古典概型与几何概型大学数学教案2

合集下载

《几何概型》教学设计2

《几何概型》教学设计2

《几何概型》教学设计教学内容:人教版《数学必修3》第三章第三节几何概型。

学情分析:学生学习了概率的含义以及古典概型的计算方式,对概率有了一定的了解,对概率的求法也有了一定的方法。

现在进行几何概型的学习,可以通过对比进行学习,通过分辨两种概型的区别与联系,可以达到学习几何概型的目的。

教学目标知识与技能目标1.初步体会几何概型及其基本特点;2.会运用几何概型的概率计算公式,求简单的几何概型的概率问题;3.让学生初步学会把一些实际问题化为几何概型;过程与方法目标1.通过游戏、案例分析,体会几何概型与古典概型的区别;会用类比的方法学习新知识,提高学生的解题分析能力;2.经历将一些实际问题转化为几何概型的过程,探求正确应用几何概型的概率计算公式解决问题的方法,增强几何概型在解决实际问题中的应用意识;情感、态度与价值观目标通过对几何概型的研究,感知生活中的数学,体会数学文化,培养学生的数学素养。

教学重点:初步体会几何概型,将求未知量的问题转化为几何概型求概率的问题教学难点:将求未知量的问题转化为几何概型求概率的问题,准确确定几何区域D和与事件A对应的区域d,并求出它们的测度。

教学过程:一、复习引入T1:计算随机事件概率的方法有哪些?T2:古典概型的特征是什么?T3:如何计算古典概型的概率?二、创设情景,引入新课1.玩转盘游戏游戏规则:甲乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜.数据的统计:1)请每一位同学以左边的转盘,做20次试验,统计指针指向B的次数,并计算指针指向B的频率。

2)教师以右边的转盘,分别做100、200、400、700次试验,统计指针指向B的次数,并计算指针指向B的频率。

2.学生活动(分组讨论)分析下列三个题目,回答问题:1)如图,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜. 求甲获胜的概率?2)射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色。

1-3古典概型与几何概型

1-3古典概型与几何概型

例(会面问题)甲、乙两人相约8点到9点在某 地会面,先到者等候另一人20分钟,过时就可 离去,试求这两人能会面的概率. 解: 以x,y分别表示甲、乙两人的到达时刻,则两人能
y
60
会面的充要条件为 x y 20
y x 20
x y 20
{( x , y ) | 0 x 60, 0 y 60} A {( x , y ) | ( x , y ) ,| x y | 20}
事件分别为A,B,C,D.
(1)第i次取到的是黑球;

1 2 i

a+b
a ab
P ( A)
a [(a b 1)!] ( a b )!

----------抽签的公平性
(2)第i次才取到黑球;

1
P( B)

i-1

2
a Pb
i 1
3
i
a Pb
i i 1
a+b
r

2( n r 1) n( n 1)
n!
练习:
P30 : 12
(2)袋中取球问题(有无放回取球,取球是否考虑顺序) 例:一个袋子中装有10个大小相同的球,其中 3个黑球,7个白球。每次随机地从袋中取一 球,连续取两次。 取球方式 (1)无放回 (2)有放回
分别求下列事件的概率:
(1)取到的两球刚好一个白球一个黑球 (2)两个球全是黑球 (3)两个球中至少有一个黑球
P ( A) 1 P ( A) 1 C 9995 C10000
10 10
0.00499
2.《学习指导与习题解析》:P21:6, P23:9

古典概型教案

古典概型教案

古典概型教案【教案名称】:古典概型教案【教学目标】:1. 理解什么是古典概型;2. 掌握计算古典概型的方法;3. 能够运用古典概型解决实际问题。

【教学重点】:1. 理解古典概型的定义及特点;2. 掌握计算古典概型的方法。

【教学难点】:1. 运用古典概型解决实际问题;2. 培养学生的逻辑思维能力。

【教学准备】:1. 教材:教科书、课件;2. 素材:相关实例和题目;3. 工具:黑板、粉笔、计算器。

【教学过程】:一、导入(5分钟)1. 引入话题:你有没有听说过古典概型?你对它有什么了解?2. 提出问题:古典概型是指什么?它有什么特点?二、讲解古典概型(10分钟)1. 定义古典概型:古典概型是指指定的试验只有有限个可能结果,每个可能结果发生的机会相同。

2. 特点:(1)试验只有有限个可能结果;(2)每个可能结果发生的机会相同。

3. 示例:抛一枚公正的硬币,问正反面的概率各是多少?三、计算古典概型(15分钟)1. 公式:事件A发生的概率 = 事件A包含的基本结果数 ÷所有基本结果数。

2. 示例:扔一枚公正的骰子,求出出现3的概率。

3. 练习:让学生尝试计算一些实例的概率,巩固所学知识。

四、运用古典概型解决实际问题(15分钟)1. 实例1:某班有30名学生,其中20名男生、10名女生。

从中任选一人,求选中的是女生的概率。

2. 实例2:有一包装机器生产的零件,其中10%有缺陷。

从中任选一件,求选中的是有缺陷的概率。

3. 其他实例:老师根据实际情况设置更多的实例,供学生思考和解答。

五、小结(5分钟)1. 总结古典概型的定义及特点;2. 复习计算古典概型的方法;3. 提醒学生在解决实际问题时,要注意分析问题的条件和要求。

【课后作业】:1. 让学生完成课后习题,巩固所学知识;2. 指导学生通过阅读相关的教材和资料,进一步了解和掌握古典概型。

【教学反思】:通过本节课的教学,学生对古典概型有了初步的了解,并能够运用古典概型解决简单的实际问题。

1.3古典概型与几何概型

1.3古典概型与几何概型
设有 N 件产品, 其中有 D 件次品, 今从中任取 n 件,问其中恰有 k ( k D ) 件次品的概率是多少 ?
解 在N件产品中抽取n件的所有可能取法共有 N 种, n
在 N 件产品中抽取n件,其中恰有k 件次品的取法
D N D 种, k n k D N D N . 于是所求的概率为 p k n k n
河南理工大学精品课程 概率论与数理统计
19
2005
. (1) 设事件 A1 为“恰有一 练习1 将一枚硬币抛掷三次 次出现正面” , 求 P ( A1 ). ( 2) 设事件 A2 为 “至少有一 次出现正面” , 求 P ( A2 ).
解 (1) 设 H 为出现正面, T 为出现反面.
则 S { HHH , HHT , HTH , THH , HTT , THT , TTH , TTT }.
S {HH, HT, TT}
他计算得
P( A) 1 3
3
这不是 等可能概型!
2005
河南理工大学精品课程 概率论与数理统计
袋中有 a 只白球, b只红球. 从袋中任取 n 只球, 求取到 k ( min(n, a) ) 只白球的概率. 从 a b 只球中任取 n 只,样本点总数为
nk k C C 取到 k 只白球的有利场合数为 a b
概率非常小的事件,称为小概率事件
小概率事件在大量重复试验中几乎是必然 发生的.
下面的例题是利用统计推断原理对某种假设作
出判断(接受或拒绝),这在数理统计的假设检验 中是非常有用的。
例:某接待站在某一周内接待了12次来访者,已知
所有这些来访都是在星期二与星期四进行的,问能否由此 推断该接待站的接待时间是有规定的? 〖解〗若接待时间没有规定,且来 抽象:模型化 人=“球”

1.3_古典概型与几何概型

1.3_古典概型与几何概型
k n k n
种取法.
摸球模型 (1) 无放回地摸球 问题1 设袋中有4 只白球和 2只黑球, 现从 袋中无放回地依次摸出2只球,求这2只球都 是白球的概率. 解 设 A = {摸得 2 只球都是白球}, 基本事件总数为 6×5 A 所包含基本事件的个数为 4 × 3 4×3 2 故 P( A) = = . 6×5 5
5 8 1 4 6 9 3 10 7
设 随机试验E 具有下列特点: 概率的 基本事件的个数有限 古典定义 每个基本事件等可能性发生 则称 E 为 古典(等可能)概型
古典概型中事件概率的计算
摸到2号球 记 A={摸到 号球 摸到 号球} P(A)=?
2
P(A)=1/10
摸到红球} 记 B={摸到红球 摸到红球 P(B)=?
2、许多表面上提法不同的问题实质上属于同 、 一类型: 一类型: 某城市每周发生7次车祸, 某城市每周发生 次车祸,假设每天发生 次车ห้องสมุดไป่ตู้ 车祸的概率相同. 车祸的概率相同. 求每天恰好发生一次车祸 的概率. 的概率 车祸 天
几何概型 (等可能概型的推广)
如果一个随机试验的样本空间 Ω 是一个大小 可以度量的几何区域。向区域内任意投一点, 落在区域内任意点处都是“等可能的”,则 称这类随机试验为几何概型。
2、许多表面上提法不同的问题实质上属于同 、 一类型: 一类型: 个人, 有n个人,设每个人的生日是任一天的概 个人 率为1/365. 求这n (n ≤365)个人的生日互不相 率为 求这 个人的生日互不相 同的概率. 同的概率 人 任一天
2、许多表面上提法不同的问题实质上属于同 、 一类型: 一类型: 个旅客, 个车站 有n个旅客,乘火车途经 个车站,设每 个旅客 乘火车途经N个车 个人在每站下车的概率为1/ 个人在每站下车的概率为 N(N ≥ n) ,求指 定的n个站各有一人下车的概率 定的 个站各有一人下车的概率. 个站各有一人下车的概率 旅客 车站

第13章第2讲 古典概型与几何概型

第13章第2讲 古典概型与几何概型

1 3
������
3)ቚ1 −1
=43,故所求概率P=
4 3
2
=23.故选B.
考法4 随机模拟的应用
考法指导 利用随机模拟试验可以近似计算不规则图形A的面积,解题的依 据是根据随机模拟估计概率P(A)=随机随取机的取点点落的在总������中次的数频数,然后根据 P(A)=随机取点构的成全事部件结������的果区构域成面的积区域面积列等式求A的面积.为了方便解题, 我们常常设计出一个规则的图形(面积为定值)来表示随机取点的全部结果 构成的区域.
C方法帮∙素养大提升 易错 几何概型中“区域”选取不准致误
理科数学 第十三章:概率
理科数学 第十三章:概率
考情精解读
考纲解读 命题规律 命题分析预测
考纲解读
1.理解古典概型及其概率计算公式. 2.会计算一些随机事件所含的基本事件数及事件发生的概率. 3.了解随机数的意义,能运用模拟方法估计概率. 4.了解几何概型的意义.
∠∠������������������������������������′=π−π22 π4 =34.
( 利用角度比求概率 )
理科数学 第十三章:概率
拓展变式2 在区间[0,π]上随机取一个数x,使cos x的值介于- 23与 23之间的 概率为( )
A.13 B.23 C.38 D.58 答案 B
思路分析 先写出“6元分成3份”所含的基本事件数,然后求出乙获得“手气 最佳”所含的基本事件数,最后利用古典概型的概率公式即可得结果.
理科数学 第十三章:概率
解析 用(x,y,z)表示乙、丙、丁抢到的红包分别为x元、y元、z元. 乙、丙、丁三人抢完6元钱的所有不同的可能结果有10种,分别为 (1,1,4),(1,4,1),(4,1,1),(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1),(2,2,2)( 按顺 序列举,不重不漏) 乙获得“手气最佳”的所有不同的可能结果有4种,分别为(4,1,1),(3,1,2),(3,2,1), (2,2,2). 根据古典概型的概率计算公式,得乙获得“手气最佳”的概率P=140=25. 答案 D

数学 古典概型教案

数学 古典概型教案

数学古典概型教案教案标题:数学-古典概型教案教案目标:1. 了解古典概型的基本概念和原理。

2. 能够应用古典概型解决简单的概率问题。

3. 培养学生的逻辑思维和解决问题的能力。

教学资源:1. 教科书:包含古典概型的相关知识点和例题。

2. 白板/黑板和彩色粉笔/白板笔。

3. 学生练习册或作业本。

教学步骤:引入活动:1. 引导学生回顾概率的基本概念,并提出一个问题:如果有一枚硬币,抛掷一次,正面朝上的概率是多少?2. 让学生进行讨论,并记录他们的答案和理由。

知识讲解:1. 介绍古典概型的概念和原理,即指出在一次试验中,所有可能的结果都是等可能发生的。

2. 通过例子解释古典概型的应用,如抛硬币、掷骰子等。

3. 强调古典概型只适用于有限样本空间的情况。

示范演练:1. 给出一个例题:一个袋子里有3个红球和2个蓝球,从中随机抽取一个球,求抽到红球的概率。

2. 引导学生思考解决问题的步骤,并进行解答。

3. 让学生自主尝试解决类似的例题,然后进行讨论和纠正。

巩固练习:1. 分发练习册或作业本,让学生完成相关练习题。

2. 监督学生的学习进度,及时解答他们的问题。

拓展活动:1. 提供更复杂的问题,让学生应用古典概型解决。

2. 鼓励学生思考概率问题在现实生活中的应用,并分享他们的观点和例子。

总结:1. 总结古典概型的基本概念和应用方法。

2. 强调学生在解决概率问题时需要准确地定义样本空间和事件。

3. 鼓励学生继续探索概率和统计的相关知识。

评估方式:1. 教师观察学生在课堂上的参与程度和问题解决能力。

2. 批改学生完成的练习册或作业本,给予及时的反馈和评价。

教学延伸:1. 将古典概型与其他概率模型进行比较,如条件概率、贝叶斯概率等。

2. 引导学生进行实际探究,设计自己的概率实验,并分析结果。

注意事项:1. 确保教学过程中注重学生的参与和思考,避免单纯的讲解。

2. 鼓励学生提问和讨论,促进他们的思维发展和合作能力。

3. 根据学生的实际情况和学习进度,适当调整教学内容和难度。

古典概型公开课教案

古典概型公开课教案

古典概型公开课教案一、教学目标1. 让学生了解古典概型的定义和特点。

2. 让学生掌握古典概型的计算方法。

3. 培养学生运用古典概型解决实际问题的能力。

二、教学内容1. 古典概型的定义与特点2. 古典概型的计算方法3. 实际问题中的应用案例三、教学重点与难点1. 教学重点:古典概型的定义、特点和计算方法。

2. 教学难点:古典概型的计算方法和实际问题中的应用。

四、教学方法1. 讲授法:讲解古典概型的定义、特点和计算方法。

2. 案例分析法:分析实际问题中的应用案例。

3. 互动教学法:引导学生参与课堂讨论,提高学生的思考能力。

五、教学过程1. 导入新课:通过引入古代骰子游戏,引发学生对古典概型的兴趣。

2. 讲解古典概型的定义与特点:引导学生了解古典概型的基本概念,分析其特点。

3. 讲解古典概型的计算方法:引导学生掌握古典概型的计算方法,并进行课堂练习。

4. 分析实际问题中的应用案例:通过案例分析,让学生学会将古典概型应用于实际问题。

5. 课堂小结:总结本节课所学内容,强调重点和难点。

6. 课后作业:布置相关练习题,巩固所学知识。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

2. 课后作业评价:检查学生完成的练习题,评估学生对古典概型的理解和应用能力。

3. 小组讨论评价:在小组讨论环节,评估学生的合作意识和问题解决能力。

七、教学拓展1. 引导学生思考:如何将古典概型应用于现实生活中的概率问题?2. 推荐阅读材料:让学生了解古典概型在数学发展史上的应用和重要性。

八、教学资源1. 教学PPT:展示古典概型的定义、特点、计算方法和应用案例。

2. 练习题:提供相关的练习题,帮助学生巩固所学知识。

3. 案例分析资料:提供实际问题案例,供学生分析讨论。

九、教学建议1. 注重学生基础知识的培养,确保学生掌握古典概型的基本概念和计算方法。

2. 鼓励学生积极参与课堂讨论,提高学生的思考和问题解决能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三节 古典概型与几何概型
引例 一个纸桶中装有10个大小、形状完全相同的球. 将球编号为1—10.把球搅匀, 蒙上眼睛从中任取一球. 因为抽取时这些球被抽到的可能性是完全平等的, 所以我们没有理由认为这10个球中的某一个会比另一个更容易抽得, 也就是说,这10个球中的任一个被抽取的可能性均为10
1. 这样一类随机试验是一类最简单的概率模型, 它曾经是概率论发展初期主要的研究对象.
内容分布图示
★ 引例
★ 古典概型
★ 计算古典概率的方法 ★ 例1
★ 例2 ★ 例3 ★ 例4
★ 例5 ★ 例6 ★ 几何概型
★ 例7
★ 例8 ★ 内容小结
★ 课堂练习
★ 习题1-3
内容要点:
一、古典概型
我们称具有下列两个特征的随机试验模型为古典概型。

1. 随机试验只有有限个可能的结果;
2. 每一个结果发生的可能性大小相同.
因而古典概型又称为等可能概型.在概率论的产生和发展过参程中,它是最早的研究对象,且在实际中也最常用的一种概率模型。

它在数学上可表述为:
在古典概型的假设下,我们来推导事件概率的计算公式. 设事件A 包含其样本空间S 中k 个基本事件, 即
},{}{}{21k
i i i e e e A = 则事件A 发生的概率
.)()()(11中基本事件的总数
包含的基本事件数S A n k e P e P A P k
j i k j i j j ====∑== 称此概率为古典概率.这种确定概率的方法称为古典方法. 这就把求古典概率的问题转化为对基本事件的计数问题.
二、 计算古典概率的方法
基本计数原理:
1. 加法原理:设完成一件事有m 种方式,其中第一种方式有1n 种方法,第二种方式有
2n 种方法,……,第m 种方式有m n 种方法,无论通过哪种方法都可以完成这件事,则完成这
件事的方法总数为m n n n +++ 21.
2. 乘法原理:设完成一件事有m 个步骤,其中第一个步骤有1n 种方法,第二个步骤有
2n 种方法,……,第m 个步骤有m n 种方法;完成该件事必须通过每一步骤才算完成,则完
成这件事的方法总数为 m n n n ⨯⨯⨯ 21.
3. 排列组合方法
(1) 排列公式:(2) 组合公式; (3) 二项式公式.
三、几何概型
古典概型只考虑了有限等可能结果的随机试验的概率模型. 这里我们进一步研究样本空间为一线段、平面区域或空间立体等的等可能随机试验的概率模型—几何概型.
a) 设样本空间S 是平面上某个区域, 它的面积记为)(S μ;
b) 向区域S 上随机投掷一点,这里“随机投掷一点”的含义是指该点落入S 内任何部分区域A 的可能性只与区域A 的面积)(A μ成比例, 而与区域A 的位置和形状无关. 向区域S 上随机投掷一点, 该点落在区域A 的的事件仍记为A ,则A 概率为)()(A A P λμ=, 其中λ为常数,而)()(S S P λμ=,于是得)(1S μλ=,从而事件A 的概率为
)
()()(S A A P μμ= 几何概率 )(* 注: 若样本空间S 为一线段或一空间立体, 则向S “投点”的相应概率仍可用)(*式确定, 但)(⋅μ应理解为长度或体积.
例题选讲:
例1 (讲义例1) 一个袋子中装有10个大小相同的球, 其中3个黑球, 7个白球, 求
(1) 从袋子中任取一球, 这个球是黑球的概率;
(2) 从袋子中任取两球, 刚好一个白球一个黑球的概率以及两个球全是黑球的概率. 解 (1) 10个球中任取一个, 共有10110=C 种.
从而根据古典概率计算, 事件A :“取到的球为黑球”的概率为)(A P 11013
C C =.10
3= (2) 10球中任取两球的取法有210C 种, 其中刚好一个白球, 一个黑球的取法有17
13C C ⋅种取法, 两个球均是黑球的取法有23C 种, 记B 为事件“刚好取到一个白球一个黑球”, C 为事
件“两个球均为黑球”, 则。

相关文档
最新文档