2020年广州市铁一中学九年级下学期中考第一次模拟考试数学试题(无答案)
2020年广东省广州市中考数学一模试卷

中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.在0,1,-1,π四个数中,最小的实数是()A. -1B. πC. 0D. 12.若△ABC∽△DEF,且AB:DE=1:3,则S△ABC:S△DEF=()A. 1:3B. 1:9C. 1:D. 1:1.53.如图,C岛在A岛的北偏东45°方向,C岛在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB的度数是()A. 70°B. 20°C. 35°D. 110°4.下列运算正确的是()A. 3x2•4x2=12x2B. aC. (x5)2=x10D. a10÷a2=a55.如图,将△ABC绕着点C顺时针旋转60°后得到△A′B′C,若∠A=40°,∠B=110°,则∠BCA′的度数是()A. 100°B. 90°C. 70°D. 110°6.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A. 众数B. 平均数C. 中位数D. 方差7.在▱ABCD中,对角线AC、BD相交于O,下列说法一定正确的是()A. AC=BDB. AC⊥BDC. AO=DOD. AO=CO8.已知数轴上点A(表示整数a)在点B(表示整数b)的左侧,如果|a|=|b|,且线段AB长为6,那么点A表示的数是()A. 3B. 6C. -6D. -39.已知a、b、c分别为Rt△ABC(∠C=90°)的三边的长,则关于x的一元二次方程(c+a)x2+2bx+(c-a)=0根的情况是()A. 方程无实数根B. 方程有两个不相等的实数根C. 方程有两个相等的实数根D. 无法判断10.若点M、N是一次函数y1=-x+5与反比例函数y2=(k≠0,x>0)图象的两个交点,其中点M的横坐标为1,下列结论:①一次函数y1=-x+5的图象不经过第三象限;②点N的纵坐标为1;③若将一次函数y1=-x+5的图象向下平移1个单位,则与反比例函数y2=(k≠0,x>0)图象有且只有一个交点;④当1<x<4时,y1<y2.其中结论正确的个数是()A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共6小题,共18.0分)11.若梯形的中位线长为8,高为4,则梯形的面积为______ .12.分解因式:ay2+2ay+a= ______ .13.半径等于12的圆中,垂直平分半径的弦长为______.14.一个几何体的三视图如图所示,根据图示的数据计算该几何体的全面积为______ .15.将矩形ABCD按如图所示的方式折叠,得到菱形AECF,若AB=3,则菱形AECF的周长为______.16.如图一组有规律的正多边形,各正多边形中的阴影部分面积均为a,按此规律,则第n个正多边形的面积为______ .三、计算题(本大题共2小题,共21.0分)17.已知a、b分别是方程x2-3x-4=0的两个实数根,求的值.18.如图,已知直线AB与x轴交于点C,与双曲线交于A(3,)、B(﹣5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.四、解答题(本大题共7小题,共81.0分)19.如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).(1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;(2)分别写出B、C两点的对应点B′、C′的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.20.广州市中山大道快速公交(简称BRT)试验线道路改造工程中,某工程队小分队承担了100米道路的改造任务.为了缩短对站台和车道施工现场实施围蔽的时间,在确保工程质量的前提下,该小分队实际施工时每天比原计划多改造道路10米,结果提前5天完成了任务,求原计划平均每天改造道路多少米?21.已知:如图,在Rt△ABC中,∠C=90°,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E,且∠CBD=∠A.(1)判断直线BD与⊙O的位置关系,并证明你的结论;(2)若AD=BD=2,求⊙O的面积.22.某校九年级有400名学生参加全国初中数学竞赛初赛,从中抽取了50名学生,他们的初赛成绩(得分为整数,满分为100分)都不低于40分,把成绩分成六组:第一组39.5~49.5,第二组49.5~59.5,第三组59.5~69.5,第四组69.5~79.5,第五组79.5~89.5,第六组89.5~100.5.统计后得到下图所示的频数分布直方图(部分)观察图形的信息,回答下列问题:(1)第五组的频数为______ (直接写出答案)(2)估计全校九年级400名学生在69.5~79.5的分数段的学生约有______ 个.(直接写出答案)(3)在抽取的这50名学生中成绩在79.5分以上的学生组成一个培训小组,再从这个小组中随机挑选2名学生参加决赛,用树状图或列表法求出挑选的2名学生的初赛成绩恰好都不小于90分的概率.23.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l 上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.24.已知:如图,二次函数y=a(x+1)2-4的图象与x轴分别交于A、B两点,与y轴交于点D,点C是二次函数y=a(x+1)2-4的图象的顶点,CD=.(1)求a的值.(2)点M在二次函数y=a(x+1)2-4图象的对称轴上,且∠AMC=∠BDO,求点M的坐标.(3)将二次函数y=a(x+1)2-4的图象向下平移k(k>0)个单位,平移后的图象与直线CD分别交于E、F两点(点F在点E左侧),设平移后的二次函数的图象的顶点为C1,与y轴的交点为D1,是否存在实数k,使得CF⊥FC1?若存在,求出k的值;若不存在,请说明理由.25.在Rt△ABC中,∠ACB=90°,tan∠BAC=.点D在边AC上(不与A,C重合),连结BD,F为BD中点.(1)若过点D作DE⊥AB于E,连结CF、EF、CE,如图1.设CF=kEF,则k=______;(2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2.求证:BE-DE=2CF;(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的取值范围.答案和解析1.【答案】A【解析】解:∵-1<0<1<π,∴最小的数是-1,故选:A.根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小解答即可.本题主要考查了正、负数、0和负数间的大小比较,几个负数比较大小时,绝对值越大的负数越小.2.【答案】B【解析】解:∵△ABC∽△DEF,且AB:DE=1:3,∴S△ABC:S△DEF=1:9.故选B.由△ABC∽△DEF,且AB:DE=1:3,根据相似三角形的面积比等于相似比的平方,即可求得答案.此题考查了相似三角形的性质.注意熟记定理是解此题的关键.3.【答案】A【解析】解:如图,连接AB,∵两正北方向平行,∴∠CAB+∠CBA=180°-45°-25°=110°,∴∠ACB=180°-110°=70°.故选:A.根据两直线平行,同旁内角互补求得∠C的度数即可.本题考查了方向角,解决本题的关键是利用平行线的性质.4.【答案】C【解析】解:A、3x2•4x2=12x4,错误;B、,错误;C、(x5)2=x10,正确;D、a10÷a2=a8,错误;故选C.根据多项式的乘法、幂的乘方、同底数幂的除法和同类项的合并计算判断即可.此题考查多项式的乘法、幂的乘方、同底数幂的除法和同类项的合并,熟练掌握运算法则是解本题的关键.5.【答案】B【解析】解:如图,∵∠A=40°,∠B=110°,∴∠ACB=180°-110°-40°=30°;由题意得:∠ACA′=60°,∴∠BCA′=30°+60°=90°,故选B.如图,首先运用三角形的内角和定理求出∠ACB=30°,然后运用旋转变换的性质得到∠ACA′=60°,进而求出∠BCA′,即可解决问题.该题主要考查了三角形的内角和定理、旋转变换的性质等几何知识点及其应用问题;牢固掌握三角形的内角和定理、旋转变换的性质等几何知识点是灵活解题的基础和关键.6.【答案】C【解析】解:由于总共有9个人,且他们的分数互不相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自已的成绩和中位数.故选:C.9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.【答案】D【解析】解:由平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分,可知选项D是正确的.故选:D.根据平行四边形的性质逐项分析即可.本题考查了平行四边形的性质,解题的关键是正确画出几何图形,了解并掌握平行四边形的各种性质.8.【答案】D【解析】解:∵数轴上点A(表示整数a)在点B(表示整数b)的左侧,|a|=|b|,∴点A和点B的中点是原点,∵线段AB长为6,∴点A表示的数是-3.故选:D.由于数轴上点A(表示整数a)在点B(表示整数b)的左侧,|a|=|b|,可知点A和点B 的中点是原点,再根据线段AB长为6,可求点A表示的数.考查了数轴和绝对值,本题关键是理解点A和点B的中点是原点.9.【答案】C【解析】解:∵a、b、c分别为Rt△ABC(∠C=90°)的三边的长,∴a2+b2=c2,∵△=4b2-4(c+a)(c-a)=4(b2-c2+a2),∴△=0,∴方程有两个相等的两个实数根.故选C.先根据勾股定理得到a2+b2=c2,再计算出△=4b2-4(c+a)(c-a)=4(b2-c2+a2)=0,于是根据判别式的意义判断方程根的情况.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了勾股定理.10.【答案】B【解析】解:由一次函数y1=-x+5可知,一次函数y1=-x+5的图象经过第一、二、四象限,不经过第三象限;故①正确;∵点M的横坐标为1,∴y=-1+5=4,∴M(1,4),∴k=4,∴反比例函数y2=(k≠0,x>0),解得或,∴N的纵坐标为1,故②正确;将一次函数y1=-x+5的图象向下平移1个单位长度,则函数的解析式为y=-x+4,解解得,,∴将一次函数y1=-x+5的图象向下平移1个单位,则与反比例函数y2=(k≠0,x>0)图象有且只有一个交点;故③正确;∵M(1,4),N(4,1),根据图象可知当1<x<4时,一次函数图象部分在反比例函数图象的上方,所以y1>y2.故④错误.故选B.根据一次函数的性质即可判断①;利用待定系数法求得M的坐标,进而求得N的坐标,即可判断②;求得直线向下平移后的解析式,然后联立方程求得交点坐标即可判断③;根据函数的图象结合交点坐标即可判断④.本题考查了一次函数和二次函数的交点坐标,其知识点有:待定系数法求解析式,平移的性质以及交点的求法等.11.【答案】32【解析】解:梯形的面积=中位线×高=8×4=32.故答案是:32.根据梯形的面积=中位线×高,进行计算.此题主要考查梯形的中位线定理:梯形的中位线等于上底与下底和的一半.12.【答案】a(y+1)2【解析】解:ay2+2ay+a=a(y2+2y+1)=a(y+1)2.故答案为:a(y+1)2.首先提取公因式a,进而利用完全平方公式分解因式得出即可.此题主要考查了提取公因式法以及公式法分解因式,正确应用完全平方公式是解题关键.13.【答案】12【解析】解:如图,∵OD=CD=6,∴由勾股定理得AD=6,∴由垂径定理得AB=12,故答案为:12.先画图,根据题意得OD=CD=6,再由勾股定理得AD的长,最后由垂径定理得出弦AB的长即可.本题综合考查了垂径定理和勾股定理.解答这类题一些学生不会综合运用所学知识解答问题,不知从何处入手造成错解.14.【答案】8+72【解析】解:根据三视图可得该几何体是一个三棱柱,底面积为×4×=4,侧面积为4×3×6=72,则该几何体的全面积为4×2+72=8+72,故答案为:8+72.根据三视图判断出该几何体的形状,再分别求出底面积和侧面积即可得出答案.此题考查了由三视图判断几何体,用到的知识点是三角形、长方形的面积、勾股定理,同时也体现了对空间想象能力方面的考查.15.【答案】8【解析】解:∵矩形ABCD按如图所示的方式折叠,得到菱形AECF,∴AD=AO,CO=BC,∠BCE=∠OCE,而AD=BC,∴AC=2BC,∴∠CAB=30°,∴BC=AB=,∠ACB=60°,∴∠BCE=30°,∴BE=BC=1,∴CE=2BE=2,∴菱形AECF的周长=4×2=8.根据折叠的性质得AD=AO,CO=BC,∠BCE=∠OCE,所以AC=2BC,则根据含30度的直角三角形三边的关系得∠CAB=30°,于是BC=AB=,∠ACB=60°,接着计算出∠BCE=30°,然后计算出BE=BC=1,CE=2BE=2,于是可得菱形AECF的周长.本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了含30度的直角三角形三边的关系.16.【答案】 a【解析】解:第一个:正多边形的面积等于a;第二个:如图作AE⊥BD于E,设正六边形的边长为2,∵正六边形的一个内角为120°,∴∠ABE=30°,则AE=1,BE=,△ABD的面积为:×2×1=,a=2×2=4,∴正六边形的面积为:a,第三个:如图,∵正八边形的一个内角为135°,∴∠ABD=45°,设正八边形的边长为2,则BD=AD=,△ABD的面积为1,四边形ABEF的面积为1+2+1=2+2,a=2×(2+2)=4+4,∴正八边形的面积为2a,通过计算可以看出:第n个正多边形的面积为a.设出正多边形的边长,根据正多边形与圆的关系,分别求出正四边形、正六边形和正八边形的面积,找出规律,得到答案.本题考查的是正多边形与圆的关系,求出正多边形的一个内角,设出边长,根据特殊角的性质和勾股定理表示出有关的边长,求出正多边形的面积,根据计算结果找出规律是解题的关键.17.【答案】解:原式=[-]×=-=-,∵a、b分别是方程x2-3x-4=0的两个实数根,∴a+b=3,∴原式=.【解析】先根据分式混合运算的法则把原式进行化简,再a、b分别是方程x2-3x-4=0的两个实数根得出a+b的值,再代入原式进行计算即可.本题考查的是分式的化简求值及实数的运算,熟知分式混合运算的法则是解答此题的关键.18.【答案】解:(1)∵双曲线过A(3,),∴k=20.把B(-5,a)代入,得a=-4.∴点B的坐标是(-5,-4).设直线AB的解析式为y=mx+n,将A(3,)、B(-5,-4)代入,得,解得:,∴直线AB的解析式为:;(2)四边形CBED是菱形.理由如下:∵直线AB的解析式为:,∴当y=0时,x=-2,∴点C的坐标是(-2,0);∵点D在x轴上,AD⊥x轴,A(3,),∴点D的坐标是(3,0),∵BE∥x轴,∴点E的坐标是(0,-4).而CD=5,BE=5,且BE∥CD.∴四边形CBED是平行四边形.在Rt△OED中,ED2=OE2+OD2,∴ED====5,∴ED=CD.∴平行四边形CBED是菱形.【解析】(1)根据反比例函数图象上点的坐标特征,将点A代入双曲线方程求得k值,即利用待定系数法求得双曲线方程;然后将B点代入其中,从而求得a值;设直线AB 的解析式为y=mx+n,将A、B两点的坐标代入,利用待定系数法解答;(2)由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.本题考查了反比例函数综合题.解答此题时,利用了反比例函数图象上点的坐标特征.19.【答案】解:(1)(2)B′(-6,2),C′(-4,-2);(3)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M的坐标为(x,y),写出M的对应点M′的坐标为(-2x,-2y).【解析】(1)延长BO,CO到B′C′,使OB′,OC′的长度是OB,OC的2倍.顺次连接三点即可;(2)从直角坐标系中,读出B′、C′的坐标;(3)从这两个相似三角形坐标位置关系来看,对应点的坐标正好是原坐标乘以-2的坐标,所以M的坐标为(x,y),写出M的对应点M′的坐标为(-2x,-2y).本题综合考查了直角坐标系和相似三角形的有关知识,注意做这类题时,性质是关键,看图也是关键.很多信息是需要从图上看出来的.20.【答案】解:设原计划每天改造x米,则实际每天改造(x+10)米,由题意,得=+5,解得:x1=-20,x2=10,经检验,x-20,x=10都是原方程的根,但x-20不符合题意,舍去.∴x=10.答:原计划平均每天改造道路10米.【解析】设原计划每天改造x米,则实际每天改造(x+10)米,根据时间之间的数量关系建立方程求出其解即可.本题考查了列分式方程解工程问题的运用,分式方程的解法的运用,解答时根据工程问题的时间关系为等量关系建立方程是关键.21.【答案】解:(1)直线BD与⊙O相切.(1分)证明:如图1,连接OD.(2分)∵OA=OD,∴∠A=∠ADO.(3分)∵∠C=90°,∴∠CBD+∠CDB=90°又∵∠CBD=∠A,(5分)∴∠ADO+∠CDB=90°,∴∠ODB=180°-(∠ADO+∠CDB)=90°.∴直线BD与⊙O相切.(6分)(2)连OD、DE.∵AD=BD,∴∠A=∠DBA.(7分)在Rt△BDC中,∵∠C=90°,∠CBD=∠A=∠DBA,∴3∠A=90°,即有∠A=30°.(8分)由,得.(10分)又∠DOE=60°,OD=OE,∴△DOE为等边三角形,∴.(10分)即⊙O的半径,故⊙O的面积.(12分)【解析】(1)连接OD.证直线与圆相切,即证BD⊥OD.由∠CBD+∠CDB=90°,∠CBD=∠A=∠ODA,可得∠ODA+∠CDB=90°.根据平角定义得证;(2)即求圆的半径求解.连接DE,则∠ADE=90°.在Rt△BCA中,∠CDB=∠A=∠ABD,得∠A=30°.从而在△ADE 中利用三角函数求解.本题考查了切线的判定,解直角三角形等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.22.【答案】2;56【解析】解:(1)50-12-10-17-7-2=2(3分)(2)7÷50×400=56(6分)(3)设分数79.5~89.5的两个学生为A、B,分数89.5~100.5的两个学生为C、D树状图:(9分)共有12种等可能出现的结果,其中挑选的2名学生的初赛成绩恰好都不小于90分的结果共有2个(CD,DC)所以P(两个学生都不小于90分)=(12分)(1)用总人数减去其他5个小组的人数即可解答.(2)求出样本的频率,再用样本估计总体的方法求出总体的人数即可.(3)这50名学生中成绩在79.5分以上的学生有四个,再从这个小组中随机挑选2名学生参加决赛,出现的情况列出树状图,利用概率的求法解答即可.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.【答案】解:(1)由題意得,在Rt△ADC中,AD==≈36.33(米),…2分在Rt△BDC中,BD=≈12.11(米),…4分则AB=AD-BD=36.33-12.11=24.22≈24.2(米)…6分(2)超速.理由:∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1×3600=43560(米/时),∴该车速度为43.56千米/小时,…9分∵大于40千米/小时,∴此校车在AB路段超速.…10分【解析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.此题考查了解直角三角形的应用问题.此题难度适中,解题的关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.24.【答案】解:(1)∵C(-1,-4),CD=,∴D(0,-3)∴a=1∴y=(x+1)2-4即y=x2+2x-3.(2)如右图,设抛物线对称轴与x轴的交点为N,则N(-1,0);由(1)的抛物线:y=x2+2x-3,得:A(-3,0)、B(1,0)在Rt△OBD中,OD=3,OB=1,tan∠BDO==.若∠AMC=∠BDO,则tan∠AMN=tan∠BDO=;在Rt△AMN中,AN=OA-ON=2,MN=AN÷tan∠AMN=6;故M(-1,6)或(-1,-6).(3)存在.∵CC1=DD1=k,CC1∥DD1,∴四边形CC1D1D为平行四边形,∴C1D1∥CD,∴∠D1C1C=∠DCN=45°,∵CF⊥FC1,∴∠CC1F=45°即△CFC1为等腰直角三角形,CFC1D1是正方形.FD1与CC1互相垂直平分.且CC1=k,∴F(-k-1,-k-4),由点F在新抛物线y=x2+2x-3-k上,∴(-k-1)2+2(-k-1)-3-k=-k-4,解得k=2或k=0(舍),∴k=2.当k=2时,CF⊥FC1.【解析】(1)根据函数的解析式,可以直接写出顶点C的坐标.(2)根据(1)得到的抛物线解析式,能确定点A、B的坐标,在Rt△OBD中,首先求出∠OBD的正弦值,设抛物线的对称轴与x轴的交点为N,若∠AMC=∠BDO,那么它们的正弦值相等,在Rt△AMN中即可求出MN的长,由此得出点M的坐标.(3)抛物线在向下平移的过程中,顶点、抛物线与y轴交点同时向下平移了k个单位,由此易发现四边形CC1D1D为平行四边形,进一步能推出△CFC1是等腰直角三角形,根据C、C1两点的坐标,结合等腰直角三角形的性质可写出点F的坐标,再代入平移后的抛物线解析式中进行求解即可.本题考查了二次函数解析式的确定、函数图象的平移、平行四边形以及等腰直角三角形的性质等综合知识;(3)题的难度较大,能够准确判断出△CFC1的形状是打开解题思路的关键所在.25.【答案】1【解析】解:(1)∵DE⊥AB于E,F为BD中点.∴,,∴CF=EF.∵CF=kEF,∴k=1;(2)如图2,过点C作CE的垂线交BD于点G,设BD与AC的交点为Q.由题意,tan∠BAC=,∴.∵D、E、B三点共线,∴AE⊥DB.∵∠BQC=∠AQD,∠ACB=90°,∴∠QBC=∠EAQ.∵∠ECA+∠ACG=90°,∠BCG+∠ACG=90°,∴∠ECA=∠BCG.∴△BCG∽△ACE.∴.∴GB=DE.∵F是BD中点,∴F是EG中点.在Rt△ECG中,,∴BE-DE=EG=2CF;(3)情况1:如图,当AD=时,取AB的中点M,连结MF和CM,∵∠ACB=90°,tan∠BAC=,且BC=6,∴AC=12,AB=.∵M为AB中点,∴CM=,∵AD=,∴AD=4.∵M为AB中点,F为BD中点,∴FM==2.∴当且仅当M、F、C三点共线且M在线段CF上时CF最大,此时CF=CM+FM=.同理最小值为-2.情况2:如图,当AD=时,取AB的中点M,连结MF和CM,类似于情况1,可知CF的最大值为.综合情况1与情况2,可知当点D在靠近点C的三等分点时,线段CF的长度取得最大值为.同理最小值为-4.(1)根据直角三角形斜边的中线等于斜边的一半可得,,CF=EF,于是得k=1;(2)过点C作CE的垂线交BD于点G,设BD与AC的交点为Q.得,△BCG∽△ACE.所以,GB=DE.在Rt△ECG中,,BE-DE=EG=2CF;(3)情况1:当AD=时,取AB的中点M,连结MF和CM,最大为,最小值为-2.情况2:当AD=时,取AB的中点M,连结MF和CM,最大值为,最小值为为-4.再综合情况1与情况2即可.本题主要考查了相似三角形的判定及性质.综合性较强,有一定难度,注意第(3)题分情况讨论.。
2024届广东省广州市铁一中学中考数学模试卷含解析

2024届广东省广州市铁一中学中考数学模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)1.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,-5)B.(3,-13)C.(2,-8)D.(4,-20)2.二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数y=ax与一次函数y=bx﹣c在同一坐标系内的图象大致是()A.B.C.D.3.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()A.6B.5C.4D.34.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为A.(1)19802x x-=B.x(x+1)=1980C.2x(x+1)=1980 D.x(x-1)=19805.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为x千米/小时,依据题意列方程正确的是()A.304015x x=-B.304015x x=-C.304015x x=+D.304015x x=+6.把不等式组24030xx-≥⎧⎨->⎩的解集表示在数轴上,正确的是()A.B.C.D.7.下列说法正确的是()A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近8.如果菱形的一边长是8,那么它的周长是()A.16 B.32 C.16D.32 9.下列图形中,阴影部分面积最大的是A.B.C.D.10.一次函数112y x=-+的图像不经过的象限是:()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(本大题共6个小题,每小题3分,共18分)11.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.12.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B,若△AOB的面积为1,则k=________________.13.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB 于点P,若CD=3,AB=8,PM=l,则l的最大值是14.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A滑行至B,已知AB=500米,则这名滑雪运动员的高度下降了_____米.(参考数据:sin34°≈0.56,cos34°≈0.83,tan34°≈0.67)15.若m﹣n=4,则2m2﹣4mn+2n2的值为_____.16.因式分解:-2x2y+8xy-6y=__________.三、解答题(共8题,共72分)17.(8分)为营造浓厚的创建全国文明城市氛围,东营市某中学委托制衣厂制作“最美东营人”和“最美志愿者”两款文化衫.若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需145元.(1)求“最美东营人”和“最美志愿者”两款文化衫每件各多少元?(2)若该中学要购进“最美东营人”和“最美志愿者”两款文化衫共90件,总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,那么该中学有哪几种购买方案?18.(8分)先化简,再求值:222(2)()y x yy x y x yx y x y⎛⎫--÷--+⎪+-⎝⎭,其中1x=-,2y=.19.(8分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;四边形BFDE是平行四边形.20.(8分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=mx的图象都经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.21.(8分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.22.(10分)如图,已知△ABC中,AB=BC=5,tan∠ABC=34.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求ADDB的值.23.(12分)已知y是x的函数,自变量x的取值范围是0x≠的全体实数,如表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;x=时所对应的点,并写出m=.(3)在画出的函数图象上标出2(4)结合函数的图象,写出该函数的一条性质:.24.计算:8﹣(﹣2016)0+|﹣3|﹣4cos45°.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】试题分析:=,∴点M(m,﹣m2﹣1),∴点M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.考点:二次函数的性质.2、C 【解题分析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论. 【题目详解】解:观察二次函数图象可知: 开口向上,a >1;对称轴大于1,2ba>1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内; ∵一次函数y =bx ﹣c 中,b <1,﹣c <1, ∴一次函数图象经过第二、三、四象限. 故选C . 【题目点拨】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a 、b 、c 的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论. 3、B 【解题分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形. 【题目详解】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个. 故选:B . 【题目点拨】此题考查由三视图判断几何体,解题关键在于识别图形 4、D 【解题分析】根据题意得:每人要赠送(x ﹣1)张相片,有x 个人,然后根据题意可列出方程. 【题目详解】根据题意得:每人要赠送(x ﹣1)张相片,有x 个人, ∴全班共送:(x ﹣1)x=1980, 故选D .【题目点拨】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x ﹣1)张相片,有x 个人是解决问题的关键. 5、C 【解题分析】由实际问题抽象出方程(行程问题).【分析】∵甲车的速度为x 千米/小时,则乙甲车的速度为15x +千米/小时 ∴甲车行驶30千米的时间为30x ,乙车行驶40千米的时间为4015x +, ∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得304015x x =+.故选C . 6、A 【解题分析】分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可. 【题目详解】2x 4030x -≥⎧⎨-⎩①>② 由①,得x≥2, 由②,得x <1,所以不等式组的解集是:2≤x <1. 不等式组的解集在数轴上表示为:.故选A . 【题目点拨】本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 7、D 【解题分析】根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案. 【题目详解】解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A 不符合题意;B. “抛一枚硬币正面朝上的概率为12”表示每次抛正面朝上的概率都是12,故B 不符合题意; C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C 不符合题意; D. “抛一枚正方体骰子,朝上的点数为2的概率为16”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在16附近,故D 符合题意; 故选D 【题目点拨】本题考查了概率的意义,正确理解概率的含义是解决本题的关键. 8、B 【解题分析】根据菱形的四边相等,可得周长 【题目详解】 菱形的四边相等 ∴菱形的周长=4×8=32 故选B . 【题目点拨】本题考查了菱形的性质,并灵活掌握及运用菱形的性质 9、C 【解题分析】分别根据反比例函数系数k 的几何意义以及三角形面积求法以及梯形面积求法得出即可: 【题目详解】A 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy=1.B 、根据反比例函数系数k 的几何意义,阴影部分面积和为:xy 3=.C 、如图,过点M 作MA ⊥x 轴于点A ,过点N 作NB ⊥x 轴于点B ,根据反比例函数系数k 的几何意义,S △OAM =S △OAM =13xy 22=,从而阴影部分面积和为梯形MABN 的面积:()113242+⨯=.D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:1163 2⨯⨯=.综上所述,阴影部分面积最大的是C.故选C.10、C【解题分析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像二、填空题(本大题共6个小题,每小题3分,共18分)11、1.1【解题分析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB=22OA OB+=1cm,∵点D为AB的中点,∴OD=12AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案为1.1.12、-1【解题分析】试题解析:设点A的坐标为(m,n),因为点A在y=的图象上,所以,有mn=k,△ABO的面积为=1,∴=1,∴=1,∴k=±1,由函数图象位于第二、四象限知k<0,∴k=-1.考点:反比例外函数k的几何意义.13、4【解题分析】当CD∥AB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可.【题目详解】当CD ∥AB 时,PM 长最大,连接OM ,OC , ∵CD ∥AB ,CP ⊥CD , ∴CP ⊥AB ,∵M 为CD 中点,OM 过O , ∴OM ⊥CD ,∴∠OMC=∠PCD=∠CPO=90°, ∴四边形CPOM 是矩形, ∴PM=OC , ∵⊙O 直径AB=8, ∴半径OC=4, 即PM=4. 【题目点拨】本题考查矩形的判定和性质,垂径定理,平行线的性质,此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大. 14、1. 【解题分析】试题解析:在RtΔABC 中,sin34°=ACAB∴AC=AB×sin34°=500×0.56=1米. 故答案为1. 15、1【解题分析】解:∵2m 2﹣4mn +2n 2=2(m ﹣n )2,∴当m ﹣n =4时,原式=2×42=1.故答案为:1. 16、-2 y (x -1)( x -3) 【解题分析】分析:提取公因式法和十字相乘法相结合因式分解即可. 详解:原式()2243,y x x =--+()()213.y x x =---故答案为()()213.y x x ---点睛:本题主要考查因式分解,熟练掌握提取公因式法和十字相乘法是解题的关键.分解一定要彻底.三、解答题(共8题,共72分)17、(1)“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三种方案,具体见解析.【解题分析】(1)设“最美东营人”文化衫每件x 元,“最美志愿者”文化衫每件y 元,根据若制作“最美东营人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美东营人”文化衫3件,“最美志愿者”5件,共需11元建立方程组求出其解即可;(2)设购买“最美东营人”文化衫m 件,根据总费用少于1595元,并且“最美东营人”文化衫的数量少于“最美志愿者”文化衫的数量,列出不等式组,然后求m 的正整数解.【题目详解】(1)设“最美东营人”文化衫每件x 元,“最美志愿者”文化衫每件y 元,由题意,得239035145x y x y +⎧⎨+⎩==, 解得:1520x y ⎧⎨⎩==. 答:“最美东营人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)设购买“最美东营人”文化衫m 件,则购买“最美志愿者”文化衫(90-m )件,由题意,得1520(90)159590m m m m+-⎧⎨-⎩<<, 解得:41<m <1.∵m 是整数,∴m=42,43,2.则90-m=48,47,3.答:方案一:购买“最美东营人”文化衫42件,“最美志愿者”文化衫48件;方案二:购买“最美东营人”文化衫43件,“最美志愿者”文化衫47件;方案三:购买“最美东营人”文化衫2件,“最美志愿者”文化衫3件.【题目点拨】本题考查了二元一次方程组的运用,一元一次不等式组的运用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的数量关系.18、1【解题分析】分析:先把小括号内的通分,按照分式的减法和分式的除法法则进行化简,再把字母的值代入运算即可. 详解:原式()()()()222,x y x y y xy y x y x y x y x y x y -+⎛⎫+=-⋅--+ ⎪++-⎝⎭()()()222,x y x y xy x xy y x y x y -+-=⋅---+- 222,xy x xy y =--++222x y =-+,当x =-1、y =2时,原式=-(-1)2+2×22 =-1+8=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.19、(1)见解析;(2)见解析;【解题分析】(1)由四边形ABCD 是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C ,AB=CD ,又由AE=CF ,利用SAS ,即可判定△ABE ≌△CDF .(2)由四边形ABCD 是平行四边形,根据平行四边形对边平行且相等,即可得AD ∥BC ,AD=BC ,又由AE=CF ,即可证得DE=BF .根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE 是平行四边形.【题目详解】证明:(1)∵四边形ABCD 是平行四边形,∴∠A=∠C ,AB=CD ,在△ABE 和△CDF 中,∵AB=CD ,∠A=∠C ,AE=CF ,∴△ABE ≌△CDF (SAS ).(2)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC .∵AE=CF ,∴AD ﹣AE=BC ﹣CF ,即DE=BF .∴四边形BFDE 是平行四边形.20、(1)反比例函数表达式为4y x=-,正比例函数表达式为y x =-;(2)(4,1)C -,6ABC S =.【解题分析】 试题分析:(1)将点A 坐标(2,-2)分别代入y=kx 、y=m x 求得k 、m 的值即可;(2)由题意得平移后直线解析式,即可知点B 坐标,联立方程组求解可得第四象限内的交点C 得坐标,可将△ABC 的面积转化为△OBC 的面积. 试题解析:(1)把()2,2A -代入反比例函数表达式m y x =, 得22m -=,解得4m =-, ∴反比例函数表达式为4y x =-, 把()2,2A -代入正比例函数y kx =,得22k -=,解得1k =-,∴正比例函数表达式为y x =-.(2)直线BC 由直线OA 向上平移3个单位所得,∴直线BC 的表达式为3y x =-+,由43y x y x ⎧=-⎪⎨⎪=-+⎩,解得1142x y =⎧⎨=-⎩或2214x y =-⎧⎨=⎩, ∵C 在第四象限,∴()4,1C -,连接OC ,∵OA BC ,12ABC BOC C SS OB x ==⋅⋅, 1342=⨯⨯, 6=.21、(1)列表见解析;(2)这个游戏规则对双方不公平.【解题分析】(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可;(2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性.【题目详解】(1)列表如下:由表可知,总共有9种结果,其中和为6的有3种,则这两数和为6的概率31 93 =;(2)这个游戏规则对双方不公平.理由如下:因为P(和为奇数)49=,P(和为偶数)59=,而4599≠,所以这个游戏规则对双方是不公平的.【题目点拨】本题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)10;(2)35 ADBD=.【解题分析】【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.【题目详解】(1)如图,过点A作AE⊥BC,在Rt△ABE中,tan∠ABC=34AEBE=,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:2231+10;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=52,∵tan∠DBF=34 DFBF=,∴DF=158,在Rt△BFD中,根据勾股定理得:BD=2251528⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭=258,∴AD=5﹣258=158,则35 ADBD=.【题目点拨】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.23、(1)32;(2)见解析;(3)72;(4)当01x<<时,y随x的增大而减小.【解题分析】(1)根据表中x,y的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(3)在所画的函数图象上找出自变量为7所对应的函数值即可;(4)利用函数图象的图象求解.【题目详解】解:(1)当自变量是﹣2时,函数值是32;故答案为:3 2 .(2)该函数的图象如图所示;(3)当2x=时所对应的点如图所示,且72 m=;故答案为:72; (4)函数的性质:当01x <<时,y 随x 的增大而减小.故答案为:当01x <<时,y 随x 的增大而减小.【题目点拨】 本题考查了函数值,函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.24、1.【解题分析】根据二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值依次计算后合并即可.【题目详解】解:原式21+3﹣4×2=1. 【题目点拨】本题考查实数的运算及特殊角三角形函数值.。
广东省广州市2020年中考数学一模试卷解析版

远地点高度约 368000 千米的地月转移轨道.数字 368000 用科学记数法表示为(
)
A. 36.8×104
B. 3.68×106
C. 3.68×105
D. 0.368×106
4. 已知 a,b 满足方程组
A. -4
B. 4
,则 a+b 的值为( )
C. -2
D. 2
5. 如图,四边形 ABCD 是⊙O 的内接正方形,点 P 是 上不同
于点 C 的任意一点,则∠BPC 的大小是( )
A. 22.5° B. 45° C. 30° D. 50°
6. 在平面直角坐标系中,将点 A(-1,2)向右平移 3 个单位长度得到点 B,则点 B 关 于 x 轴的对称点 C 的坐标是( )
A. (-4,-2)
B. (2,2)
C. (-2,F 翻折,得到四边形 EFC′D′,ED′交 BC 于点 G,则△GEF 的周长为( )
A. 6
B. 12
C. 6
二、填空题(本大题共 6 小题,共 18.0 分)
11. 计算:
=______.
12. 分解因式:b2-6b+9=______.
13. 如图,将一块三角板的直角顶点放在直尺的一边上,当
①∠CDF=60°;②△EDB∽△FDC;③BC= ;④S△ADB=
S△EDB. 其中所有正确结论的序号为______. 三、计算题(本大题共 1 小题,共 12.0 分) 17. 已知:关于 x 的一元二次方程 tx2-(3t+2)x+2t+2=0(t>0) (1)求证:方程有两个不相等的实数根; (2)设方程的两个实数根分别为 x1,x2(其中 x1<x2),若 y 是关于 t 的函数,且 y=x2-2x1,求这个函数的解析式,并画出函数图象; (3)观察(2)中的函数图象,当 y≥2t 时,写出自变量 t 的取值范围.
2020年广州市数学中考第一次模拟试卷含答案

2020年广州市数学中考第一次模拟试卷含答案一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)3.如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥4.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>32B.x<32C.x>3D.x<35.菱形不具备的性质是()A.四条边都相等 B.对角线一定相等 C.是轴对称图形 D.是中心对称图形6.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣1 2 x2刻画,斜坡可以用一次函数y=12x 刻画,下列结论错误的是( )A .当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3mB .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .斜坡的坡度为1:27.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .88.已知命题A :“若a 为实数,则2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( )A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)9.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中所示数据求得这个几何体的侧面积是( )A .212cmB .()212πcm +C .26πcmD .28πcm10.如图,AB ∥CD ,∠C=80°,∠CAD=60°,则∠BAD 的度数等于( )A .60°B .50°C .45°D .40°11.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( ) 捐款数额10 20 30 50 100 人数 2 4 5 3 1A .众数是100B .中位数是30C .极差是20D .平均数是3012.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A 13B 5C .22D .4二、填空题13.已知关于x 的方程3x n 22x 1+=+的解是负数,则n 的取值范围为 . 14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________15.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.16.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.17.关于x 的一元二次方程(a +1)x 2-2x +3=0有实数根,则整数a 的最大值是_____.18.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.19.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .20.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.三、解答题21.计算:103212sin45(2π)-+--+-o .22.甲、乙两公司为“见义勇为基金会”各捐款60000元.已知甲公司的人数比乙公司的人数多20℅,乙公司比甲公司人均多捐20元.甲、乙两公司各有多少人?23.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率. 24.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .25.已知222111x x x A x x ++=---. (1)化简A ;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A (12,2),B (2,12), ∵在△ABP 中,由三角形的三边关系定理得:|AP-BP|<AB ,∴延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b , 把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D .【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.3.A解析:A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A .考点:由三视图判定几何体.4.B解析:B【解析】【分析】根据点A 的坐标找出b 值,令一次函数解析式中y=0求出x 值,从而找出点B 的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.【详解】解:∵一次函数y=﹣2x+b的图象交y轴于点A(0,3),∴b=3,令y=﹣2x+3中y=0,则﹣2x+3=0,解得:x=32,∴点B(32,0).观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.5.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.6.A解析:A【解析】分析:求出当y=7.5时,x的值,判定A;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出抛物线与直线的交点,判断C,根据直线解析式和坡度的定义判断D.详解:当y=7.5时,7.5=4x﹣12x2,整理得x2﹣8x+15=0,解得,x 1=3,x 2=5,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5侧面cm ,A 错误,符合题意;y=4x ﹣12x 2 =﹣12(x ﹣4)2+8, 则抛物线的对称轴为x=4,∴当x >4时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,不符合题意;214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 则小球落地点距O 点水平距离为7米,C 正确,不符合题意;∵斜坡可以用一次函数y=12x 刻画, ∴斜坡的坡度为1:2,D 正确,不符合题意;故选:A .点睛:本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.7.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2)2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键8.D解析:D【解析】【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0a=,当a<0a=-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选:D.【点睛】a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键. 9.C解析:C【解析】【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选C.【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.10.D解析:D【解析】【分析】【详解】∵∠C=80°,∠CAD=60°,∴∠D=180°﹣80°﹣60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.11.B解析:B【解析】分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100-10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是102204305503100100245313⨯+⨯+⨯+⨯+=++++不是30,所以选项D不正确.故选B.点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.12.A解析:A【解析】试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1故选A.考点: 1.旋转;2.勾股定理.二、填空题13.n<2且【解析】分析:解方程得:x=n﹣2∵关于x的方程的解是负数∴n ﹣2<0解得:n<2又∵原方程有意义的条件为:∴即∴n的取值范围为n<2且解析:n<2且3 n2≠-【解析】分析:解方程3x n22x1+=+得:x=n﹣2,∵关于x的方程3x n22x1+=+的解是负数,∴n﹣2<0,解得:n<2.又∵原方程有意义的条件为:1x2≠-,∴1n22-≠-,即3n2≠-.∴n的取值范围为n<2且3n2≠-.14.<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a>−设f(x)=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.15.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=解析:2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,∴m2﹣2m=0且m≠0,解得,m=2,故答案是:2.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.16.2000【解析】【分析】设这种商品的进价是x元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x元由题意得(1+40)x×08=2240解得:x=2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240,解得:x=2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.17.-2【解析】【分析】若一元二次方程有实数根则根的判别式△=b2-4ac≥0建立关于a的不等式求出a的取值范围还要注意二次项系数不为0【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根解析:-2【解析】【分析】若一元二次方程有实数根,则根的判别式△=b2-4ac≥0,建立关于a的不等式,求出a的取值范围.还要注意二次项系数不为0.【详解】∵关于x的一元二次方程(a+1)x2-2x+3=0有实数根,∴△=4-4(a+1)×3≥0,且a+1≠0,解得a≤-23,且a≠-1,则a的最大整数值是-2.故答案为:-2.【点睛】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.也考查了一元二次方程的定义.18.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.19.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.20.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.三、解答题21.13【解析】【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答.【详解】原式112132=+-⨯+=111313=. 【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.22.甲公司有600人,乙公司有500人.【解析】分析:根据题意,可以设乙公司人数有x 人,则甲公司有(1+20%)x 人;由乙公司比甲公司人均多捐20元列分式方程,解之即可得出答案.详解:设乙公司有x 人,则甲公司就有(1+20%)x 人,即1.2x 人,根据题意,可列方程:60000x 600001.2x-=20 解之得:x =500经检验:x =500是该方程的实数根.23.49.【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.24.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A=∠F AB,根据等腰三角形的判定与性质,可得∠DAF=∠DF A,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC22FC FB+=2234+,∴AD=BC=DF=5,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.25.(1)11x-;(2)1【解析】【分析】(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.【详解】(1)原式=2(1)(1)(1)1x xx x x+-+--=111x xx x+---=11x xx+--=11x-(2)不等式组的解集为1≤x<3 ∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=11x-中x≠1,∴当x=1时,A=11x-无意义.②当x=2时,A=11x-=1=12-1考点:分式的化简求值、一元一次不等式组.。
2020年广州市铁一中学初三第一次模拟考试

本试卷分第一部分和第二部分.总分100分.考试时间80分钟.注意事项:1.答题前,考生务必在答题卡上用黑色字迹的签字笔或钢笔填写自己的考生号、姓名;填写考点考场号、座位号;再用2B铅笔把对应该两号码的标号涂黑.2.第一部分每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3.第二部分答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域;除作图可用2B铅笔外,其他都必须用黑色字迹钢笔或签字笔作答.不准使用涂改液.不按以上要求作答的答案无效.一、单选题(每题3分,共36分)1.我校物理老师使用望远镜观测太阳黑子,所用的望远镜主镜尺寸为“150750”,前三位数表示其主镜的直径。
如图1为观测时的照片,由此可判断主镜直径为:(镜筒的外直径仅稍大于主镜的直径)A.15.0m B.15.0dm C.15.0cm D.15.0mm2.如图,手机与音叉的位置保持不变,利用手机软件测出音叉发出的声音从70dB 变为50dB,说明音叉振动的()A.振幅变大B.振幅变小C.频率变高D.频率变低3.跳伞运动员在空中匀速下落的过程中,他的A.动能增加B.重力势能增加C.机械能不变D.机械能减少4.下列有关微粒的说法正确的是A.分子是由两个以上的原子构成的B.原子由中子和质子组成C.原子核的半径大约只有原子的十万分之一D.原子核由分子和电子组成5.关于物体的内能,下列说法中正确的是()A.当物体内能增加时,物体的温度就会上升B.某一物体的动能和势能增加,其内能就会增加C.温度低于0℃的物体不具有内能D.仅发生热传递时,高温物体内能减少,低温物体内能增加6.如图3 所示,一个鱼缸用隔板隔开两半,一半装海水,一半装淡水,则下列哪处受到的液体压强最小(ρ水=1g/cm3,ρ海水=1.1g/cm3)A.a B.b C.c D.d图1 图2海水试卷第1页,总6页7.小红在探究“什么情况下磁可以生电”时实验装置如图4所示,磁感线沿竖直方向。
2024年广东省广州市铁一中学初三一模数学试题含答案解析

2024年广东省广州市铁一中学中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A【分析】本题考查了轴对称图形、中心对称图形的识别.熟练掌握:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形;如果把一个图形绕某一点旋转180 后能与自身重合,这个图形是中心对称图形是解题的关键,根据轴对称图形、中心对称图形的定义进行判断即可.【详解】解:A中既是轴对称图形,又是中心对称图形,故符合要求;B中是轴对称图形,不是中心对称图形,故不符合要求;C中是轴对称图形,不是中心对称图形,故不符合要求;D中是轴对称图形,不是中心对称图形,故不符合要求;故选:A.2.鲁班锁鲁班锁,民间也称作孔明锁、八卦锁,相传由春秋时代鲁国工匠鲁班所创.如图是鲁班锁中的一个部件,它的主视图是()A.B.C.D.【答案】B【分析】本题考查了立体图形的三视图,根据主视图是从正面看的,结合选项图形,即可作答.【详解】解:依题意,鲁班锁的主视图是故选:B3.近来,中国芯片技术获得重大突破,7nm 芯片已经量产,一举打破以美国为首的西方世界的技术封锁,已知7nm 0.0000007cm =,则0.0000007用科学记数法表示为( )A .7710-⨯B .6710-⨯C .60.710-⨯D .70.710-⨯4.如图所示,点E 在AC 的延长线上,下列条件中能判断AB CD ∥的是 ( )A .3=4∠∠B .12∠=∠C .D DCE∠=∠D .180D ACD ∠∠+=【答案】B【分析】本题考查了平行线的判定,根据平行线的判定定理逐一判断即可求解,掌握平行线的判定定理是解题的关键.【详解】解:∵3=4∠∠,∴BD AC ∥,故A 选项不能判断AB CD ∥,不合题意;∵12∠=∠,∴AB CD ∥,故B 选项能能判断AB CD ∥,符合题意;∵D DCE ∠=∠,∴BD AC ∥,故C 选项不能判断AB CD ∥,不合题意;∵180D ACD ∠∠+= ,∴BD AC ∥,故D 选项不能判断AB CD ∥,不合题意;故选:B .5.如图,在扇形AOB 中,130AOB ∠=︒,3OA =,若弦BC AO ∥,则 AC 的长为( )A .512πB .23πC .56πD .43π【答案】C【分析】本题考查平行线的性质,等腰三角形的性质,熟练掌握平行线的性质与等边对等角的等腰三角形的性质是解题的关键.先根据平行线的性质求得C AOC ∠=∠,50OBC ∠=︒,再由等腰三角形的性质50C OBC ==︒∠∠,即可求解.【详解】解:连接OC ,如图,∵BC AO ∥,∴180AOB OBC ∠+∠=︒,C AOC ∠=∠,∵130AOB ∠=︒,∴50OBC ∠=︒,∵OB OC =,6.为评估一种水稻的种植效果,选了10块地作试验田.这10块地的亩产量(单位:kg )分别为1210,,,x x x ⋯,下面给出的统计量中可以用来评估这种水稻亩产量稳定程度的是( )A .这组数据的平均数B .这组数据的方差C .这组数据的众数D .这组数据的中位数【答案】B 【分析】根据题意,选择方差即可求解.【详解】解:依题意,给出的统计量中可以用来评估这种水稻亩产量稳定程度的是这组数据的方差,故选:B .【点睛】本题考查了选择合适的统计量,熟练掌握平均数、众数、中位数、方差的意义是解题的关键.7.下面计算中正确的是( )A .23325x x x +=B =C =D .()233a b ab b÷=-8.如图,O 是ABC 的外接圆,且,36AB AC BAC =∠=︒,在弧AB 上取点D (不与点A ,B 重合),连接,BD AD ,则BAD ABD ∠+∠的度数是( )A .60°B .62°C .72°D .73°则∠BAD =∠BCD ,∠ABD =∠ACD 9.如图①,在正方形ABCD 中,点M 是AB 的中点,设DN x =,AN MN y +=.已知y 与x 之间的函数图象如图②所示,点(,E a 是图象上的最低点,那么正方形的边长的值为( )∵四边形ABCD是正方形,∴A、C关于BD对称,=,∴NA NC∴AN MN NC MN+=+,故选:C .【点睛】本题考查的是动点图象问题,涉及到正方形的性质,轴对称的性质,利用勾股定理求线段长是解题的关键.10.如图是由全等的含60︒角的小菱形组成的网格,每个小形的顶点叫做格点,其中点A ,B ,C 在格点上,则tan ACB ∠的值为( )A .12B C D 由菱形的性质可得,BE ⊥设菱形的边长为a ,则AB ∴sin 2BE AB A a =⋅=,1二、填空题11.因式分解:2x xy -=.【答案】()x x y -【分析】根据观察可知公因式是x ,因此提出x 即可得出答案.【详解】解:x 2-xy = x (x -y ).故答案:()x x y -【点睛】提公因式法因式分解是本题的考点,通过观察正确找出公因式是解题的关键.12.如图,圆锥的侧面展开图是一个圆心角为120︒的扇形,若圆锥的底面圆半径是5,则圆锥的母线l 为 .13.已知一元二次方程230x x k -+=的两个实数根为12,x x ,若1212221x x x x ++=,则实数k = .【答案】5-【分析】根据一元二次方程的根与系数的关系,得出12123,x x x x k +==,代入已知等式,即可求解.【详解】解:∵一元二次方程230x x k -+=的两个实数根为12,x x ,∴12123,x x x x k+==∵1212221x x x x ++=,∴61k +=,解得:5k =-,故答案为:5-.【点睛】本题考查了一元二次方程的根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.14.如图,CD 为Rt ABC △斜边AB 上的中线,E 为AC 的中点.若8AC =,5CD =,则DE = .15.如图,在平面直角坐标系xOy 中,反比例函数(0)k y x x=>的图象与半径为10的O 交于,A B 两点,若60AOB ∠=︒,则k 的值是 .16.如图,在ABC 中,90BAC ∠=︒,2AB =,AC =,点D 是BC 边上的动点,连接AD ,则3AD DC +的最小值为 .∵90BAC ∠=︒,2AB =,42AC =,∴226BC AB AC =+=,∴21sin 63AB C BC ===,∵90F FAC C ∠=︒-∠=∠,∴4222cos cos AC F C ====,三、解答题17.计算:11(4)2sin605π-⎛⎫---︒+ ⎪⎝⎭.18.如图,已知点D是BC上一点,DE⊥AB,DF⊥AC,垂足分别为E、F,连接AD,若AD 垂直平分EF,求证:AD是△ABC的角平分线.【答案】见解析【分析】根据线段垂直平分线的性质得到DE=DF,再根据角平分线的判定定理即可证得AD 是△ABC的角平分线.【详解】证明:∵AD 垂直平分EF ,∴DE =DF ,∵DE ⊥AB ,DF ⊥AC ,∴AD 是△ABC 的角平分线.【点睛】本题考查了角平分线判定定理,线段垂直平分线性质;熟记“线段垂直平分线上的点到线段两端的距离相等”和“到角两边距离相等的点都在角的平分线上”是解决问题的关键.19.先化简,再求值: 232121x x x x x x -⎛⎫-÷ ⎪+++,其中x 满足220240x x +-=.20.如图,在平面直角坐标系中,已知ABC 的三个顶点坐标分别是()()2,1,1,2A B --,()3,3C -.(1)将ABC 向上平移4个单位,再向右平移1个单位,得到111A B C △,请画出111A B C △.(2)请画出ABC 关于y 轴对称的222A B C △.(3)将222A B C △着原点O 顺时针旋转90︒,得到333A B C △,求线段22A C 在旋转过程中扫过的面积(结果保留π).(2)如图所示,222A B C △即为所求;(3)将222A B C △着原点O 顺时针旋转90︒,得到设 23A A 所在圆交3OC 于点D ,交2OC 于点E 23OA OA =,23OC OC =,23C E C D ∴=,3290A OA ∠=︒ ,2390C OC ∠=︒,32A OD A OE ∴∠=∠,32A D A E ∴=,S S ∴=,21.中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如下尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.(4)将《西游记》、《三国演义》、《水浒传》、《红楼梦》分别记作画树状图可得:由图可知,共有16种等可能的结果,其中选中同一名著的有故答案为:14.【点睛】此题考查了树状图法与列表法求概率,以及条形统计图与扇形统计图的知识.22.某商店为了推销一种新产品,在某地先后举行40场产品发布会,已知该产品每台成本为10万元,设第x场产品的销售量为y(台),已知第一场销售产品49台,然后每增加一场,产品就少卖出1台;(1)直接写出y与x之间满足的函数关系式;产品的每场销售单价p(万元)由基本价和浮动价两部分相加组成,其中基本价保持不变,经过统计,发现第1场—第20场浮动价与发布场次x成正比,第21场—第40场浮动价与发布场次x成反比,得到如下数据:x(场)31025p(万元)10.61214.2(2)求p与x之间满足的函数关系式;(3)当产品销售单价为13万元时,求销售场次是第几场?(4)在这40场产品发布会中,求哪一场获得的利润最大,最大利润是多少?23.如图,AB 为经过圆心O 的一条线段,且与O 交于E 点.(1)过B 在AB 的上方作O 的切线,切点为D ,过A 作AC BD ⊥,垂足为C ,AC 与O 交于F 点. 请尺规作图,不用写作图的详细步骤.(2)求证:AD 平分BAC ∠;(3)若3BD =,1tan 2CAD ∠=,求O 的半径.(2)证明:如图,∵BC 是O 的切线,∴OD BC ⊥,∵AC BD ⊥,∴OD AC ∥,∴ODA CAD ∠=∠,∵OD OA =,∴ODA OAD ∠=∠,∴OAD CAD ∠=∠,∴AD 平分BAC∠(3)解:连接DE ,∵AE 是O 直径,∴90ADE ∠=︒,∴90EDO ODA ∠+∠=︒,∵BD 是O 切线,∴OD BD ⊥,24.已知抛物线2()y ax a m x m =-++与x 轴交于A 、B 两点,与y 轴交于点C .(1)当(0,3)C -且 13a m =- .①求抛物线的解析式.②若0≤<k x ,且1k <-,y 的最大值和最小值分别为p ,q ,且1p q +=,求k 的值.③若该抛物线经过1(34,)M n y +,2(21,)N n y -两点,且12y y >,求n 的取值范围.(2)当13AB =时,函数2()y ax a m x m =-++有最小值1m -,直接写出a 的值.25.探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt ABC △中,90,C AC BC ∠=︒=,D 是AB 边上一点,且1AD BD n=(n 为正整数),E 是AC 边上的动点,过点D 作DE 的垂线交直线BC 于点F .【初步感知】(1)如图1,当1n =时,兴趣小组探究得出结论:AE BF AB +=,请写出证明过程.【深入探究】(2)①如图2,当2n =,且点F 在线段BC 上时,试探究线段AE BF AB ,,之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE BF AB ,,之间数量关系的一般结论(直接写出结论,不必证明)【拓展运用】(3)如图3,连接EF ,设EF 的中点为M .若AB =E 从点A 运动到点C 的过程中,点M 运动的路径长(用含n 的代数式表示).当1n =时,1AD BD=,即AD BD =当2n =时,12AD DB =,即2AD = G 是DB 的中点,AD DG ∴=,23AG AB =, HG BC ∥,同①,可得22AE JG AG +=,1AD BD n =,AD DG =,1DG BD n∴=,21AG AB n =+,1JG DG同(1)中原理,可证明DHE △≌△DF为y轴,DB为如图,以点D为原点,1段,交AB于点G,过点2F作AB的垂线段,交。
2020届九年级下学期第一次模拟考试数学试题

初三一模数 学学校班级姓名1.在疫情防控的特殊时期,为了满足初三高三学生的复习备考需求,北京市教委联合北京卫视共同推出电视课堂节目《老师请回答特别节目“空中课堂”》,在节目播出期间。
全市约有200 000名师生收看了节目.将200 000用科学记数法表示应为 A.0.2×105B.0.2×106C.2×105D.2×1062.下列图形中,是轴对称图形的是3.在数轴上,表示实数a 的点如图所示,则2−a 的值可以为A.−5.4B.−1.4C.0D.1.44.以AB =2cm,BC =3cm,CD =2cm,DA =4cm 为边画出四边形ABCD,可以画出的四边形个数为A. 0B. 1C. 2D.无限多5.在一个长2分米、宽1分米、高8分米的长方体容器中,水面高5分米,把一个实心铁块缓慢浸入这个容器的水中,能够表示铁块浸入水中的体积y (单位:分米3)与水面上升高度x (单位:分米)之间关系的图象的是6. 如果a 2+a −1=0,那么代数式(1−a−1a 2+2a+1)÷aa+1的值是A. 3B. 1C. −1D. −37.在平面直角坐标系xOy 中,点A(−1,2),B(2,3),y =ax 2的图象如图所示,则a 的值可以为 A. 0.7 B. 0.9 C. 2 D. 2.18.改革开放以来,人们的支付方式发生了巨大转变,近年来,移动支付已成为主要的支付方式之一,为了解某校学生上个月A,B 两种移动支付方式的使用情况,从全校1000名学生中随机抽取了100人,发现样本中A,B 两种支付方式都不使用的有5人,样本中仅使用A 种支付方式和仅使用B 种支付方式的学生的支付金额a (元)的分布情况如下:支付金额a (元)支付方式0<a ≤1000 1000<a ≤2000 a >2000仅使用A 18人 9人 3人 仅使用B10人14人1人①从样本中使用移动支付的学生中随机抽取一名学生,该生使用A 支付方式的概率大于他使用B 支付方式的概率;②根据样本数据估计,全校1000名学生中。
2020年铁一中初三数学第一次模拟考试试题原题

(1)求小林被分配到“C.(5 公里)”项目组的概率.
(2)已知小林被分配到“A.(半程马拉松)”项目组,请利用列表或画树状图的方法求出三人被分配到不同项目组的概
平面垂直,请根据相关测量信息,求铁塔 AB 的高.( 2 0 ≈ 0.34, 2 0 ≈ 0.94,tan20 ≈ 0.36)
45°
A
C
B
F
20°
D
O
21、
(本题满分7 分))某校九年级决定购买学习用具对在本次适应性考试中数学成绩进步较大的同学进行奖励,
其中计划购买甲、
时间分为五个类别:A(0 ≤ < 6)B(6 ≤ < 12),C(12 ≤ < 18),D(18 ≤ < 24),E( ≥ 24),并将调查结果果成下两
幅不完整的统计图,请结合图中信息解答下列问题:
(1)在这次活动中被调查的学生共
人.
(2)补全条形统计图.
(3)该校共有学生 1300 人,根据抽样调查结果,请你估计该校有多少名学生在三月份在家做家务的时间不低于
A、−
3
4
B、− 3
3;2a=7a2
C、-2
)
D、2
)
B、(-3b)2·2b3=-6b6
C、6a8÷2a3=3a7
D、(b+2a)(2a-b)=4a2-b2
6、如图,已知△ABC 中∠A=90°,点 E、D 分别在 AB、AC 边上,且 BE 等于 8,CD=10,点 F、M、N 分别是
B、2√13
C、2√3
D、5
C
D
O
A
B
第9题图
10、如图,二次函数 y=ax2+bx+c(a≠0)的图象与 x 轴相交于 A、B 两点,则下列结论中正确的是(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年广州市铁一中学初三第一次模拟考试数学试题
第一部分(选择题 共30分)
一、选择题(本大题共10小题,每小题3分,满分30分,在四个选项中,只有一项是符合题目要求的。
)
1.2020-的倒数是( )
A .2020
B .2020- C
.20201 D .2020
1- 2.月球离地球平均距离是384400000米,数据384400000用科学记数法表示为( ) A .810844⨯ B .710844⨯ C .610844⨯ D .510844⨯
3.如图,b a //,︒=∠701,则2∠等于( )
A .︒20
B .︒35
C .︒70
D .︒110
4.如图,是由两个正方体组成的几何体,则该几何体的俯视图为( )
A .
B .
C .
D .
5.为了建设“书香校园”,某班开展捐书活动班长将本班44名学生捐书情况统计如下:
该组数据捐书本数的众数和中位数分别为( )
A .5,5
B .21,8
C .10,5.4
D .5,5.4
6.甲、乙两人练习跑步.如果乙先跑10米,则甲跑5秒就可追上乙:如果乙先跑2秒,则甲跑4秒就可追上乙.若设甲的速度为x 米/秒,乙的速度为y 米/秒,则下列方程组中正确的是( )
A .⎩⎨⎧+=+=y y x y x 2441055,
B .⎩⎨⎧=-=-y
x x y x 4241055,
C .⎩⎨⎧=-=+2
445105y x y x , D .4241055=-=-x y x , 7.将抛物线22x y =向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).
A .3)2(22++=x y ;
B .3)2(22+-=x y ;
C .3)2(22--=x y
D .3)2(22
-+=x y ,
8.已知m ,n 是关于x 的一元二次方程032=+-a x x 的两个解.若6)1)(1(-=--n m .则a 的值为( ) A .10- B .4 C .4- D .10
9.如图,直线232+=x y 与x 轴、y 轴分别交于点A 和点B ,点C
、D 分别为线段AB 、OB 的中点,点P 为OA 上一动点,PD PC +值最小时点P 的坐标为( )
A .21(-, )0
B .43(-, )0
C .23(-, )0
D .25(-, )0
10.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E ,F 分别在BC 和CD 上,下列结论: ①CF CE =:②︒=∠75AEB :③EF DF BE =+:④32+=ABCD S 正方形,其中正确的序号是( ) A .①②④ B .①② C .②③④ D .①③④
第二部分(非选择题共120分)
二、填空题(共6小题,每小题3分,满分18分)
11.因式分解:=-ab b a 39 .
12.在函数x
x y 21-=中,自变量x 的取值范围是 . 13.不等式组⎪⎩⎪⎨⎧≥+≤-1
23023x x 的解集是 .
14.已知扇形的圆心角是︒120,半径为cm 6,把它围成一个圆锥的侧面,则圆锥的底面半径是 cm .
15.如图,⊙O 的半径为6,AB 是⊙O 的弦,半径AB OC ⊥, D 是⊙O 上一点,︒=∠5.22CDB ,则AB =
16.如图,二次函数c bx ax y ++=2)0(≠a 的图象经过点2
1(, )0 和m (, )y .对称轴为直线1-=x ,下列 5个结论:其中正确的结论为 .(注:只填写正确结论的序号)
①abc >0:②042=++c b a ;③b a -2>0;④c b 23+>0;⑤b a -≥m )(b am -
三、解答题(共9小题,满分102分)
17.(本小题满分9分)计算:︒----+⎪⎭⎫ ⎝⎛-30sin 4)5(322101π
18.(本小题满分9分)如图,BD 即是矩形ABCD 的一条对角线。
(1)作BD 的垂直平分线EF ,分别交AD 、BC 于点E 、F ,垂足为点O .(要求用尺规作图,保留作图痕迹,
不要求写作法):
(2)求证:BF DE =
19.(本小题满分9分)先化简,再求值:3(-x x ·)32-x ÷9
222--x x x ,其中x 为方程042=-x 的根.
20.(本小题满分10分)书法是我国的文化瑰宝,研习书法能培养高雅的品格.某校为加强书法教学了,了解学生现有的书写能力,随机抽取了部分学生进行测试,测试结果分为优秀、良好、及格、不及格四个等级,分别用A ,B ,C ,D 表示,并将测试结果绘制成如图,
两幅不完整的统计图.
请根据统计图中的信息解答以下问题:
(1)本次抽取的学生人数是 .扇形统计图
中A 所对应扇形圆心角的度数是 .
(2)把条形统计图补充完整.
(3)若该学校共有2800人,等级达到优秀的人数大约有多少?
(4)A 等级的4名学生中有3名女生1名男生,现在需要从这4人中随机抽取2人参加电视台举办的“中 学生书法比赛”,请用列表或画树状图的方法,求被抽取的2人恰好是名男生1名女生的概率.
A B C D 第18题图
21.(本小题满分10分)如图,一次函数b kx y +=)0(≠k 的图象与反比例函数x m y =)0(≠m 的图象相交于点 A 1(,)2,B a (,)1-
(1)求反比例函数和一次函数的解析式:
(2)若直线b kx y +=)0(≠k 与x 轴交于点C ,x 轴上是否存在一点P ,使4=ABC S .若存在,请求出点P 坐标:若不存在,说明理由.
22.(本小题满分12分)某学校举行“青春心向党建功新时代”演讲比资活动,准备购买甲、乙两种奖品,小昆发现用480元购买甲种奖品的数目恰好与用360元购买乙种奖品的数目相等,已知甲种奖品的单价比乙种奖品的单价多10元.
(1)求甲、乙两种奖品的单价各是多少元?
(2)如果需要购买甲乙两种奖品共100个,且甲种奖品的数目不低于乙种奖品数目的2倍。
问购买多少个甲 种奖品,才使得总购买费用最少?
23.(本小题满分12分)如周,点O 是线段AH 上一点,3=AH ,以点O 为圆心,OA 的长为半径作⊙O .过点H 作AH 的垂线交⊙O 于C ,N 两点,点B 在线段CN 的延长线上,连接AB 交⊙O 于M .以AB 、BC 为边作平行四边形ABCD
(1)求证:AD 是⊙O 的切线:
(2)AH OH 3
1=
,求四边形AHCD 与⊙O 重叠部分的面积: (3)若AH NH 31=,45=BN .连接MN .求OH 和MN 的长.
24. (本小题满分14分)在ABC ∆中. D .E 分别是ABC ∆两边的中点,如果 上的所有点都在ABC ∆的内部或边上,则称 为ABC ∆的中内弧.例如,图1中 是ABC ∆的一条中内弧.
(1)如图2.在ABC Rt ∆中,22==AC AB .D .E 分别是AB ,AC 的中点,画出ABC ∆的最长的中内弧 并直接写出此时 的长:
(2)在平面直角坐标系中,已知点A 0(,)2,B 0(,)0,
C t 4(,)0,t (>)0,在ABC ∆中,
D .
E 分别
是AB .AC 的中点
①若2
1=t :求ABC ∆的中内弧 所在圆的圆心P 的纵坐标的取值范围: ②若在ABC ∆中存在一条中内弧 ,使得 所在圆的圆心P 在ABC ∆的内部或边上,直接写出t 的取值范围.
25.(本小题满分14分)如图,已知抛物线c bx x y ++-=2
与x 轴交于A 、B 两点,4=AB ,交y 轴于点C ,对称轴是直线1=x .
(1)求抛物线的解析式及点C 的坐标:
(2)连接BC ,E 是线段OC 上一点,E 关于直线1=x 的对称点F 正好落在BC 上.求点F 的坐标:
(3)动点M 从点O 出发,以每秒2个单位长度的速度向点B 运动,过M 作x 轴的垂线交抛物线于点N , 交线段BC 于点Q .设运动时间为t t (>)0秒.
①若AOC ∆与BMN ∆相似,请直接写出t 的值:
②BOQ ∆能否为等腰三角形?若能,求出t 的值:若不能,请说明理由.。