红外遥控汽车设计外文翻译

合集下载

红外遥控智能小车系统设计毕业设计

红外遥控智能小车系统设计毕业设计

安徽建筑工业学院毕业设计(论文)课题:红外遥控智能小车系统设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日随着计算机、微电子、信息技术的快速进步,智能化技术的开发速度越来越快,智能度越来越高,应用范围也得到了极大的扩展。

智能作为现代的新发明,是以后的发展方向,它可以按照预先设定的模式在一个环境里自动的运作,不需要人为的管理,可应用于科学勘探等用途。

外文翻译-- 基于STC单片机的红外遥控开关系统的设计

外文翻译-- 基于STC单片机的红外遥控开关系统的设计

JSJ-1302计算机信息工程学院2013 届毕业设计(论文)外文阅读与翻译毕业设计题目基于STC单片机的红外遥控开关系统的设计外文翻译题目Decoding Infraed Remote Controls Using a PIC16C5X Microcontroller专业计算机信息科学与技术班级姓名学号指导教师职称介绍:家用电子工业已经应用红外遥控器控制电视机,录像机和有线电视很多年了。

同样的技术最近开始应用于工业应用以替代小键盘。

可以通过PIC16C5X译解大多数的红外信号。

这份说明书是描述如何破解的。

唯一用来译解IR信号的强制性硬件是红外接收仪。

它的两种类型的用法在这里都有说明。

两种模块类型都经常被用于家用电子工业。

第一种类型响应的已调制的红外信号大概为40KHz。

第二种响应未调制的红外脉冲并且有受限范围。

每种类型的硬件成本都不高于2美元。

此处描述了三种PIC16C5X应用程序,说明了如何用它们来创建一个算法使其能够破译任何遥控信号。

每种PIC16C5X应用程序表示在映射出一个预先存在的红外格式的一个步骤。

最终的应用程序是一个用来完全实现的示例的红外信号解码和解调的一种Teknika电视遥控器。

三个层次的红外线信号典型的红外信号遥控器有三层。

用于这些层的名字没有被标准化。

在这个应用程序中注意他们被称为“红外、调制和串行数据。

红外层是种发射方式。

红外线是一种因为波长太长以至于看不到的光。

虽然你不能看到红外光束,但它是光的一种形式,所以如果你不能看到目标设备,你就不能用红外信号控制它。

控制绕过拐角,通过不透明的材料、RF,通常使用超高频信号。

虽然这个应用程序注没有进一步提到RF,这里介绍的许多东西都是可以用作一个射频传输介质。

这个频率层爆出的红外信号通常是在频率调制32.75千赫和56.8千赫之间。

这样做是为了减少环境光的影响。

虽然考虑到这一层,但还是可选的。

如果不调整红外格式的输出,发送脉冲与未调整的红外线则相反。

红外遥控系统毕业论文中英文资料对照外文翻译文献

红外遥控系统毕业论文中英文资料对照外文翻译文献

中英文资料对照外文翻译文献红外遥控系统摘要目前红外数据通信技术是在世界范围内被广泛应用的一种无线连接技术,它也可以被许多软硬件平台所支持。

红外收发器产品具有成本低,体积小,传输速率快,点对点传输安全性好,不受电磁干扰等特点,可使得信息在几个不同产品器件之间快速、便捷、安全地交换与传输。

红外数据通信技术在短距离无线传输领域内有着十分显著的优势,红外遥控收发系统的设计和存在具有非常高的运用价值。

目前,红外收发器产品在便携式产品中的应用潜力很大。

全世界约有1亿5千万台设备和仪器是采用红外数据通信技术的,在电子产品、工业设备、医疗设备等领域内使用范围很广。

几乎所有笔记本电脑、手机都配置红外收发器接口。

伴随着红外数据传输技术的愈发成熟、生产和使用成本下降,红外收发器在短距离通讯领域内将会得到更加广泛的应用。

设计这个系统的目的是用红外线作为传输媒介来传输操作者或用户的操作信息和指令,然后由接收器电路翻译出原信号,主要是利用编码芯片和解码芯片对信号进行调制解调,这其中,编码芯片用的是台湾生产的PT2262,解码芯片是PT2272。

它们的主要工作原理是:通过编码键盘可以为PT2262提供输入信息,PT2262对输入的信息进行编码并加载到38KHZ 的载波上并调制红外发射二极管,再将其辐射到空间,然后再由接收系统接收信号并解调出原始的信息内容,由PT2272对原信号进行解码,从而驱动相应的电路完成用户的操作指令和操作要求。

关键字:红外线;编码;解码;LM386;红外收发器。

1 绪论1.1 课题研究的背景及意义目前,在世界范围内,红外数据通信技术是被广泛使用的一种无线连接技术,被许多的硬件和软件平台所支持。

是一种通过数据脉冲与红外脉冲之间的相互转换实现无线数据收发的技术。

红外收发器产品具有成本低,体积小,传输速率快,点对点传输安全性好,不受电磁干扰等特点,可使得信息在几个不同产品器件之间快速、便捷、安全地交换与传输。

单片机红外遥控外文翻译

单片机红外遥控外文翻译

Infrared Remote And Chips Are IntroducedPeople's eyes can see the visible wavele ngth from long to short accord ing to the arrangement, in order to red, orange, yellow, green, green, blue, violet. One of the red wavelengths for 0.62 ~ 0.76 mount, Purple is 0.38 wavelength range ~ mount. Purple is shorter than the wavelength of light called ultraviolet ray, red wavele ngths of light is Ion ger tha n that of in frared light. In frared remote control is to use wavelength for 0.76 ~ 1.5 mount between the near in frared to tran sfer con trol sig nal.Commo nly used in frared remote con trol system of gen eral poi nts tran smit and receive two parts. The main component part for the launch of infrared light emitting diode. It is actually a special light emitting diode, due to its internal material differs from ordinary light emitting diode, resulting in its ends on certain voltage, it is a rather infrared light. Use of infrared light emitti ng diode the in frared wavele ngths, for 940nm appeara nee and ordin ary, just the same light emitting diode five different colors. Infrared light emitting diode gen erally have black and blue, tran spare nt three colors. Judgme nt of infrared light emitting diode and judgment method, using a millimeter to ordinary diode electric block measure of infrared light emitting diode, reverse resista nee. The in frared light emitti ng diode lumin esce nce efficie ncy to use special instrument to measure precise, and use only spare conditions to pull away from roughly judgment. Receiving part of infrared receiving tube is a photose nsitivediode.In actual application of it receiving diode to reverse bias, it can work normally, i.e., the infrared receiving circuit application in diode is used to reverse, higher sensitivity. Infrared receiving diode usually have two round and rectangular. Due to the power of infrared light emitting diode (or less commonly 100mW), so ir receiving diode received signals is weak, so will increasehigh-gain ones.the amplifiercircuit.In com mon CX20106A, etc. PC1373H moo n in frared receivi ng special amplifier circuit. In recent years both amateur or formal products, mostly using in frared recei vinghead fini shed. The head of in frared recei ving product packages gen erally has two kin ds: one kind USES sheet shield ing, A kind of plastic packaging. There are three pin, namely the power is (VDD), power negative (GND) and data output (VO or OUT). Infrared receiving head foot arrangement for types varied, manufacturer's instructions. Finished the advantages of infrared receiving head is not in need of sophisticated debugg ing and shell scree n, use rise as a tran sistor, very convenient. But whe n used in the infrared receivingattention finished first carrier frequency.In frared remote com mon carrier freque ncy for 38kHz, this is tran smitted by using 455kHz Tao Zhe n to decide. At the launch of crystals were in teger freque ncy, freque ncy coefficie nts, so com mon ly 12, so 455kHz 宁12 hun dredth kHz 38kHz hun dredth 379,000. Some remote con trol system adopts 36kHz, 56kHz, etc. general 40kHz launched by thecrystals of oscillation freque ncy to decide.In frared remote characteristic is not in flue nee the surro unding environment and does not interfere with other electric equipment. Due to its cannot pen etratewalls, so the room can use com mon household applia nee of remote control without mutual interferenee, Circuit testing is simple, as long as give n circuit connection, gen erally does not n eed any commissi oning can work, Decoding easily, can undertake multiple remote control. Because each manufacturer produces a great deal of infrared remote application-specific integrated circuit, when need press diagram so jip. Therefore, the infrared remote now in household applia nces, in door close (less tha n 10 meters) in the remote control is widely used.Multiple infrared remote control system of infrared emission control buttons, there are many parts general representative of different control function. Whe n pressed a butt on, corresp ondin gly in the receiver with differe nt output.Receiving the output state can be roughly divided into pulse, level, selflock ing and in terlock, data five forms. "The pulse output is accordi ng to laun ch" whe n the butt on, the receiver output term in als output corresp onding "effective", a pulse width 100ms in gen eral. "Level" refers to the output launch press butt on, the receiver output corresp onding output level ", "effective transmit to loosen the receiver" level "disappears. This"effective pulse" and "effective", may be of high level is low, and may also depe nd on the output corresp onding static state, such as feet for low, static "high" for effective, As for the static, "low" high effective. In most cases, "high" for effective. "Since the lock" refers to launch the output of each time you press the butt on, a receiver output corresponding change, namely originally a state for high level into a low level, originally for low level into high level. The output power switch and mute as control etc. Sometimes also called the output form for "inv ert". "The in terlock" refers to multiple outputs each output, at the same time only one output. The TV sets of this case is selected, the otheris like the light and sound in put speed, etc."Data" refers to launch the output some key, use a few output form a bi nary nu mber, to represe ntdiffere nt keystroke.Normally, the receiver except a few data output, but also a "valid" output data, so the timely to collect data. This output form with single-chip microcomputer or are com monly used in terface. In additi on to the above output form outside, still have a "latch" and "temporary" two forms. The so- called "latch" refers to launch the output signal of each hair, the receiver output corresponding ", "new store until you receive signals. "Temporary" output and the introductionof "level" output is similar.Remote dista nce (Remote Con trol effect of RF Remote Con trol dista nce) are the major factorsasfollows:un ched in power tran smissi on power: while dista nee, but great power consumpti on, easy to gen eratenterfere nee.2.and receiving the receiver sensitivity, receiving, remote distanee in creased sen sitivity to improve, but easy to cause disturba nee maloperati on or abuse.3.antenna, using linear antenna, and parallel, remote distanee, but occupies a large space, in use the antennaspin, pull can in crease the remote dista nee.4.and the higher height: antenna, remote farther, but by objective eon diti ons.5. a nd stop: curre nt use of wireless remote use of UHF band stipulated by the state, the propagation characteristics of approximate linear transmission, light, small, transmitters and receivers diffraction between such as walls are block ing will greatlydisco un ted remote dista nee, if is rein forced eon crete walls, due to theabsorpti on effect eon ductor, radiowaves.Con sideri ng the desig n of hardware volume small to be embedded in the remote control, so we chose 20 foot single-chip chip AT89C2051. Below is the introduction of the function.(1)AT89C2051 internal structure and performaneeAT89C2051 is a byte flash 2K with programmable read-only memory can be erased EEPROM (low voltage, high performanee of eight CMOS microcomputer. It adopts ATMEL of high-density non-volatile storage tech no logy manu facturi ng and in dustrial sta ndard MCS - 51 in structio n set and lead. Through the comb in ati on of sin gle chip in gen eral CPL1 and flash memory, is a strong ATMEL AT89C2051 microcomputer, its application in many embedded control provides a highly flexible and low cost solutions. The compatible with 8051 AT89C2051 is CHMOS micro eontroller, the Flash memory capacity for 2KB. And CHMOS 80C51 process,have two kinds of leisure and power saving operation mode. The performanee is as follows.5.CUP, 2KB Flash memory,Worki ng voltage range 2.7-6V, 128KB data storage.The static worki ng way: 0-24MHz,15 root input/output line.A programmable serial, 2 a 16-bit timing/counters.There is a slice of in sideprecisio nsimulatio n comparator, 5thei nterrupt sources,2 priority.Programmable serial UART channel, Directly LED driver output,The internal structureof AT89C2051 is shown in figure 1.Figure 1 AT89C2051 in terior structure(2)AT89C2051 chip pin andfunctionIn order to adapt to the requirement of intelligent instrument, embedded in the chip foot AT89C2051 simplified configuration, as shown in figure b. The major cha nges to: (1) the lead foot from 20 to 40 wires, (2) in creased a simulated comparator.=DiagrambAT89C2051 foot figure.AT89C2051 pin fun ctio n:1.the VCC: voltage.1.to GND.1.P1 mouth: P1 mouth is an 8-bit two-way I/O port. P1.2 ~ P1.7 mouth pin theinternal resista nee provides. P1.0 and P1.1 requireme nts on the exter nal pull-up resistors. P1.0 and P1.1 also separately as piece in side precisi on simulati on comparator with in put (AIN0) and reversed-phasei nput (AIN1). Output buffer can absorb the P1 mouth 20mA current and can directly LED display driver. Whe n P1 mouth pin into a "1", can make its in put. Whe n the pin P1.2 ~ P1.7 as in put and exter nal dow n, they will be for the internal resista nee and flow curre nt (IIL). I n flash P1 mouth duri ng the procedure and program code datareceiving calibration.2.P3: the P3.0 ~ P3.5 P3, P3.7 is the in ternal resista nce with seven twoway I / 0 lead. P3.6 for fixed in puts piece in side the comparator output sig nal and it as a gen eral I/O foot and in accessible. P3 mouth buffer can absorb 20mA curre nt. When P3 mouth pin in to "1", they are the internal resista nee can push and in put. As in put, and the low exter nal P3 mouth pin pull-up resistors and will use curre nt (IIL) outflow. P3 mouth still used to impleme nt the various fun etio ns, such as AT89C2051 show n in table P3 mouth still receive some for flash memory programming and calibration of program con trol sig nals.5.RST: reset in put. RST once, all into high level I/O foot will reset to "1". When the oscillator is running, continuous gives RST pin two machine cycle of high level can finish reset. Each machine cycle to 12 oscillator or clock cycle.6.XTAL1: as the oscillator amplifier in put and inv erse internal clock gen eratori nput.7.XTAL2: as the oscillator reversed-phase the amplifier's output.P3 mouth function as isshown in table 1.Table 1(3)the software and hardware constraintsAT89C2051Due to the foot of the chip AT89C2051, no set limits of external storage in terface, so, for exter nal memory read/write in structio ns as MOVX etc.Due to 2KB ROM, so, the space to jump instruction should pay attention to the destination address range (transfer 000H - 7FFH), beyond the range of addresses, will not meet wrong results. The scope of data storage is OOH (7FH --whe n stack man ipulatio n), alsoshould be no ticed.The in put sig nal is simulated by the origi nal P3.6 foot into the microcontroller, sothe original P3.6 foot.Un able to exter nal use. Simulati on comparator can compare two simulation, if the size of the voltage external A D/A converter and its output as A comparator an alog in put, and by simulat ing the comparator ano ther in put voltage to be measured, through the introduction of the software method can realize the A/D con versi on.8.the Flash memory AT89C2051)Provide a 2KB of si ngle-chip AT89C2051 in Flash memory chips, which allows theonline program to modify or use special programming program ming.(1)Flash memory en crypti onAT89C2051 SCM has 2 encryption, can programming (P) or programming (U) to obtain different encryption functionality. Encryption functionality table asshown in table 1-1.En crypt a conten terased only through chips to eraseoperatio n.(2)Flash memory program ming and procedures the piece in side chip AT89C2051 Flash memory program ming.Note:1.the cou nters RESET at an EPROM in side the risi ng edge, and 000HRESET to XTAL1 by foot is executed,pulse count.2.piecesof 10ms to erasePROG pulse.3.duri ng the programmi ng P3.1 pulled low RDY/BSY in structio ns.⑶AT89C2051 SCM in Flash memory chips program ming steps are as follows:1.in the seque nee is the VCC GND pin, add worki ng voltage, XTAL1 pin RESET, receiving GND pin, other than the abovetime, waiting for 10ms.2.In P3.2 pin RESET,heighte ning level.3.In P3.3, P3.4, P3.5, P3.7 pinjadd model multilevel.4.P1.0 P1.7 -- for the 000H un itadd data bytes.5.RESET to increasethe 12V activation programming.6.P3.2 jump to a one byte programming or encryption.7.calibration has been programming, data from 12V to RESET logic level "H" and setP3.3 P3.7 -- for the correct level, and can output data in P1 mouth.8.For the n ext addresses) in the unit XTAL1 byte program ming, a pulse, make address counter add 1, in mouth add programming data.9.programming and calibration circuit figure c, d.Figure c programming circuitFigure d calibration circuit Explanation:(1)P3.1 during programming instructionsto below RDY/BSY,(2)single erasingthe PROG 10ms need,(3)internal EEPROM address coun ter on the rising edge RESET, and 000H RESET to XTAL1 by foot pulses are executed.Along with the rapid developme nt of scie nee and tech no logy, huma n society has un derg one earth-shak ing cha nges. Make our life more colorful. I n these cha nges, the remote control tech no logy has bee n widely permeatesTV, aerospace,military, sports andother product ion, all aspects of life. From the broad sense, all equipped with electric locomotive facility or electrical switches, if feel some n ecessary, can con sider to improve existi ng with remote control device, the operation fixed switch to realize the remote operation of the original equipment,stop, the variable,etc. Function.switch, for example, can be used to control the electric control switch the light switch, We design the infrared remote control system to realize the opponent switch quantity control. Infrared remote characteristic is not in flue nce the surro unding en vir onment and does not in terfere with other electric equipment. Due to its cannot penetrate walls, so the room can use com mon household applia nce of remote con trol without mutual in terfere nce, Circuit testi ng is simple, as long as give n circuit conn ecti on, gen erally does not need any commissioning can work, Decoding easily, can undertake multiple remote con trol.红外遥控人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、 绿、青、蓝、紫。

汽车造型设计外文文献翻译、中英文翻译、外文翻译

汽车造型设计外文文献翻译、中英文翻译、外文翻译

The Car Modeling DesignFor car modelling, mention the word people often can produce immediately for lenovo in the form of various body, although it is not comprehensive, because car styling is the sum of outside and inside modelling, but had to admit that the appearance of the car is the most intuitive impression of automobile modeling for people. For the automobile modeling design, it covers knowledge engineering technology, art and so on various aspects of the application and market demand, to meet the consumers' taste and functional requirements.Literally what is undeniable is that the car modeling design is derived from the designers of creative expression, by the designer, to many human idea about the car for a reasonable attempt, constantly breakthrough self, challenge themselves. Car modelling design, whether it's like ordinary people use of household car, or royal family use limousine, or a professional driver favorite car, sports car, they all have very obvious differentiation on modelling, the people in the street to see what level of body, the brand, to the natural identity formed certain association of owners, and for different brands of automobile modeling design, which comes from different designers for car design. Car modelling design is also on the technical support of many other disciplines, here I am to have very important influence on development of automobile modeling design of some of the subject part lists are analyze.Since the emergence of the car, bionics started inadvertently used in the design of the model. For automobile modeling, the bionic design in automobile modeling with a unique code to liberate the inherent pattern design of modelling form, interpretation of power, speed, and the symbol of status, wealth, fashion, convey the entire design concept. Nowadays, bionics become guidance and aided automobile modeling design is an important subject, bionic design also gradually become an important means of design, it not only build the people and things, harmonious coexistence between man and nature, man and society, also prompted design found a new form.Bionic design is applied to the various design very early, so see it is not surprising that, in the car on modelling is my understanding of the bionics, it is the nature of some biological characteristics of the advantages of refining of science improving applied to other industries, it is the purpose of pursuing people to draw inspiration from the biological resources, such as car early in the development of a designer to design the "fish" car, maybe at that time did not rise up the subject of bionics, but stylist inadvertently used for fish in the water received by its own size decrease in water resistance and to speed up their swimming this, and apply onto the body modelling design, more typical case is 1952 gm buick brand "fish" type design, surface modeling is very dynamic, because the car interior ministry wide, wide field of vision, both passengers and drivers, inside the body will feel carefree, the affinity of car body itself has an irresistible, should allowstereotyped monotonous straight line in car design, is also a very important breakthrough at the time.There are a lot of examples, such as "viper" is a sports car, as America's most ferocious snake - "viper", has the characteristics of all nature disaster. "Viper" series of models, as a breakthrough point, the appearance of modelling design in particular the sharp front face and the spirit of the headlamps, give a person with terrible ferocity, good at dueling sensory stimulation, like soldiers courageous warrior, always ready to fight to the death, embodies the human eternal pursuit of the meaning of life. Viper, the second generation of 9 models, convey the intrinsic well. Automobile modeling bionic design with "from nature to the nature", as has been the pursuit of goals, the application of natural biological form surface is limited modelling space into endless spiritual awareness, create a bionic form of aesthetic value, to achieve the "personalized" demand and the state of "imitating the nature". Can reference on modelling human nature, The Times on the automobile modeling application development gradually, it seems to me is not only on the auto industry development and progress, is more of a human can live in the actual production of respecting nature, respect nature, from the development of bionics in the automobile modeling design process I can read the industry further development, it is also because modelling are close to the essence of life itself.Automobile modeling design purpose lies in the combination offunction and form aesthetic feeling, to give users in a certain emotional factors influence or impact on the market, on modelling design, different automobile modeling can bring a person different emotional experience, and to convey the designer wants to make people get on a car design.Automobile modeling design is applied art gimmick science express car function, structure and texture, and make people for its beauty. Automobile modeling design must reflect the style of the vehicle, such as streamlined can indicate the car has a higher speed, so as to shape a sporty image in the consumers' mind. Carbon fiber material can reflect the high-tech feeling and lightness of car, has a muscular body form can express powerful and protection of security. Excellent automobile modeling design can make consumers by aesthetic appreciation to deep understanding of its meaning, to produce the desire of the product. This is based on the perceptual technology this is not by many cognitive developed from cognitive psychology on the subject's important role on the automobile modeling design. It is stylist will be collected from the market information, through the analysis of consumer psychology that design more accord with human aesthetic and functional requirements of product evolutionary design, stylist is in perceptual information, consumer psychology and rational constraints (engineering) between coordination.In automobile product development model of "user as the center" in the early stage of the design need to study consumer's perceptual demand, andconsumers to seek in the perceptual demand often from the image of the car. Such as businessman to give reliable partners to form the image of good faith, the car for business occasions, modelling is generally very grave, composed, atmosphere; Racing car, for example, has very obvious streamline on modelling design, in order to display the car performance is strong, can run very fast, with enough instances of racer; Cultural entertainment venue such as car again, the modelling is compared commonly lively, fashion, have individual character, to show the meeting activities and the characteristics of representative. These are the perceptual technology on automobile modeling design is applied to car use and the appreciation of the most common level.Automobile modeling are actually very close to our daily life, on the streets everywhere the family car, taxi, bus, sometimes even see a cable car, luxury cars, sports car, saloon car. We have a lot of focus on automobile brand rather than modelling. But nature sense, any brand of car has its unique style of the modelling, we are to determine the brand car with its shape characteristics, such as seen in the street a lamborghini, its streamline appearance alone, we will be able to determine that it is lamborghini car, this is the car model represented by the car culture connotation. At the end of this course, the reason I chose to automobile modeling design analysis for class papers, but also for any automobile modeling design, as far as I'm concerned, is the designer of some design ideas of cultural interpretation,any design is necessarily comes from life, no experience and observation, can't make the products can be accepted by the public. Automobile modeling is not only the appearance, also is not only a decoration, interior space how to start from the Angle of human nature, and so on these elements are necessarily involve automobile modeling. So this is a worthy art, technology and market coordination aspects of creative achievement, no matter from what Angle to design the vehicle model, the ultimate goal is to continuously improve to meet the needs of users of the product.汽车造型设计对于汽车造型,提到这个词时人们往往能立即产生对于各种车身形态的联想,虽然它并不全面,因为汽车造型是汽车外部和车厢内部造型的总和,但不得不承认的是,汽车的外观的确是人们对于汽车造型的最直观印象。

汽车电子毕设设计外文文献翻译(适用于毕业论文外文翻译+中英文对照)

汽车电子毕设设计外文文献翻译(适用于毕业论文外文翻译+中英文对照)

Ultrasonic ranging system designPublication title: Sensor Review. Bradford: 1993.Vol.ABSTRACT: Ultrasonic ranging technology has wide using worth in many fields, such as the industrial locale, vehicle navigation and sonar engineering. Now it has been used in level measurement, self-guided autonomous vehicles, fieldwork robots automotive navigation, air and underwater target detection, identification, location and so on. So there is an important practicing meaning to learn the ranging theory and ways deeply. To improve the precision of the ultrasonic ranging system in hand, satisfy the request of the engineering personnel for the ranging precision, the bound and the usage, a portable ultrasonic ranging system based on the single chip processor was developed.Keywords: Ultrasound, Ranging System, Single Chip Processor1. IntroductiveWith the development of science and technology, the improvement of people’s standard of living, speeding up the development and construction of the city. Urban drainage system have greatly developed their situation is construction improving. However, due to historical reasons many unpredictable factors in the synthesis of her time, the city drainage system. In particular drainage system often lags behind urban construction. Therefore, there are often good building excavation has been building facilities to upgrade the drainage system phenomenon. It brought to the city sewage, and it is clear to the city sewage and drainage culvert in the sewage treatment system.Co mfort is very important to people’s lives. Mobile robots designed to clear the drainage culvert and the automatic control system Free sewage culvert clear guarantee robots, the robot is designed to clear the culvert sewage to the core. Control system is the core component of the development of ultrasonic range finder. Therefore, it is very important to design a good ultrasonic range finder.2. A principle of ultrasonic distance measurementThe application of AT89C51:SCM is a major piece of computer components are integrated into the chip micro-computer. It is a multi-interface and counting on the micro-controller integration, and intelligence products are widely used in industrial automation. and MCS-51 microcontroller is a typical and representative.Microcontrollers are used in a multitude of commercial applications such as modems, motor-control systems, air conditioner control systems, automotive engine and among others. The high processing speed and enhanced peripheral set of these microcontrollers make them suitable for such high-speed event-based applications. However, these critical application domains also require that these microcontrollers are highly reliable. The high reliability and low market risks can be ensured by a robust testing process and a proper tools environment for the validation of these microcontrollers both at the component and at the system level. Intel Plaform Engineering department developed an object-oriented multi-threaded test environment for the validation of its AT89C51 automotive microcontrollers. The goals of this environment was not only to provide a robust testing environment for the AT89C51 automotive microcontrollers, but to develop an environment which can be easily extended and reused for the validation of several other future microcontrollers. The environment was developed in conjunction with Microsoft Foundation Classes(AT89C51).1.1 Features* Compatible with MCS-51 Products* 2Kbytes of Reprogrammable Flash MemoryEndurance: 1,000Write/Erase Cycles* 2.7V to 6V Operating Range* Fully Static operation: 0Hz to 24MHz* Two-level program memory lock* 128x8-bit internal RAM* 15programmable I/O lines* Two 16-bit timer/counters* Six interrupt sources*Programmable serial UART channel* Direct LED drive output* On-chip analog comparator* Low power idle and power down modes1.2 DescriptionThe AT89C2051 is a low-voltage, high-performance CMOS 8-bit microcomputer with 2Kbytes of flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel’s high density nonvolatile memory technology and is compatible with the industry standard MCS-51 instruction set and pinout. By combining a versatile 8-bit CPU with flash on a monolithic chip, the Atmel AT89C2051 is a powerful microcomputer which provides a highly flexible and cost effective solution to many embedded control applications.The AT89C2051 provides the following standard features: 2Kbytes of flash,128bytes of RAM, 15 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, a precision analog comparator, on-chip oscillator and clock circuitry. In addition, the AT89C2051 is designed with static logicfor operation down to zero frequency and supports two software selectable power saving modes. The idle mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The power down mode saves the RAM contents but freezer the oscillator disabling all other chip functions until the next hardware reset.1.3 Pin Configuration1.4 Pin DescriptionVCC Supply voltage.GND Ground.Prot 1Prot 1 is an 8-bit bidirectional I/O port. Port pins P1.2 to P1.7 provide internal pullups. P1.0 and P1.1 require external pullups. P1.0 and P1.1 also serve as the positive input (AIN0) and the negative input (AIN1), respectively, of the on-chip precision analog comparator. The port 1 output buffers can sink 20mA and can drive LED displays directly. When 1s are written to port 1 pins, they can be used as inputs. When pins P1.2 to P1.7 are used as input and are externally pulled low, they will source current (IIL) because of the internal pullups.Port 3Port 3 pins P3.0 to P3.5, P3.7 are seven bidirectional I/O pins with internal pullups. P3.6 is hard-wired as an input to the output of the on-chip comparator and is not accessible as a general purpose I/O pin. The port 3 output buffers can sink 20mA. When 1s are written to port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.Port 3 also serves the functions of various special features of the AT89C2051 as listed below.1.5 Programming the FlashThe AT89C2051 is shipped with the 2 Kbytes of on-chip PEROM code memory array in the erased state (i.e., contents=FFH) and ready to be programmed. The code memory array is programmed one byte at a time. Once the array is programmed, to re-program any non-blank byte, the entire memory array needs to be erased electrically.Internal address counter: the AT89C2051 contains an internal PEROM address counter which is always reset to 000H on the rising edge of RST and is advanced applying a positive going pulse to pin XTAL1.Programming algorithm: to program the AT89C2051, the following sequence is recommended.1. power-up sequence:Apply power between VCC and GND pins Set RST and XTAL1 to GNDWith all other pins floating , wait for greater than 10 milliseconds2. Set pin RST to ‘H’ set pin P3.2 to ‘H’3. Apply the appropriate combination of ‘H’ or ‘L’ logic to pins P3.3, P3.4, P3.5,P3.7 to select one of the programming operations shown in the PEROM programming modes table.To program and Verify the Array:4. Apply data for code byte at location 000H to P1.0 to P1.7.5.Raise RST to 12V to enable programming.5. Pulse P3.2 once to program a byte in the PEROM array or the lock bits. The byte-write cycle is self-timed and typically takes 1.2ms.6. To verify the programmed data, lower RST from 12V to logic ‘H’ level and set pins P3.3 to P3.7 to the appropriate levels. Output data can be read at the port P1 pins.7. To program a byte at the next address location, pulse XTAL1 pin once to advance the internal address counter. Apply new data to the port P1 pins.8. Repeat steps 5 through 8, changing data and advancing the address counter for the entire 2 Kbytes array or until the end of the object file is reached.9. Power-off sequence: set XTAL1 to ‘L’ set RST to ‘L’Float all other I/O pins Turn VCC power off2.1 The principle of piezoelectric ultrasonic generatorPiezoelectric ultrasonic generator is the use of piezoelectric crystal resonators to work. Ultrasonic generator, the internal structure as shown, it has two piezoelectric chip and a resonance plate. When it’s two plus pulse signal, the frequency equal to the intrinsic piezoelectric oscillation frequency chip, the chip will happen piezoelectric resonance, and promote the development of plate vibration resonance, ultrasound is generated. Conversely, it will be for vibration suppression of piezoelectric chip, the mechanical energy is converted to electrical signals, then it becomes the ultrasonic receiver.The traditional way to determine the moment of the echo’s arrival is based on thresholding the received signal with a fixed reference. The threshold is chosen well above the noise level, whereas the moment of arrival of an echo is defined as the first moment the echo signal surpasses that threshold. The intensity of an echo reflecting from an object strongly depends on the object’s nature, size and distance from the sensor. Further, the time interval from the echo’s starting point to the moment when it surpasses the threshold changes with the intensity of the echo. As a consequence, a considerable error may occur even two echoes with different intensities arriving exactly at the same time will surpass the threshold at different moments. The stronger one will surpass the threshold earlier than the weaker, so it will be considered as belonging to a nearer object.2.2 The principle of ultrasonic distance measurementUltrasonic transmitter in a direction to launch ultrasound, in the moment to launch the beginning of time at the same time, the spread of ultrasound in the air, obstacles on his way to return immediately, the ultrasonic reflected wave received by the receiverimmediately stop the clock. Ultrasound in the air as the propagation velocity of 340m/s, according to the timer records the time t, we can calculate the distance between the launch distance barrier(s), that is: s=340t / 23. Ultrasonic Ranging System for the Second Circuit DesignSystem is characterized by single-chip microcomputer to control the use of ultrasonic transmitter and ultrasonic receiver since the launch from time to time, single-chip selection of 875, economic-to-use, and the chip has 4K of ROM, to facilitate programming.3.1 40 kHz ultrasonic pulse generated with the launchRanging system using the ultrasonic sensor of piezoelectric ceramic sensorsUCM40, its operating voltage of the pulse signal is 40kHz, which by the single-chip implementation of the following procedures to generate.puzel: mov 14h, # 12h; ultrasonic firing continued 200msHere: cpl p1.0; output 40kHz square wavenop;nop;nop;djnz 14h, here;retRanging in front of single-chip termination circuit P1.0 input port, single chip implementation of the above procedure, the P1.0 port in a 40kHz pulse output signal, after amplification transistor T, the drive to launch the first ultrasonic UCM40T, issued 40kHz ultrasonic pulse, and the continued launch of 200ms. Ranging the right and the left side of the circuit, respectively, then input port P1.1 and P1.2, the working principle and circuit in front of the same location.3.2 Reception and processing of ultrasonicUsed to receive the first launch of the first pair UCM40R, the ultrasonic pulse modulation signal into an alternating voltage, the op-amp amplification IC1A and after polarization IC1B to IC2. IC2 is locked loop with audio decoder chip LM567, internal voltage-controlled oscillator center frequency of f0=1/1.1R8C3, capacitor C4 determinetheir target bandwidth. R8-conditioning in the launch of the high jump 8 feet into a low-level, as interrupt request signals to the single-chip processing.Ranging in front of single-chip termination circuit output port INT0 interrupt the highest priority, right or left location of the output circuit with output gate IC3A access INT1 port single-chip, while single-chip P1.3 and P1.4 received input IC3A, interrupted by the process to identify the source of inquiry to deal with, interrupt priority level for the first left right after. Part of the source code is as follows:Receivel: push pswpush accclr ex1; related external interrupt 1jnb p1.1, right; P1.1 pin to 0, ranging from right to interrupt service routine circuitjnb p1.2, left; P1.2 pin to 0, to the left ranging circuit interrupt service routinereturn: SETB EX1; open external interrupt 1pop accpop pswretiright: …; right location entrance circuit interrupt service routineAjmp Returnleft: …; left ranging entrance circuit interrupt service routineAjmp Return3.3 The calculation of ultrasonic propagation timeWhen you start firing at the same time start the single-chip circuitry within the timer T0, the use of timer counting function records the time and the launch of ultrasonic reflected wave received time. When you receive the ultrasonic reflected wave, the receiver circuit output a negative jump in the end of INT0 or INT1 interrupt request generates a signal, single-chip microcomputer in response to external interrupt request, the implementation of the external interrupt service subroutine, read the time difference, calculating the distance. Some of its source code is as follows:RECEIVE0: PUSH PSWPUSH ACCCLR EX0; related external interrupt 0MOV R7, TH0; read the time valueMOV R6, TL0CLR CMOV A, R6SUBB A, #0BBH; calculate the time differenceMOV 31H, A; storage resultsMOV A, R7SUBB A, # 3CHMOV 30H, ASETB EX0; open external interrupt 0\POP ACCPOP PSWRETIFor a flat target, a distance measurement consists of two phases: a coarse measurement and a fine measurement:Step 1: Transmission of one pulse train to produce a simple ultrasonic wave.Step 2: Changing the gain of both echo amplifiers according to equation, until the echo is detected.Step 3: Detection of the amplitudes and zero-crossing times of both echoes.Step 4: Setting the gains of both echo amplifiers to normalize the output at, say 3 volts. Setting the period of the next pulses according to the: period of echoes. Setting the time window according to the data of step 2.Step 5: Sending two pulse trains to produce an interfered wave. Testing the zero-crossing times and amplitudes of the echoes. If phase inversion occurs in the echo, determine to otherwise calculate to by interpolation using the amplitudes near the trough. Derive t sub m1 and t sub m2.Step 6: Calculation of the distance y using equation.4、The ultrasonic ranging system software designSoftware is divided into two parts, the main program and interrupt service routine. Completion of the work of the main program is initialized, each sequence of ultrasonic transmitting and receiving control.Interrupt service routines from time to time to complete three of the rotation direction of ultrasonic launch, the main external interrupt service subroutine to read the value of completion time, distance calculation, the results of the output and so on.5、ConclusionsRequired measuring range of 30cm-200cm objects inside the plane to do a number of measurements found that the maximum error is 0.5cm, and good reproducibility. Single-chip design can be seen on the ultrasonic ranging system has a hardware structure is simple, reliable, small features such as measurement error. Therefore, it can be used not only for mobile robot can be used in other detection system.Thoughts: As for why the receiver do not have the transistor amplifier circuit, because the magnification well, integrated amplifier, but also with automatic gain control level, magnification to 76dB, the center frequency is 38k to 40k, is exactly resonant ultrasonic sensors frequency.6、Parking sensor6.1 Parking sensor introductionReversing radar, full name is "reversing the anti-collision radar, also known as" parking assist device, car parking or reversing the safety of assistive devices, ultrasonic sensors(commonly known as probes), controls and displays (or buzzer)and other components. To inform the driver around the obstacle to the sound or a moreintuitive display to lift the driver parking, reversing and start the vehicle around tovisit the distress caused by, and to help the driver to remove the vision deadends and blurred vision defects and improve driving safety.6.2 Reversing radar detection principleReversing radar, according to high-speed flight of the bats in thenight, not collided with any obstacle principles of design anddevelopment. Probe mounted on the rear bumper, according to different price and brand, the probe only ranging from two, three, four, six, eight,respectively, pipe around. The probe radiation, 45-degree angle up and downabout the search target. The greatest advantage is to explore lower than the bumper of the driver from the rear window is difficult to see obstacles, and the police, suchas flower beds, children playing in the squatting on the car.Display parking sensor installed in the rear view mirror, it constantlyremind drivers to car distance behindthe object distance to the dangerous distance, the buzzer starts singing, allow the driver to stop. When the gear lever linked into reverse gear, reversing radar, auto-start the work, the working range of 0.3 to 2.0 meters, so stop when the driver was very practical. Reversing radar is equivalent to an ultrasound probe for ultrasonic probe can be divided into two categories: First, Electrical, ultrasonic, the second is to use mechanical means to produce ultrasound, in view of the more commonly used piezoelectric ultrasonic generator, it has two power chips and a soundingboard, plus apulse signal when the poles, its frequency equal to the intrinsic oscillation frequency of the piezoelectric pressure chip will be resonant and drivenby the vibration of the sounding board, the mechanical energy into electrical signal, which became the ultrasonic probe works. In order to better study Ultrasonic and use up, people have to design and manufacture of ultrasonic sound, the ultrasonic probe tobe used in the use of car parking sensor. With this principle in a non-contactdetection technology for distance measurement is simple, convenient and rapid, easyto do real-time control, distance accuracy of practical industrial requirements. Parking sensor for ranging send out ultrasonic signal at a givenmoment, and shot in the face of the measured object back to the signal wave, reversing radar receiver to use statistics in the ultrasonic signal from the transmitter to receive echo signals calculate the propagation velocity in the medium, which can calculate the distance of the probe and to detect objects.6.3 Reversing radar functionality and performanceParking sensor can be divided into the LCD distance display, audible alarm, and azimuth directions, voice prompts, automatic probe detection function is complete, reversing radar distance, audible alarm, position-indicating function. A good performance reversing radar, its main properties include: (1) sensitivity, whether theresponse fast enough when there is an obstacle. (2) the existence of blind spots. (3) detection distance range.6.4 Each part of the roleReversing radar has the following effects: (1) ultrasonic sensor: used tolaunch and receive ultrasonic signals, ultrasonic sensors canmeasure distance. (2) host: after the launch of the sine wave pulse to the ultrasonic sensors, and process the received signal, to calculate the distance value, the data and monitor communication. (3) display or abuzzer: the receivinghost from the data, and display the distance value and provide differentlevels according to the distance from the alarm sound.6.5 Cautions1, the installation height: general ground: car before the installation of 45 ~55: 50 ~ 65cmcar after installation. 2, regular cleaningof the probe to prevent the fill. 3, do not use the hardstuff the probe surface cover will produce false positives or ranging allowed toprobe surface coverage, such as mud. 4, winter to avoid freezing. 5, 6 / 8 probe reversing radar before and after the probe is not free to swap may cause the ChangMing false positive problem. 6, note that the probe mounting orientation, in accordance with UP installation upward. 7, the probe is not recommended to install sheetmetal, sheet metal vibration will cause the probe resonance, resulting in false positives.超声测距系统设计原文出处:传感器文摘布拉福德:1993年超声测距技术在工业现场、车辆导航、水声工程等领域具有广泛的应用价值,目前已应用于物位测量、机器人自动导航以及空气中与水下的目标探测、识别、定位等场合。

基于单片机无线遥控小车设计英文范文

基于单片机无线遥控小车设计英文范文

基于单片机无线遥控小车设计英文范文The advent of microcontroller technology has revolutionized the field of robotics and automation. One fascinating application of this technology is the design of a wireless remote control car. This essay delves into the intricacies of designing such a system using a microcontroller as the core component.At the heart of the wireless remote control car lies a microcontroller, a compact and powerful integrated circuit that can be programmed to perform a wide range of tasks. The microcontroller serves as the brain of the system, responsible for interpreting the commands received from the wireless remote and translating them into precise motor control signals. The choice of microcontroller is crucial, as it must possess sufficient processing power, memory, and input/output capabilities to handle the demands of the application.The wireless remote control aspect of the system introduces an additional layer of complexity. The communication between the remote and the car is typically achieved through radio frequency (RF) or Bluetooth technology. RF-based systems offer a longer range andbetter penetration through obstacles, while Bluetooth provides a more secure and reliable connection. The selection of the appropriate wireless communication protocol and the design of the corresponding transmitter and receiver circuits are critical to ensure seamless and responsive control.The car's mechanical design is another important consideration. The chassis must be sturdy and lightweight, allowing for efficient movement and maneuverability. The selection of the appropriate motors, wheels, and suspension components is crucial to provide the desired speed, torque, and handling characteristics. Additionally, the integration of these mechanical components with the electronic control system is a delicate process that requires careful planning and execution.One of the key challenges in designing a wireless remote control car is the power management system. The car must be equipped with a reliable and efficient power source, such as a rechargeable battery pack, to ensure prolonged operation. The microcontroller and the various electronic components must be designed to operate efficiently, minimizing power consumption and maximizing battery life. This may involve the implementation of power-saving modes, intelligent power management algorithms, and efficient motor control techniques.Another important aspect of the design is the user interface. The wireless remote must be intuitive and easy to use, with clear and responsive controls that allow the operator to precisely maneuver the car. This may involve the use of joysticks, buttons, or even touchscreen interfaces, depending on the complexity of the desired control functions.To enhance the overall user experience, the design may also incorporate additional features such as on-board sensors, camera integration, and even autonomous driving capabilities. Sensors can be used to detect obstacles, monitor the car's performance, and provide feedback to the operator. Camera integration can enable live video streaming, allowing the user to navigate the car remotely with a first-person perspective. Autonomous driving functionalities, such as line following or object avoidance, can further expand the capabilities of the wireless remote control car.The development of a wireless remote control car using a microcontroller involves a multidisciplinary approach, combining electrical, mechanical, and software engineering principles. The design process typically starts with a thorough analysis of the requirements and constraints, followed by the selection of appropriate components and the development of the necessary hardware and software.The hardware design encompasses the microcontroller, the wireless communication module, the motor driver circuits, and the power management system. The software design involves the programming of the microcontroller to interpret the remote control inputs, control the motors, and implement any additional features or functionalities.Throughout the design process, extensive testing and debugging are crucial to ensure the reliability, responsiveness, and safety of the wireless remote control car. This may involve the use of simulation tools, prototyping, and real-world testing to identify and address any issues that may arise.In conclusion, the design of a microcontroller-based wireless remote control car is a fascinating and challenging endeavor that combines various engineering disciplines. By leveraging the capabilities of microcontroller technology, designers can create innovative and engaging remote-controlled vehicles that offer a wide range of features and functionalities. As the field of robotics and automation continues to evolve, the development of such systems will undoubtedly play a significant role in shaping the future of personal and recreational technology.。

基于AT89C52的红外遥控小车设计开题报告

基于AT89C52的红外遥控小车设计开题报告

. .. . .. ..
指导文件5:
毕业设计(论文)开题报告
电子信息与电气工程系(院)20 06届
题目(中文)基于AT89C52的红外遥控小车设计
(英文)An Infrared Telecontrol car Based on The
AT89C52 Chip
课题类型实验设计课题来源自选
学生姓名专业班级通信技术专业1班
指导教师职称讲师
填写日期:2009年3 月21 日说明:1、该表每生一份,系(院)妥善存档;
2、课题来源填:“自选”或“教师指定”或“其它”,课题类型填:“理论研究”或“应用研究”或“技术开发”
或“实验设计”或“其它”。

附件:
毕业设计(论文)外文参考文献翻译
系(院)20 届
题目(中文)
(英文)
学生姓名专业班
完成日期:年月日
目录
(本页及以下为文献翻译正文,外文文献可1-3篇,译文应大于5000汉字以上。

每篇外文参考文献原文后排列其对应译文。

正文编排页码,装订时连同其封面、目录一起装订。

正文字体、字号自定。

)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DQBS-13延陵学院届毕业设计外文阅读与翻译毕业设计题目外文中文题目外文英文题目原文出处百度文库专业姓名班级学号职称指导教师中文翻译红外遥控及芯片介绍人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。

其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。

比紫光波长还短的光叫紫外线,比红光波长还长的光叫红外线。

红外线遥控就是利用波长为0.76~1.5μm之间的近红外线来传送控制信号的。

常用的红外遥控系统一般分发射和接收两个部分。

发射部分的主要元件为红外发光二极管。

它实际上是一只特殊的发光二极管,由于其内部材料不同于普通发光二极管,因而在其两端施加一定电压时,它便发出的是红外线而不是可见光。

目前大量使用的红外发光二极管发出的红外线波长为940nm左右,外形与普通5发光二极管相同,只是颜色不同。

红外发光二极管一般有黑色、深蓝、透明三种颜色。

判断红外发光二极管好坏的办法与判断普通二极管一样:用万用表电阻挡量一下红外发光二极管的正、反向电阻即可。

红外发光二极管的发光效率要用专门的仪器才能精确测定,而业余条件下只能用拉距法来粗略判定。

接收部分的红外接收管是一种光敏二极管。

在实际应用中要给红外接收二极管加反向偏压,它才能正常工作,亦即红外接收二极管在电路中应用时是反向运用,这样才能获得较高的灵敏度。

红外接收二极管一般有圆形和方形两种。

由于红外发光二极管的发射功率一般都较小(100mW左右),所以红外接收二极管接收到的信号比较微弱,因此就要增加高增益放大电前些年常用μPC1373H、CX20106A等红外接收专用放大电路。

最近几年不论是业余制作还是正式产品,大多都采用成品红外接收头。

成品红外接收头的封装大致有两种:一种采用铁皮屏蔽;一种是塑料封装。

均有三只引脚,即电源正(VDD)、电源负(GND)和数据输出(VO或OUT)。

红外接收头的引脚排列因型号不同而不尽相同,可参考厂家的使用说明。

成品红外接收头的优点是不需要复杂的调试和外壳屏蔽,使用起来如同一只三极管,非常方便。

但在使用时注意成品红外接收头的载波频率。

红外遥控常用的载波频率为38kHz,这是由发射端所使用的455kHz陶振来决定的。

在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9kHz≈38kHz。

也有一些遥控系统采用36kHz、40kHz、56kHz等,一般由发射端晶振的振荡频率来决定。

红外遥控的特点是不影响周边环境、不干扰其它电器设备。

由于其无法穿透墙壁,故不同房间的家用电器可使用通用的遥控器而不会产生相互干扰;电路调试简单,只要按给定电路连接无误,一般不需任何调试即可投入工作;编解码容易,可进行多路遥控。

由于各生产厂家生产了大量红外遥控专用集成电路,需要时按图索骥即可。

因此,现在红外遥控在家用电器、室内近距离(小于10米)遥控中得到了广泛的应用。

多路控制的红外遥控系统多路控制的红外发射部分一般有许多按键,代表不同的1控制功能。

当发射端按下某一按键时,相应地在接收端有不同的输出状态。

接收端的输出状态大致可分为脉冲、电平、自锁、互锁、数据五种形式。

“脉冲”输出是当按发射端按键时,接收端对应输出端输出一个“有效脉冲”,宽度一般在100ms 左右。

“电平”输出是指发射端按下键时,接收端对应输出端输出“有效电平”,发射端松开键时,接收端“有效电平”消失。

此处的“有效脉冲”和“有效电平”,可能是高、也可能是低,取决于相应输出脚的静态状况,如静态时为低,则“高”为有效;如静态时为高,则“低”为有效。

大多数情况下“高”为有效。

“自锁”输出是指发射端每按一次某一个键,接收端对应输出端改变一次状态,即原来为高电平变为低电平,原来为低电平变为高电平。

此种输出适合用作电源开关、静音控制等。

有时亦称这种输出形式为“反相”。

“互锁”输出是指多个输出互相清除,在同一时间内只有一个输出有效。

电视机的选台就属此种情况,其它如调光、调速、音响的输入选择等。

“数据”输出是指把一些发射键编上号码,利用接收端的几个输出形成一个二进制数,来代表不同的按键输入。

一般情况下,接收端除了几位数据输出外,还应有一位“数据有效”输出端,以便后级适时地来取数据。

这种输出形式一般用于与单片机或微机接口。

除以上输出形式外,还有“锁存”和“暂存”两种形式。

所谓“锁存”输出是指对发射端每次发的信号,接收端对应输出予以“储存”,直至收到新的信号为止;“暂存”输出与上述介绍的“电平”输出类似。

影响遥控器遥控距离(Remote distance of RF RemoteControl)的因素主要有如下几点:1、发射功率:发射功率大则距离远,但耗电大,容易产生干扰;2、接收灵敏度:接收器的接收灵敏度提高,遥控距离增大,但容易受干扰造成误动或失控;3、天线:采用直线型天线,并且相互平行,遥控距离远,但占据空间大,在使用中把天线拉长、拉直可增加遥控距离;4、高度:天线越高,遥控距离越远,但受客观条件限制;5、阻挡:目前使用的无线遥控器使用国家规定的UHF频段,其传播特性和光近似,直线传播,绕射较小,发射器和接收器之间如有墙壁阻挡将大大打折遥控距离,如果是钢筋混泥土的墙壁,由于导体对电波的吸收作用,影响更甚。

考虑到本次设计的硬件体积应偏小以便嵌入遥控器中,因此我们选择了20个引脚的单片机芯片AT89C2051。

下面即介绍此芯片的功能。

1). AT89C2051的内部结构及性能AT89C2051是一带有2K字节闪速可编程可擦除只读存储体(EEPROM)的低电压,高性能8位CMOS微型计算机。

它采用ATMEL的高密非易失存储技术制造并和工业标准MCS—51指令集和引脚结构兼容。

通过在单块芯片上组合通用的CPL1和闪速存储2器,ATMELAT89C2051是一强劲的微型计算机,它对许多嵌入式控制应用提供一高度灵活和成本低的解决办法。

AT89C2051是与8051兼容的CHMOS微控制器,其Flash存储器容量为2KB。

与CHMOS工艺的80C51一样,具有空闲和掉电两种节电运行方式。

其性能如下:8位CUP;2KB的Flash存储器;工作电压范围2.7—6V;128KB的数据存储器;全静态工作方式:0—24MHz;15根输入/输出线;一个可编程串行口;2个16位定时/计数器;有片内精密模拟比较器;5个中断源,2个优先级。

可编程串行UART通道;直接LED 驱动输出;AT89C2051的内部结构如图1所示。

2). AT89C2051的芯片引脚及功能为适应智能仪表的嵌入要求,AT89C2051在芯片的引脚配置上进行了简化,主要变化为:(1)引脚由40根减为20根;(2)增加了一个模拟比较器。

3AT89C2051的引脚图如图b所示。

AT89C2051引脚功能:1. Vcc:电源电压。

2. GND:地。

3. P1口:P1口是一8位双向I/O口。

口引脚P1.2~P1.7提供内部上拉电阻。

P1.0和P1.1要求外部上拉电阻。

P1.0和P1.1还分别作为片内精密模拟比较器的同相输入(AIN0)和反相输入(AIN1)。

P1口输出缓冲器可吸收20mA电流并能直接驱动L ED显示。

当P1口引脚写入“1”时,其可用作输入端。

当引脚P1.2~P1.7用作输入并被外部拉低时,它们将因内部的上拉电阻而流出电流(IIL)。

P1口还在闪速编程和程序校验期间接收代码数据。

4.P3口:P3口的P3.0~P3.5、P3.7是带有内部上拉电阻的七个双向I/0引脚。

P3.6用于固定输入片内比较器的输出信号并且它作为一通用I/O引脚而不可访问。

P3口缓冲器可吸收20mA电流。

当P3口引脚写入“1”时,它们被内部上拉电阻拉高并可用作输入端。

用作输入时,被外部拉低的P3口引脚将用上拉电阻而流出电流(IIL)。

P3口还用于实现AT89C2051的各种功能,如下表1所示。

P3口还接收一些用于闪速存储器编程和程序校验的控制信号。

45.RST:复位输入。

RST一旦变成高电平,所有的I/O引脚就复位到“1”。

当振荡器正在运行时,持续给出RST引脚两个机器周期的高电平便可完成复位。

每一个机器周期需12个振荡器或时钟周期。

6. XTAL1:作为振荡器反相放大器的输入和内部时钟发生器的输入。

7.XTAL2:作为振荡器反相放大器的输出。

AT89C2051单片机由于引脚的限制,没有设置外部存储器的接口,所以,对于外部存储器的读/写指令如MOVX等不起作用。

由于ROM空间为2KB,所以,对于跳转指令要注意转移的目的地址范围(000H—7FFH),超出地址范围时,将产生不可遇见的错误结果。

数据存储的范围是(00H—7FH),堆栈操作时亦应加以注意。

模拟比较器的输入信号经原来的P3.6引脚引入到单片机内,所以原来的P3.6脚已无法再外部使用。

模拟比较器可以方便的比较两个模拟电压的大小,若外接一个D/ A转换器并将其输出作为模拟比较器的一个输入,而由模拟比较器的另一个输入端引入被测电压,通过软件的方法也可以实现A/D转换。

4).AT89C2051的Flash存储器编程AT89C2051单片机提供有2KB的片内Flash程序存储器,它允许在线修改或使用专用编程器编程。

a.Flash存储器加密位P3口的功能如表1所示。

3). AT89C2051的软硬件约束AT89C2051单片机有2个加密位,可以编程(P)或不编程(U)以获得不同的加密功能。

5b.Flash存储器的编程和程序校验(1)AT89C2051单片机的片内Flash存储器编程模式如表4.1-2所示注:①内部EPROM的计数器在R ESET的上升沿复位到000H,并由XTAL1,引脚正脉冲执行计数;②片擦除需要10ms的PROG脉冲;③编程期间P3.1被拉低来指示RDY/BSY.c.AT89C2051单片机的片内Flash存储器编程步骤如下:①上电次序是在VCC、GND引脚加工作电压,RESET、XTAL1引脚接到G ND,悬浮其它引脚,等待大于10ms以上时间;②在R ESET、P3.2引脚加高电平;加密功能表如表4.1-1所示。

加密位内容的擦除只能通过片擦除操作来完成。

③在P3.3、P3.4、P3.5、P3.7引脚加模式电平;④经P1.0—P1.7对000H单元加入数据字节;⑤升高RESET到12V激活编程;⑥使P3.2跳变一次,编程一个字节或加密位;6⑦校验已被编程数据,使R ESET从12V降到逻辑电平“H”并设置P3.3—P3.7为正确的电平,可以在P1口输出数据;⑧进行下一地址单元的字节编程,在XTAL1加一脉冲,使地址计数器加1,在P1口加入编程数据。

重复步骤①—⑧,完成整个2KB的编程。

相关文档
最新文档