高职高考数学主要知识点汇总

合集下载

职高生数学必考知识点总结

职高生数学必考知识点总结

职高生数学必考知识点总结一、函数及其图像1. 定义:函数是一个对应关系,每个自变量对应唯一的因变量。

2. 函数的性质:- 定义域和值域:定义域是自变量的取值范围,值域是因变量的取值范围。

- 奇偶性:若对任意x∈D,有f(-x) = f(x),则称函数是偶函数;若对任意x∈D,有f(-x) = -f(x),则称函数是奇函数。

- 增减性:若对任意x1<x2,有f(x1)<f(x2),则称函数在区间(x1,x2)上是增函数;若对任意x1<x2,有f(x1)>f(x2),则称函数在区间(x1,x2)上是减函数。

3. 常见函数:- 线性函数:f(x) = kx + b,其中k为斜率,b为截距。

- 幂函数:f(x) = x^n,其中n为自然数。

- 指数函数:f(x) = a^x,其中a>0且a≠1。

- 对数函数:f(x) = loga(x),其中a>0且a≠1。

4. 图像与性质:- 函数的图像可以用坐标系中的曲线表示,例如线性函数的图像是一条直线。

- 图像的特征包括对称性、间断点、渐近线等。

二、三角函数1. 基本概念:- 弧度制:以单位圆上圆心角所对的弧长为一单位。

- 正弦、余弦、正切等三角函数。

2. 三角函数的性质:- 周期性:sin(x+2π) = sinx, cos(x+2π) = cosx, tan(x+π) = tanx。

- 奇偶性:sin(-x) = -sinx, cos(-x) = cosx, tan(-x) = -tanx。

- 上下界:-1 ≤ sinx ≤ 1, -1 ≤ cosx ≤ 1, tanx的定义域是全体实数。

3. 常用三角函数的图像:- sinx和cosx的图像是正弦曲线和余弦曲线,它们的周期为2π。

- tanx的图像是一条无穷长的曲线,它的周期是π。

三、导数与微分1. 导数的定义:- 函数f(x)在x0处的导数定义为f'(x0) = lim(h→0)[f(x0+h)-f(x0)]/h。

职教高考数学完整知识点

职教高考数学完整知识点

职教高考数学完整知识点职教高考数学是职业教育高考的一门重要科目,也是考生们大多数感到头疼的科目之一。

为了帮助考生们更好地备考,下面将介绍一些职教高考数学的完整知识点。

一、函数与方程在职教高考数学中,函数与方程是一个非常重要的知识点。

考生需要掌握函数的定义和性质,熟练运用一元一次函数、一元二次函数等各种函数的相关知识。

同时,还需要了解方程的基本概念和解题方法,能够解一元一次方程组、一元二次方程等各类方程。

二、立体几何立体几何也是职教高考数学中一个重要的知识点。

考生需要了解各种立体图形的基本概念和性质,能够运用相关的公式计算表面积和体积。

此外,还需要熟练掌握立体几何的空间关系,能够判断两个立体图形是否相交、垂直等。

三、概率与统计概率与统计是职教高考数学中另一个重要的知识点。

考生需要了解基本概率原理和概率模型,能够计算事件的概率。

同时,还需要熟悉统计学中的基本概念和方法,能够分析和处理统计数据。

四、解析几何解析几何是职教高考数学中一个相对较难的知识点。

考生需要了解平面直角坐标系、线段的坐标及其性质等基本概念,能够解析和运用直线、圆的相关知识。

同时,还需要掌握向量的运算和性质,能够解析和运用向量的相关知识。

五、数列与数学归纳法数列与数学归纳法是职教高考数学中一个相对抽象的知识点。

考生需要了解数列的基本概念和性质,能够判断数列的递增性、递减性等。

同时,还需要掌握数学归纳法的基本原理和应用方法,能够运用数学归纳法解决问题。

六、导数与微分导数与微分是职教高考数学中一个相对较难的知识点。

考生需要了解导数的定义和性质,能够计算函数的导数和高阶导数。

同时,还需要掌握微分的基本概念和运算法则,能够解决相关的问题。

七、积分与不定积分积分与不定积分是职教高考数学中一个相对抽象的知识点。

考生需要了解积分的定义和性质,能够计算函数的不定积分和定积分。

同时,还需要掌握积分的基本运算法则和应用方法,能够解决相关的问题。

八、数学建模数学建模是职教高考数学中一个相对综合的知识点。

高职高考数学考点总结归纳

高职高考数学考点总结归纳

高职高考数学考点总结归纳数学作为一门重要的学科,不仅仅在高考中占有重要的比重,也在高职高考中扮演着不可忽视的角色。

为了帮助广大考生更好地应对高职高考数学考试,本文将对高职高考数学考点进行总结归纳。

**1. 数与代数**数与代数是数学的基础,也是高职高考数学考试中的重要内容。

在这一部分,主要考查数的性质、数集、数轴、代数式与方程、函数等知识点。

考生在备考过程中应重点掌握数的运算规则、等式与方程的解法、函数的性质及其图像等内容。

**2. 几何与图形**几何与图形部分是高职高考数学考试的一大难点。

主要包括平面与空间图形的性质、几何变换、三角函数等内容。

考生需要熟练掌握平面图形的计算、三角函数的相关公式以及几何变换的原理与应用。

**3. 数据与概率**数据与概率是数学中的实用分支,也是高职高考数学考试中的一大考点。

这一部分主要考查数据的收集与整理、数据的分析与解释、概率的计算等内容。

考生需要掌握数据的统计方法、概率的基本概念以及概率计算的方法。

**4. 初等函数**初等函数是高职高考数学考试中的基础内容之一。

包括常用函数、反函数、函数的运算、函数的图像与性质等内容。

考生需要熟练掌握常用函数的性质、函数之间的运算规则以及函数图像的绘制方法。

**5. 解析几何**解析几何是高职高考数学考试中的一大考点,也是相对较难的一部分。

主要包括平面解析几何和空间解析几何两个部分。

考生需要熟练掌握坐标系的建立与应用、直线、圆的方程以及平面与空间图形的解析性质等内容。

**6. 导数与微分**导数与微分是高职高考数学考试的一大难点,也是近年来高职高考数学考试中经常涉及的考点。

主要包括导数的定义、基本运算法则、函数的导数、相关公式以及微分的应用等内容。

考生需要具备导数和微分的概念及其运用能力。

**7. 积分与定积分**积分与定积分是高职高考数学考试的又一难点,也是高考数学中重点考查的内容之一。

主要包括积分的概念、基本运算法则、不定积分、定积分的定义与计算、面积与体积的计算等内容。

职高高中数学知识点全总结

职高高中数学知识点全总结

职高高中数学知识点全总结一、数学基础1. 数的基本概念- 自然数、整数、有理数和无理数的定义与性质- 实数的分类与运算法则- 复数的基本概念及四则运算2. 代数表达式- 单项式与多项式的构成及运算- 因式分解的基本方法- 分式与分式方程的解法3. 初等函数- 线性函数、二次函数的图像与性质- 指数函数、对数函数和幂函数的基本概念与运算- 三角函数的定义、基本关系式及图像4. 初等代数方程- 一元一次方程、一元二次方程的解法- 不等式的基本性质与解集表示- 系统方程组的解法,包括代入法、消元法二、几何知识1. 平面几何- 点、线、面的基本性质- 三角形、四边形的基本性质与计算- 圆的基本性质与相关公式2. 空间几何- 空间直线与平面的方程及其关系- 柱、锥、台、球的体积与表面积计算- 空间向量的概念及其在几何中的应用3. 解析几何- 平面直角坐标系与曲线方程- 空间直角坐标系与空间图形- 圆锥曲线(椭圆、双曲线、抛物线)的标准方程三、概率与统计1. 概率基础- 随机事件的概率定义与计算- 条件概率与独立事件的概念- 随机变量及其分布类型2. 统计初步- 数据的收集、整理与描述- 样本及其分布特征(均值、方差、标准差)- 总体参数的估计与假设检验四、数学应用1. 生活中的数学应用- 利率、复利与折现- 比例、百分数与利率的实际应用- 统计图表的解读与制作2. 职业领域的数学应用- 工程图纸的阅读与计算- 生产流程中的优化问题- 经济活动中的成本与收益分析五、数学思维与方法1. 逻辑思维与证明- 演绎推理与归纳推理- 数学证明的基本方法- 反证法与数学归纳法2. 解题策略- 问题转化与化归- 分类讨论与数形结合- 函数思想与方程思想3. 数学软件应用- 常用数学软件的基本操作- 数据处理与图形绘制- 数值计算与符号计算总结职高高中数学课程旨在培养学生的数学基础知识和应用能力,同时注重数学思维的培养。

通过对上述知识点的系统学习,学生能够掌握数学的基本理论和方法,为未来的职业生涯和终身学习打下坚实的基础。

职高高三数学知识点复习

职高高三数学知识点复习

职高高三数学知识点复习数学是一门重要的学科,对于职高高三学生来说,数学知识的掌握至关重要。

下面将对职高高三数学知识点进行复习。

一、函数与方程1. 函数的概念与性质函数是一种特殊的关系,通常用y = f(x)表示。

函数的定义域、值域以及图像等都是需要重点掌握的内容。

2. 二次函数与一次函数二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b、c为常数。

一次函数的标准形式为f(x) = kx + b,其中k、b为常数。

熟练掌握二次函数与一次函数的图像、性质及相关计算方法。

3. 方程的解与解法方程是数学中常见的问题形式,包括一元一次方程、二次方程、三角方程等。

通过代数的方法求解方程,并要能灵活运用代入法、化简法、配方法等解题方法。

二、数列与数列的操作1. 等差数列与等差数列求和等差数列通常用an = a1 + (n-1)d表示,其中a1为首项,d为公差。

掌握等差数列的公式与求和公式,并能运用其进行计算。

2. 等比数列与等比数列求和等比数列通常用an = a1 * q^(n-1)表示,其中a1为首项,q为公比。

掌握等比数列的公式与求和公式,并能运用其进行计算。

三、概率与统计1. 概率基本概念与事件的计算掌握概率的基本概念,包括随机事件、样本空间、事件的概率等。

能够通过计算概率解决实际问题。

2. 统计与统计量了解统计学的基本概念,包括样本、总体、频数、频率等。

能够计算平均数、中位数、众数等统计量,对数据进行分析与解读。

四、几何与三角学1. 平面几何基本概念与性质熟悉平面几何中的基本概念,如点、直线、线段、射线等。

了解几何图形的性质,能够进行相关的证明与计算。

2. 三角函数与三角恒等式掌握正弦、余弦、正切等三角函数的概念与性质,熟练运用三角函数解决几何问题。

同时,了解并掌握一些常见的三角恒等式,如和差化积、倍角公式等。

五、导数与微分1. 导数的概念与运算法则理解导数的定义与性质,熟练运用导数的基本运算法则,包括加法法则、乘法法则、链式法则等。

高职数学知识点总结

高职数学知识点总结

高职数学知识点总结本文将从高职数学的基本知识点出发,结合实际应用,分析和总结高职数学的相关知识点,帮助学生更好地理解和掌握高职数学的重要内容。

一、数学基础知识点1. 整式与分式整式是指由数字、变量与运算符号(加减乘除)构成的式子。

高职数学中,整式的加减乘除是基本的运算规则,学生需要掌握整式的化简、展开、合并同类项等基本方法。

分式是指由整式分子与分母构成的式子。

在实际生活中,分式常常用来表示比例、百分比、倒数等概念,学生需要掌握分式的化简、通分、约分等基本方法。

2. 方程与不等式方程是指含有未知数的等式。

高职数学中,方程的解是一个重要的概念,学生需要掌握一元一次方程、一元二次方程、一元二次根式方程等基本类型的方程的求解方法。

不等式是指不含有等号的式子。

在实际问题中,不等式常常用来表示范围、条件等概念,学生需要掌握一元一次不等式、一元二次不等式等基本类型的不等式的求解方法。

3. 几何基本知识几何是数学中的一个重要分支,它研究空间中点、线、面的位置关系和性质。

高职数学中,学生需要掌握点、线、面的基本概念、几何图形的性质、几何变换等基本知识。

4. 函数与方程函数是指对于每一个自变量,都有且只有一个因变量与之对应的关系。

高职数学中,函数的概念和性质是重要的内容,学生需要掌握一次函数、二次函数、指数函数、对数函数、三角函数等基本类型的函数。

方程是指含有未知数的等式。

高职数学中,函数与方程的关系是一个重要的内容,学生需要掌握函数的图像与方程的关系、函数的零点与方程的解的关系等基本知识。

二、数学应用知识点1. 统计学统计学是研究数据收集、分析和解释的科学。

在实际生活中,统计学常常用来描述数据的分布、趋势、关联等信息,学生需要掌握数据的描述统计、推断统计、统计分布、抽样调查等基本方法。

2. 金融数学金融数学是数学与金融学相结合的一门学科,它研究金融产品的定价、投资组合的构建等问题。

在实际投资中,金融数学常常用来计算利息、汇率、期权等内容,学生需要掌握复利计算、现值计算、期权定价等基本方法。

高职高三数学知识点大全

高职高三数学知识点大全

高职高三数学知识点大全数学是一个重要且必修的学科,对于高职高三的学生来说尤为重要。

本文将为大家总结并介绍高职高三数学的知识点,帮助学生们更好地理解和掌握这些知识,提升数学能力。

一、函数与方程1. 一次函数- 定义:一次函数是具有形如y = kx + b的方程,其中k和b是常数。

- 性质:一次函数是直线,斜率k代表了直线的倾斜程度,截距b代表了直线与y轴的交点。

- 经典应用:直线的斜率问题、线性方程组的解法等。

2. 二次函数- 定义:二次函数是具有形如y = ax^2 + bx + c的方程,其中a、b和c是常数且a不为零。

- 性质:二次函数的图像是抛物线,开口方向由a的正负决定,顶点坐标由公式(-b/2a, f(-b/2a))确定。

- 经典应用:抛物线的最值问题、二次方程的求解等。

3. 指数函数与对数函数- 指数函数:具有形如y = a^x的方程,其中a是底数,x是指数。

- 对数函数:具有形如y = loga^x的方程,其中a是底数,x 是真数。

- 性质:指数函数与对数函数是互逆的,有许多重要的性质和公式。

- 经典应用:复利计算、生物学中的指数增长等。

4. 三角函数- 常见的三角函数有正弦函数、余弦函数和正切函数等,其中角度的单位可以是度或弧度。

- 基本性质:周期性、奇偶性、单调性等。

- 经典应用:三角函数的图像、三角方程的解法等。

二、几何与空间1. 直线与平面- 直线的特征:直线上的两点可以唯一确定一条直线,直线的斜率等于两点之间的纵坐标差与横坐标差的比值。

- 平面的特征:平面上的三点不共线,可以唯一确定一个平面。

- 经典应用:直线与平面的相交关系、平行线与垂直线的性质等。

2. 图形的性质- 四边形:矩形、正方形、菱形、长方形等的特征与性质。

- 三角形:等边三角形、等腰三角形、直角三角形等的特征与性质。

- 多边形:n边形的内角和、外角和等的计算方法。

- 经典应用:图形的周长与面积计算、图形的相似关系等。

数学知识点汇总高职高考

数学知识点汇总高职高考

数学知识点汇总高职高考随着高职高考的逐渐普及和发展,数学作为一个重要的科目,对于考生来说也显得尤为重要。

在备考过程中,合理的复习计划和理解关键知识点是取得好成绩的关键。

本文将对高职高考中数学的一些重要知识点进行汇总,帮助考生更好地备考。

1. 函数与方程函数是数学中的一个重要概念,也是高职高考数学考试中的重点内容之一。

在函数的学习中,需要掌握函数的定义、性质和各类基本函数的图像特征和变化规律。

此外,还需要熟练掌握一元二次方程和一元二次不等式的解法,理解方程与函数之间的关系。

2. 数列与数列的通项公式数列是由一系列数字按照一定规律排列而成的序列,是数学中常见的一种形式。

在高职高考数学考试中,数列的考查主要包括等差数列和等比数列两种常见形式,需要熟练掌握计算数列的前n项和通项公式的推导与应用。

3. 平面几何平面几何是数学中的基础内容,也是高职高考数学考试中重要的一块知识点。

在平面几何的学习中,需要掌握直线、射线、线段的定义与性质,直线与平面的关系,圆的定义与性质等基本概念。

另外,需要熟练掌握平面几何中的定理和证明方法,能够运用相关定理解决实际问题。

4. 空间几何空间几何是平面几何的进一步拓展,也是高职高考数学考试中涉及的重要内容。

在空间几何的学习中,需要掌握直线、平面的位置关系,熟练运用空间几何中的定理和推论,理解立体图形的性质和计算方法。

5. 概率与统计概率与统计是数学中与实际应用紧密相关的内容,在高职高考数学考试中也有一定的考查。

在概率与统计的学习中,需要掌握基本的概率计算方法,理解统计分布和统计图表的含义,能够进行简单的统计推断和分析。

6. 三角函数三角函数是数学中的重要分支,也是高职高考数学考试中的重点内容之一。

在三角函数的学习中,需要掌握基本三角函数的定义、性质和图像特征,能够灵活运用三角函数解决相关问题。

7. 排列与组合排列与组合是数学中的一个重要分支,也是高职高考数学考试中的一部分。

在排列与组合的学习中,需要掌握排列与组合的基本概念和计算方法,能够应用排列与组合的原理解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高职高考数学主要知识点: 1、集合的子集个数:个。

真子集个数为个子集个数为个的子集个数为集合12;2;2},,,,{321-⋅⋅⋅⋅⋅n n n n a a a a个。

有关系的集合满足m n n m A a a a a A a a a a -⋅⋅⋅⋅⋅⊆⊆⋅⋅⋅⋅⋅2},,,,{},,,,{3213212、集合的运算:交集;}|{B x A x x B A ∈∈=⋂且并集:}|{B x A x x B A ∈∈=⋃或 补集:},|{A x U A U x x A C U ∉⊆∈=且3、 命题的充分条件:、原命题成立,逆命题不成立 命题的必要条件:逆命题成立,原命题不成立。

命题的充要条件:原命题成立,逆命题成立。

4、 函数的定义域的求法:分式要保证分母不为0;开二次方根要保证补开 方数大于或等于0;对数的真数大于0,底数大于0且不等于1。

值域的求法:二次函数用配方法、换元法、一次分式函数用求反函数的定义域的方法、二次分式函数用判别式法。

二次根式函数要保证函数值大于或等于0,指数函数值大于0等等。

5、 增函数:函数值随自变量的增大而增大,减少而减小。

减函数:函数值随自变量的增大而减小,减少而增大。

奇函数:定义域关于原点对称,自变量取相反值时函数值与原函数值相反。

图象关于原点对称。

偶函数:定义域关于原点对称,自变量取相反值时函数值与原函数值相同。

图象关于y 轴对称。

反函数:原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。

图象关于直线y =x 轴对称。

6、 二次函数的图象及性质7、 指数的运算法则:)0(1,1)(,)()(,)(,0≠========÷=⋅--+a a aa a a a ab a b b a ab a a a a a a a a m mmn n m n mm mm mm m mn n m n m n m n m n m 8、 对数的运算法则:()()()()()()()()ab b a b xy x yy x xy xn x b a N a N b N a b N a c c a b a a a a a a a a n a b a N a b alog log log 8log 1log 7log log log 6log log )(log 5log log 4log 32log 1log ==-=+======的对数,记为为底叫做以,那么如果9、 指数函数的图象及性质:10、对数函数的图象及性质:11、 一元一次不等式的解法:)0()0({>-><-<⇒>+a b cx a bcx c b ax)0()0({>-<<->⇒<+a b cx a bcx c b ax12、 一元一次不等式组的解法:13、 一元二次不等式的解法:14、 含有绝对值的不等式的解法:a x a x a a x -<>⇒>>或)0(||a x a a a x <<-⇒><)0(||c b ax c b ax c c b ax -<+>+⇒>>+或)0(||c b ax c c c b ax <+<-⇒><+)0(||db ax d b ax cb axc cd c b ax d -<+>+<+<-⇒>><+<或{)0,0(|| 15、 均值定理定理1:时取等号当且公当则若b a ab b a R b a =≥+∈2,,22推论1:时取等号当且公当则若b a ab b a R b a =≥+∈+2,,变式:时取等号当且公当则若b a b a ab R b a =+≤∈+2)2(,, 定理2:时取等号当且公当则若c b a abc c b a R c b a ==≥++∈+3,,,333推论2:时取等号当且公当则若c b a abc c b a R c b a ==≥++∈+33,,,变式:时取等号当且公当则若b a c b a abc R c b a =++≤∈+3)3(,,, 16、 三角函数的比值关系式17、 同角的三角函数的关系式商数关系: 倒数关系:yrx r y x x yr x r y ======ααααααcsc ,sec ,cot tan ,cos ,sin 22y x r +=ααααααααααααcot sin cos sin cos cot tan cos sin cos sin tan =⇒==⇒=1sec cos 1cos 1csc sin csc 1sin 1cot tan cot 1tan =⇒==⇒==⇒=ααααααααααα平方关系:18、 特殊角的三角函数值:19、 诱导公式诱导公式一: 诱导公式二:诱导公式三: 诱导公式四: 诱导公式五:αααααα222222csc cot 1sec tan 11cos sin =+=+=+ααπααπααπααπcot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+k k k k ααπααπααπααπcot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ααααααααcot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=-ααπααπααπααπcot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ααπααπααπααπcot )2cot(tan )2tan(cos )2cos(sin )2sin(=-=-=--=-20、 三角函数的图象及性质21、 三角函数图象的变换sin sin sin )10()1(1)1()10(ωωωωω=−−−−−−−−−−−−−−−→−=−−−−−−−−−−−−−−−→−=<<>><<xA y xy x y A A A ,,倍到原来的或缩短纵坐标伸长横坐标不变倍到原来的或缩小横坐标扩大纵坐标不变22、 两角和与差的三角函数23、 余角公式余角公式一: 余角公式二: 余角公式三: 余角公式四:24、 二倍角公式 25、 降幂公式26、 半角公式βαβαβαsin cos cos sin )sin(±=±βαβαβαsin sin cos cos )cos( =±)tan tan 1)(tan(tan tan tan tan 1tan tan )tan(βαβαβαβαβαβα ±=±⇒±=±ααπααπααπααπtan )2cot(cot )2tan(sin )2cos(cos )2sin(=-=-=-=-ααπααπααπααπtan )2cot(cot )2tan(sin )2cos(cos )2sin(-=+-=+-=+=+ααπααπααπααπtan )23cot(cot )23tan(sin )23cos(cos )23sin(=-=--=--=-ααπααπααπααπtan )23cot(cot )23tan(sin )23cos(cos )23sin(-=+-=+=+-=+αααααα2sin 21cos sin cos sin 22sin =⇒=ααααα2222sin 211cos 2sin cos 2cos -=-=-=αααααα2tan 21tan 1tan tan 1tan 22tan 22=-⇒-=αααα22sin 22cos 122cos 1sin =-⇒-=αααα22cos 22cos 122cos 1cos =+⇒+=αααcos 21212cos 12sin-±=-±=αααcos 21212cos 12cos+±=+±=αααααααcos 1sin sin cos 1cos 1cos 12tan +=-=+-±=27、 正弦定理、余弦定理、三角形面积公式 正弦定理:余弦定理:Cab b a c B ac c a b Abc c b a cos 2cos 2cos 2222222-+=-+=-+=三角形面积公式: 28、 等差数列、等比数列的定义、通项公式、中项公式、求和公式 等差数列的定义:一个数列从第二项开始,后项减前项为一个常数就是等差数列。

等差通项公式:d m n a d n a a m n )()1(1-+=-+= 等差数列中项公式:2后前中=a a a +等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=等比数列的定义:一个数列从第二项开始,后项与前项的比为一个不为0的常数就是等比数列。

等比数列通项公式:m n m n n q a q a a --==11 等比数列中项公式:后前中=a a a ±等比数列求和公式:qqa a q q a S n n n --=-=11)1(11- 29、 已知数列的前n 项和公式如何求通项公式1111)1()2({==≥-=-n S a n S S a n n n30、 ),(),,(2211y x b y x a ==→→若向量相加:向量相减: 实数与向量相乘: R CcB b A a 2sin sin sin ===111sinA sinB sin 222S bc ac ab C ∆===),(2121y y x x b a ++=+),(2121y y x x b a --=-),(11y x a λλλ=平面向量的模的公式:2121||y x a +=→平面向量的相等公式:2121,,y y x x b a ===→→则若 平面向量平行公式:0,//1221=-→→y x y x b a 则若 平面向量垂直公式:0,2121=+⊥→→y y x x b a 则若 31、 内积公式及其变形公式:||||,cos ,cos ||||→→→→→→→→→→→→>=<>⇒<=b a ba b a b a b a b a平面向量的运算法则:32、 向量的平移公式33、 直线的倾斜角、斜率公式、直线的方程 斜率坐标公式: 点斜式: 斜截式: 两点式:截距式: 一般式: (a,b 不能同时为0)34、 两点之间的距离公式: 点到直线的距离公式: 222221212121||||,cos y x y x y y x x b a b a b a +++=>=< ba b a b a b a b b a b a a b a a a a b b a a ⊥⇒=⇒-=++><±=±===⋅0||||)5(||,cos |||2||||)4(||)3()2(00)1(2221`2`{a x x a y y +=+=2121y y k x x -=-00(x x )y y k -=-y kx b =+112121y y x x y y x x --=--1212(,)x x y y ≠≠1x ya b+=(0,b 0)a ≠≠0ax by c ++=||AB =d =两平行直线的距离公式: 35、 两直线的位置关系两直线相交; 两直线平行;⇒==212121)2(c c b b a a 两直线重合。

相关文档
最新文档