础齿轮传动

材料与热处理对齿轮性能的影响
对齿轮的承载能力的影响
不同材料和热处理方法会影响齿轮的 硬度、韧性等力学性能,从而影响其 承载能力。
对齿轮的耐磨性的影响
材料和热处理方法会影响齿轮表面的 硬度、粗糙度等物理性能,从而影响 其耐磨性。
对齿轮的抗疲劳性能的影响
材料和热处理方法会影响齿轮的内部 组织结构和残余应力分布,从而影响 其抗疲劳性能。
采用先进的测量技术
采用先进的测量仪器和测量方法,提高齿轮 各项公差的检测精度和效率。
05
齿轮的润滑与密封
齿轮润滑的作用与要求
01
02
03
04
减摩抗磨
降低齿轮传动过程中的摩擦系 数,减少磨损,提高传动效率

冷却降温
将齿轮传动过程中产生的热量 带走,防止齿轮过热变形。
清洗清洁
将齿轮表面的杂质和氧化物清 洗干净,保持齿轮表面光洁。
封等。
06
齿轮传动的失效形式与设计准则
齿轮传动的失效形式及其原因
轮齿折断
由于过载、冲击或材料疲劳等原因,导 致轮齿在应力作用下发生断裂。
齿面点蚀
由于交变应力作用,齿面出现疲劳裂 纹并扩展,最终导致小块金属剥落形
成点蚀。
齿面磨损
由于润滑不良、颗粒污染或接触应力 过大等原因,导致齿面材料逐渐损失 。
对齿轮的耐蚀性的影响
不同材料和热处理方法会影响齿轮的 化学稳定性和耐蚀性,从而影响其在 腐蚀环境下的使用寿命。
04
齿轮的精度与公差
齿轮精度的基本概念
齿轮精度
是指齿轮实际参数与理论参数相符合的程度,包括齿轮的尺寸精度、形状精度和位置精 度。
齿轮精度等级
根据齿轮使用要求的不同,将齿轮的各项公差分为不同的等级,以满足不同传动性能的 要求。

2024年机械设计基础课件齿轮传动

2024年机械设计基础课件齿轮传动

机械设计基础课件齿轮传动机械设计基础课件:齿轮传动1.引言齿轮传动是机械设计中的一种基本传动方式,广泛应用于各种机械设备的运动和动力传递。

齿轮传动具有结构简单、传动效率高、可靠性好、寿命长等优点,因此在工业生产和日常生活中得到广泛应用。

本课件将介绍齿轮传动的基本原理、分类、设计方法和应用。

2.齿轮传动的基本原理齿轮传动是利用齿轮副的啮合来传递动力和运动的一种传动方式。

齿轮副由两个或多个齿轮组成,其中主动齿轮通过旋转驱动从动齿轮,从而实现动力和运动的传递。

齿轮副的啮合是通过齿轮齿廓的接触来实现的,齿廓的形状和尺寸决定了齿轮传动的性能和精度。

3.齿轮传动的分类齿轮传动根据齿轮的形状和布置方式可分为直齿圆柱齿轮传动、斜齿圆柱齿轮传动、直齿圆锥齿轮传动和蜗轮蜗杆传动等。

直齿圆柱齿轮传动是应用最广泛的一种齿轮传动方式,具有结构简单、制造容易、精度高等优点。

斜齿圆柱齿轮传动具有传动平稳、噪声低、承载能力强等优点,适用于高速和重载的传动场合。

直齿圆锥齿轮传动适用于空间狭小和角度传动的场合。

蜗轮蜗杆传动具有大传动比、自锁性和精度高等特点,适用于低速、大扭矩的传动场合。

4.齿轮传动的设计方法齿轮传动的设计主要包括齿轮的几何设计、强度设计和精度设计。

齿轮的几何设计是根据传动比、工作条件、材料等因素确定齿轮的齿数、模数、压力角等参数。

强度设计是保证齿轮传动在规定的工作条件下具有足够的承载能力和寿命,主要包括齿面接触强度和齿根弯曲强度的计算。

精度设计是保证齿轮传动的精度和运动平稳性,主要包括齿轮的加工精度和装配精度的控制。

5.齿轮传动的应用齿轮传动在工业生产和日常生活中得到广泛应用。

在机床、汽车、船舶、飞机等机械设备中,齿轮传动用于传递动力和运动,实现各种复杂的运动轨迹和速度变化。

在风力发电、水力发电等能源领域,齿轮传动用于传递高速旋转的动力,实现能源的转换和利用。

在、自动化设备等高科技领域,齿轮传动用于实现精确的运动控制和动力传递,提高设备的性能和效率。

机械设计基础第6章齿轮传动

机械设计基础第6章齿轮传动

2.展成法 2.展成法 展成法是利用一对齿轮(或齿轮与齿条)啮合时, 两轮齿廓互为包络线的原理来切制轮齿的加工方法 展成法切制齿轮时常用的刀具有 齿轮插刀
插直齿
插斜齿
齿条插刀
齿轮滚刀
用此方法加工齿轮,只要刀具和 被加工齿轮的模数m和压力角α 相等,则不管被加工齿轮的齿数 是多少,都可以用同一把刀具来 加工。这给生产带来很大的方便, 得到广泛应用。
3.传动的平稳性
啮合线:N1N2线叫做渐开线齿轮 啮合线 传动的啮合线。 啮合角:啮合线N1N2与两轮节圆 啮合角 公切线t-t之间所夹的锐角称为啮 合角,用α′表示。 啮合角在数值上等于渐开线在节 圆处的压力角。啮合角α′恒定。 啮合线N1N2又是啮合点的公法线, 而齿轮啮合传动时其正压力是沿公 法线方向的,故齿廓间的正压力方 向(即传力方向)恒定。 至此可知,啮合线、公法线、 压力线和基圆的内公切线四线重合, 为一定直线。
渐开线标准直齿圆柱齿 轮各部分的名称和符号
4.齿厚:分度圆上一个齿的两侧端面齿廓之间的弧长称为 齿厚,用s表示 5.齿槽宽:分度圆上一个齿槽的两侧端面齿廓之间的弧 长称为齿槽宽,用e表示 6.齿距:分度圆上相邻两齿同侧端面齿廓之间的弧长称 为齿距,用p表示,即p=s+e 7.齿宽:轮齿部分沿齿轮轴线方向的宽度称为齿宽,用b 表示 8.齿顶高:分度圆与齿顶圆之间的径向距离,用ha表示 9.齿根高:分度圆与齿根圆之间的径向距离,用hf表示 10全齿高:齿顶圆与齿根圆之间的径向距离,用h表示 显然 h=ha+hf 11.齿宽:轮齿的轴向长度,用b表示
(3)齿数 因db=dcosα=mzcosα,只有m、z、α都确 定了,齿轮的基圆直径db 才能确定,同时渐 开线的形状亦才确定。 所以m、z、α是决定轮齿渐开线形状的三个 基本参数。当m、α不变时,z越大,基圆越大, 渐开线越平直。当z→∞时,db→∞,渐开线 变成直线,齿轮则变成齿条 (4)齿顶高系数ha*和顶隙系数c* 齿轮的齿顶高、齿根高都与模数m成正比。 即ha=ha*mhf=(ha*+c*)mh=(2ha*+c*)m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

①载荷的确定:
从整个受弯轮齿来说,最大弯矩发生在单 对齿啮合区的最高点,但按照这一实际情况计 算比较复杂,一般仅在高精度(6级以上)传动 中才如此计算。
为计算简单,一般精度的齿轮传动,通常 按全部载荷作用于齿顶来计算齿根弯曲强度。
② 危险截面的确定: 用30°切线法
危险截面上齿厚 S , 力臂为 h ,
YFa 2.52 2.45 2.40 2.35 2.322.282.24 2.22 2.2 2.18 2.14 2.12 2.0
YSa 1.52 1.53 1.54 1.55 1.56 1.57 1.575 1.58 1.59 1.595 1.60 1.61 1.62
注:1)基准齿形的参数为α =20˚ 、h*a=1、C*=0.25 、ρ =0.38m (m-模数) 2)对内齿轮:当α =20˚ 、h*a=1、C*=0.25 、ρ =0.15m 时,
所以
H
KFt u 1 bd1 u
2
sin cos
ZE
H
ZH—区域系数, α=20°时, ZH =2.5
校核式
H
KFt bd1
u 1 u ZEZH
[ H ]
H
KFt bd1
u 1 u ZEZH
[ H ]
又因为: Ft 2T1 d1
同时引入齿宽系数d Nhomakorabeab d1
得到
H
2KT1
d d13
P1 n1
径向力: Fr1 Ft1tg Fr2
方向:指向各自轮心
法向力:
Fn1
Ft
cos
Fn2
2 齿根弯曲疲劳强度计算
根据失效形式分析,为防止轮齿在预定寿命
期内发生轮齿的疲劳折断需进行齿根弯曲强 度计算,其强度条件为
F max
M W
F
当然,M,W 应该分别是危险截面上的弯 矩和抗弯截面模量
u
u
1
Z
H
ZE
H
设计式
d1 3
2KT1
d
u
u
1
ZH ZE
H
2
最终得到:
校核式
H
KFt bd1
u
u
1Z
E
Z
H
[ H ]
设计式
2
d1 3
2KT1
d
u
1 u
ZH Z
H
E
4 齿轮传动强度计算的说明
⑴弯曲强度计算中,大小齿轮齿数、材料不同、热
处理方式不同,齿形系数、应力校正系数、许用
应力都是不相同的,所以对大小齿轮应分别计
算 F
, 将其中较小值带入设计式。
YFaYSa
YFaYSa
F
max YFa1YSa1
F
1
, YFa2YSa2
F
2
⑵齿面接触强度计算中,配对齿轮的接触应力相同,

H1 。H 2而因材料和热处理方式不同其许用
接触应力不同,所以应将 、 H1 中H较2 小值代
齿形系数:YFa =2.053 ; 应力校正系数:YSa =2.65
3 齿面接触疲劳强度计算
理论依据:弹性 力学赫兹公式
H
Fca (
1
1
1
2
)
H
1
12
E1
1
E2
2 2
b
赫兹公式:
H
Fca
(
1
1
1
2
)
H
1 12
E1
1
2 2
E2
b
1, 2 两圆柱体的曲率半径。 1, 2 两材料的泊松比。
入设计式。
2
d1 3
2KT1
d
u
1 u
ZH ZE
H
H
min H1

H
2
(3)初始设计时,d1(或mn)未知,所以Kv、Kα、 Kβ都不能预先确定,通常可初选载荷系数值 (用Kt表示,下标t代表初选)进行设计,计算 出d1t、mnt以后,得到vt,再由vt查出Kv、 Kα、 Kβ ,得到K,将其与试选值Kt对比,二者相差 不多时不必修改原计算,相差较多时,按下式
§10-5 标准直齿圆柱齿轮 传动的强度计算
1 直齿圆柱齿轮传动的受力分析 2 齿根弯曲疲劳强度计算 3 齿面接触疲劳强度计算
4 齿轮传动强度计算的说明
1 直齿圆柱齿轮传动的受力分析
F n Ft Fr
圆周力:
Ft1
2T1 d1
Ft2
方向
主动轮:与n1反向 从动轮:与n2同向
T1
9550
弯曲强度计算
单位齿长抗弯截面模量为 1×S2/6
所受横向力为 pcacosγ, 弯矩为pca h cosγ.
pca K p K Fn L K Fn b K Ft b cos
那么
YFa
YFa—齿形系数, ∵h和S与模数m相关,故YFa与模数 m无关。 YFa无量纲量,与齿廓形状有关,S大,h小, 则YFa小,轮齿抗弯强度高.
修正:
d1 d1t 3
K Kt
mn
mnt 3
K Kt
设计准则
齿轮传动设计时,按主要失效形式进行强度计算,确定 主要尺寸,然后按其它失效形式进行必要的校核。
软齿面闭式齿轮传动: 按接触强度进行设计,按弯曲强度校核:
E1, E2 两圆柱体材料的弹性模量。
pca
Fca L
K Fn
L
L—接触线长度
若令:
ρ∑—啮合点的综合曲率半径,
接触强度的计算式:
H
ZE—材料的弹性影响系数
pca Z E H (MPa )
H pca Z E
小齿轮单对齿啮合的最低 点(C点)的接触应力为 最大
按单对齿啮合的最低 点计算接触应力比较麻烦, 并且当z1≥20时,按单对 齿啮合的最低点计算的接 触应力与按节点啮合计算 的接触应力极为相近。
H pca Z E
以节点啮合为代表进 行齿面的接触强度计 算
按节点啮合进行计算
综合曲率半径ρ∑的取值计算:
2 1
1
1
1
1
2
2 1 2 1
1 1
2 1
1
d1 2
sin
2
d2 2
sin
u 2 1 d2 d1 z2 z1 u---齿数比
所以: 1 2 u 1 d1 sin u
pca K p K Fn L K Fn b K Ft b cos
28 29
YFa 2.97 2.91 2.85 2.8 2.76 2.72 2.69 2.65 2.62 2.60 2.57 2.55 2.53 YSa 1.52 1.53 1.54 1.55 1.56 1.57 1.575 1.58 1.59 1.595 1.60 1.61 1.62
Z(Zv) 30 35 40 45 50 60 70 80 90 100 150 200 ∞
齿根理论弯曲应力:
F0
KFtYFa bm
另外,考虑到齿根过渡圆角引起的应力集中及其他应力 影响,引入应力校正系数Ysa,得到强度校核式:
令: 进一步引入:
— 齿宽系数
许用弯 曲应力
最终得到:
校核式 设计式
10-5 齿形系数YFa以及应力校正系数YSa
Z(Zv) 17 18 19 20 21 22 23 24 25 26 27
相关文档
最新文档