第二章数据的离散程度复习教学案教案

合集下载

数据的离散程度教案

数据的离散程度教案

数据的离散程度教案教案标题:数据的离散程度教案教案目标:1. 理解数据的离散程度是指数据分布的分散程度,能够区分离散数据和连续数据。

2. 掌握计算数据的离散程度的方法,包括极差、方差和标准差。

3. 能够分析和比较不同数据集的离散程度,从而对数据的特征有更深入的了解。

教案步骤:步骤一:导入与概念讲解1. 引入数据的离散程度的概念,并解释离散程度与数据分布的关系。

2. 介绍离散数据和连续数据的区别,并给出实际例子进行说明。

步骤二:计算离散程度的方法1. 介绍极差的概念和计算方法,即最大值减去最小值。

2. 介绍方差的概念和计算方法,即每个数据与平均值的差的平方的平均值。

3. 介绍标准差的概念和计算方法,即方差的平方根。

步骤三:实例分析1. 给出一个实际数据集,要求学生计算其极差、方差和标准差。

2. 引导学生分析计算结果,比较不同数据集的离散程度。

3. 讨论离散程度与数据分布的关系,以及离散程度对数据分析的意义。

步骤四:拓展应用1. 提供更多实际数据集,要求学生计算其离散程度,并进行比较和分析。

2. 引导学生思考离散程度在不同领域的应用,如金融、医学等。

3. 鼓励学生提出自己的问题和观点,展开讨论和思考。

步骤五:总结与评价1. 总结本节课的内容,强调数据的离散程度对数据分析的重要性。

2. 对学生的参与和表现进行评价,鼓励积极思考和提问。

教学资源:1. PowerPoint演示文稿或白板,用于展示概念和计算方法。

2. 实际数据集,用于学生计算和分析。

评估方式:1. 学生计算离散程度的准确性和理解程度。

2. 学生对数据分析和离散程度的思考和应用能力。

3. 学生的课堂参与和表现。

教学延伸:1. 引导学生进一步学习其他数据分析方法,如偏度和峰度等。

2. 给予学生更多实际数据集,让他们自主进行数据分析和离散程度计算。

3. 鼓励学生进行小组或个人项目,以探索数据分析在实际问题中的应用。

《数据的离散程度》教学设计

《数据的离散程度》教学设计

《数据的离散程度》教学设计
一、教学目标
1、了解刻画数据离散程度的三个量:极差、标准差和方差,能求出相应的数值。

2、经历表示数据离散程度的几个量的探索过程。

3、培养学生的数学应用能力,通过小组合作活动,培养学生的合作意识。

二、教学重点:理解刻画数据离散程度的三个量,并在具体情境中
应用。

教学难点:理解极差、方差的含义及方差的计算公式,并准确运用其解决实际问题。

三、教学过程:
1、使用希沃白板,结合图片,教材P149页实际情境,学生自
学并完成问题。

2、学生讨论交流的基础上,教师在白板上共同进行计算,教
师结合实例给出极差的概念。

是一组数据中最大数据和最小数据的差。

它是刻画数据离散程度的一个统计量。

3、继续深入探究例题,质量与平均数的差距,哪个更符合要
求?(学生独自分析问题并解决,教师带领学生总结出方差与标准差的概念)
4、播放视频,让同学们观看方差的计算视频,更有趣味性的
引起学生的注意,让学生了解方差的计算方法。

5、数学上,数据的离散程度还可以用方差和标准差刻画。


结方差和标准差的概念及性质。

方差是指各个数据与平均数差的平方的平均数。

标准差是方差的算术平方根。

一组数据的极差、方差和标准差越小,这组数据就越稳定。

四、课堂练习:课本P151第一题
五、课堂小结:
极差:一组数据中最大数据和最小数据的差(称为极差)
方差:各个数据与平均数差的平方的平均数
标准差:方差的算术平方根
性质:一组数据的极差、方差和标准差越小,这组数据就越稳定。

数据的离散程度复习教学案教案

数据的离散程度复习教学案教案

数据的离散程度复习教学案一、教学目标1. 知识与技能:(1)理解离散程度的含义,掌握极差、方差、标准差等统计量度方法。

(2)能够运用离散程度指标分析数据,对数据集的离散程度进行合理判断。

2. 过程与方法:(1)通过实例分析,培养学生的数据处理和分析能力。

(2)利用计算器或软件工具,提高学生计算离散程度指标的技能。

3. 情感态度价值观:培养学生对数据的敏感性,增强数据分析的观念,认识数据在现实生活中的重要作用。

二、教学重难点1. 教学重点:(1)离散程度的概念及各种统计量度的计算方法。

(2)运用离散程度指标分析数据的能力。

2. 教学难点:(1)极差、方差、标准差等统计量度的推导和计算。

(2)对数据集离散程度的合理判断。

三、教学过程1. 导入新课:通过一个实际问题,引入离散程度的概念,激发学生的学习兴趣。

2. 知识讲解:(1)讲解离散程度的意义和作用。

(2)讲解极差、方差、标准差等统计量度的计算方法和步骤。

3. 实例分析:给出几个实例,让学生运用离散程度指标进行分析,巩固所学知识。

4. 练习与讨论:布置一些练习题,让学生独立完成,进行讨论和解答。

四、课后作业布置一些有关离散程度的练习题,让学生巩固所学知识,提高计算和分析能力。

五、教学反思在课后对教学效果进行反思,了解学生在学习过程中的困难和问题,为下一步教学提供参考。

六、教学评价1. 评价内容:(1)学生对离散程度概念的理解程度。

(2)学生掌握极差、方差、标准差等统计量度的计算方法。

(3)学生运用离散程度指标分析数据的能力。

2. 评价方法:(1)课堂问答:通过提问,了解学生对离散程度概念的理解程度。

(2)练习题:通过布置练习题,检验学生掌握统计量度的计算方法。

(3)实例分析:让学生运用离散程度指标分析实际数据,评价其分析能力。

七、教学拓展1. 离散程度的延伸:(1)介绍其他衡量数据离散程度的统计量度,如离散系数、四分位差等。

(2)探讨这些统计量度的应用场景和计算方法。

数据的离散程度复习教学案教案

数据的离散程度复习教学案教案

数据的离散程度复习教学案一、教学目标:1. 让学生理解离散程度的概念,掌握离散程度的主要统计量。

2. 能够运用离散程度的知识解决实际问题,提高数据分析能力。

3. 培养学生的团队合作精神和沟通交流能力。

二、教学内容:1. 离散程度的概念。

2. 主要离散程度的统计量:方差、标准差、离散系数。

3. 离散程度在实际问题中的应用。

三、教学过程:1. 导入:通过一个具体的数据集,引导学生回顾离散程度的概念及主要统计量。

2. 讲解:详细讲解方差、标准差、离散系数的计算方法和意义。

3. 案例分析:分析实际问题,运用离散程度的知识进行解答。

4. 小组讨论:学生分组讨论,分享各自对离散程度的理解和应用。

四、教学评价:1. 课堂参与度:观察学生在课堂上的发言和提问情况,评价学生的参与度。

2. 小组讨论:评价学生在小组讨论中的表现,包括沟通交流、合作解决问题等。

3. 课后作业:布置相关练习题,检验学生对离散程度知识的掌握程度。

五、课后作业:数据集:某班级学生的身高(cm)162, 165, 170, 168, 163, 167, 169, 164, 166, 1652. 请举例说明离散程度在实际生活中的应用。

六、教学活动:1. 数据集分析:让学生利用已学过的离散程度知识,对给定的数据集进行分析。

例如,分析不同班级学生的成绩差异,了解各班级学生的身高分布情况。

2. 问题解决:结合实际问题,让学生运用离散程度的知识解决问题。

例如,分析某商品在不同地区的销售情况,了解各地市场的需求状况。

3. 小组竞赛:设置小组竞赛环节,鼓励学生积极参与,提高团队协作能力。

竞赛内容可以包括离散程度统计量的计算、实际问题分析等。

七、教学策略:1. 案例教学:通过分析具体案例,让学生了解离散程度在实际问题中的应用,提高学生的实践能力。

2. 互动教学:引导学生积极参与课堂讨论,提问和回答问题,增强课堂活力。

3. 分层教学:针对不同学生的学习水平,给予相应的指导和帮助,使所有学生都能掌握离散程度的知识。

第二章数据的离散程度教案

第二章数据的离散程度教案

第1课时课题:极差教学目标:(1) 经历刻画数据离散程度的探索过程,感受表示数据离散程度的必要性。

.(2) 掌握极差的概念,理解其统计意义。

(3) 了解极差是刻画数据离散程度的一个统计量,并在具体情境中加以应用。

教学重点:掌握极差的概念,理解其统计意义。

教学难点:极差的统计意义.教学方法:讨论法教学过程:一.情景创设小明初一时数学成绩不太好,一学年中四次考试成绩分别是75、78、77、76.初一暑假时,小明参加了科技活动小组,在活动中,小明体会到学好数学的重要性,逐渐对数学产生了兴趣,遇到问题时从多方面去思考,深入钻研.因此小明的数学成绩进步很快,初二的一学年中,小明在四次考试的数学成绩是80、85、92、95.看完这则小通讯,请谈谈你的看法.你以为在这些数据中最能反映学习态度重要性的是哪一对数据?两者相差多少?引入概念:极差.二、探索活动下表显示的是某市20XX年2月下旬和20XX年同期的每日最高气温:试对这两段时间的气温进行比较.我们可以由此认为20XX年2月下旬的气温比20XX年高吗?两段时间的平均气温分别是多少?平均气温都是12℃.这是不是说,两个时段的气温情况没有什么差异呢?请同学们根据上表提供的数据,绘制出相应的折线图.观察一下,它们有差别吗?把你观察得到的结果写在下面的横线上:_____________________________________________________________.通过观察,我们可以发现:图(a)中折线波动的范围比较大——从6℃到22℃,图(b)中折线波动的范围则比较小——从9℃到16℃.思考什么样的指标可以反映一组数据变化范围的大小?我们可以用一组数据中的最大值减去最小值所得的差来反映这组数据的变围.用这种方法得到的差称为极差(range).极差=最大值-最小值.三、实践应用例1观察上图,分别说出两段时间内气温的极差.例2你的家庭中年纪最大的长辈比年纪最小的孩子大多少岁?例3 自动化生产线上,两台数控机床同时生产直径为40.00毫米的零件,为了检验产品质量,从产品中各抽出10件进行测量,结果如下(单位:毫米).(2) 就所生产的10个零件的直径变化范围,你认为哪个机床生产的质量好?(2) 因为甲的极差为0.12,乙的极差为0.22,所以甲机床生产的质量较好.四、检测反馈试计算下列两组数据的极差:A组:0, 10, 5, 5, 5, 5, 5, 5, 5, 5;B组:4, 6, 3, 7, 2, 8, 1, 9, 5, 5.五、交流反思1.了解极差的意义.2.知道极差的计算方法.3.会观察折线图,能应用极差对简单问题做出判断.五、作业教后感:第2课时课题:方差与标准差教学目标:(1) 经历刻画数据离散程度的探索过程,感受表示数据离散程度的必要性。

第二章数据的离散程度复习教学案教案

第二章数据的离散程度复习教学案教案

第二章数据的失散程度复习教教案【知识回首】1.描绘一组数据的失散程度(即颠簸大小)的量:等。

2.极差:( 1)极差计算公式:。

注意:极差越小,这组数据的失散程度(即颠簸大小)就越,这组数据就越。

( 2)用极差来权衡一组数据的失散程度(即颠簸大小)的优弊端:(回想)3. 方差(或标准差):(1)方差计算公式:;标准差计算公式:。

注意:①方差的单位是;而标准差的单位是。

②方差(或标准差)越小,这组数据的失散程度(即颠簸大小)就越,这组数据就越。

③两组数据比较时,一组数据的极差大,这组数据的方差(或标准差)不必定就大!...(2)填表:样本均匀数方差标准差x1,x2, x3, x4, x5,⋯,x nx1 a , x2 a ,⋯, x n akx1,kx 2,kx3, kx4,⋯,kx nkx1 a , kx2 a ,⋯, kx n a( 3)划分“ 二一”和“两者做出价” 两型的回答的不一样:(回)【达标测试】1.随机从甲、乙两田中各抽取100 株麦苗量高度,算均匀数和方差的果:x甲 13 , x乙13 , S2甲 3.6 , S2乙15.8 ,小麦比整的田是。

2.一数据1,0, 3,5,x 的极差是7 ,那么x 的可能是__________3.已知一数据1,2,0,- 1,x,1 的均匀数是1,数据的极差.4.在中,本的准差能够反应数据的A.均匀状B.散布律C.失散程度D.数大小7. 已知甲、乙两数据的均匀数分是x甲80 ,x乙90 ,方差分是S甲210 ,S乙2 5,比两数据,以下法正确的选项是A.甲数据好 B .乙数据好 C .甲数据的极差大D.乙数据的波小8.以下法正确的选项是A.两数据的极差相等,方差也相等B.数据的方差越大,明数据的波越小C.数据的准差越小,明数据越定D.数据的均匀数越大,数据的方差越大9.一组数据的极差为4,方差为 2 将这组数据都扩大 3 倍,则所得一组新数据的极差和方差是A.4,2B.12,6C.4,32D.12,18 10.为了从甲、乙两名学生中选拔一人参加比赛,?学校每个月对他们的学习进行一次测试,如图是两人赛前 5 次测试成绩的折线统计图.(1)分别求出甲、乙两名学生 5 次测试成绩的均匀数、极差及方差;(2)假如你是他们的指导教师,应选派哪一名学生参加此次比赛.?请联合所学习的统计知识说明原因.第三章二次根式复习教教案【知识回首】1. 二次根式:形如 _______________叫做二次根式。

6.4.2数据的离散程度(教案)

6.4.2数据的离散程度(教案)
1.数据观念:通过学习数据的离散程度,培养学生对数据的敏感性,形成数据观念,能够运用平均数、中位数、众数等描述数据集中趋势,运用极差、方差、标准差等描述数据离散程度;
2.探索能力:培养学生运用数学方法对数据进行整理、分析和解决问题的探索能力,掌握数据分析的基本方法,能从数据中提取有用信息,为决策提供依据;
五、教学反思
在今天的教学中,我发现学生们对数据的离散程度这一概念的理解程度参差不齐。在导入新课的时候,通过提问的方式引起了学生的兴趣,他们能够积极地参与到课堂讨论中来。在理论介绍环节,我尽量用简单明了的语言解释了平均数、中位数、众数等概念,并通过案例分析让学生看到了这些指标在实际中的应用。
在讲授重点难点时,我发现有些学生对方差和标准差的计算步骤掌握不够牢固,需要我在这里多花一些时间,用更多的例子和练习来巩固他们的理解。同时,我也注意到,将学生分组讨论和进行实验操作,能够帮助他们更好地消化和吸收知识。他们在小组合作中能够互相学习,共同解决问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“数据离散程度在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
在总结回顾环节,我鼓励学生提出疑问,很高兴看到他们能够大胆地提出自己的问题。这让我意识到,在今后的教学中,应该更多地给予学生表达自己想法的机会,让他们在思考中学习,在学习中思考。
-例如:给出某班级学生的身高数据,引导学生计算平均身高、中位数身高以及众数身高,理解这三种指标在描述数据集中的作用。

人教版数学八年级下册20.2.2数据的离散程度优秀教学案例

人教版数学八年级下册20.2.2数据的离散程度优秀教学案例
(二)问题导向
在本节课中,我会设计一系列的问题来引导学生思考和学习。首先,我会引导学生回顾之前学过的统计学知识,如平均数、中位数和众数等,让学生明白离散程度是描述数据波动大小和分布情况的重要指标。然后,我会提出问题,如“什么是极差?如何计算极差?”等,引导学生通过动手操作和小组讨论来解决问题。
问题导向的教学策略能够激发学生的学习兴趣和主动性,培养他们的思维能力和解决问题的能力。同时,它也能够帮助学生巩固已学的知识,并将其运用到新的问题中。
(四)反思与评价
在本节课的最后,我会组织学生进行反思与评价。首先,我会让学生回顾自己在这节课中学到了什么,掌握了哪些知识和技能。然后,我会引导学生反思自己在学习过程中的优点和不足,思考如何改进学习方法和提高学习效果。
同时,我还会对学生的学习情况进行评价,给予他们积极的反馈和鼓励。对于学生的优点,我会给予肯定和表扬,增强他们的自信心和学习动力;对于学生的不足,我会给予指导和建议,帮助他们找到改进的方向。
2.能够运用极差、方差和标准差等指标来描述和分析数据的离散程度。
3.能够选择合适的统计量来反映数据的离散程度,并能够解释其意义。
此外,学生还需要能够运用所学的离散程度知识来解决实际问题,如分析一次学校举办的数学竞赛成绩的离散程度,从而了解学生的整体水平。
(二)过程与方法
在本节课中,学生将通过实际案例来学习和掌握离散程度的概念和计算方法。具体包括:
三、教学策略
(一)情景创设
在本节课中,我会以一次学校举办的数学竞赛成绩为例,创设一个真实的学习情境。首先,我会向学生介绍这次数学竞赛的背景和意义,让学生明白学习离散程度的重要性。然后,我会展示一组学生的成绩数据,让学生动手计算这组数据的极差、方差和标准差,通过实际操作来理解和掌握计算方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章数据的离散程度复习教学案
【知识回顾】
1.描述一组数据的离散程度(即波动大小)的量:
等。

2.极差:
(1)极差计算公式:。

注意:极差越小,这组数据的离散程度(即波动大小)就越,这组数据就越。

(2)用极差来衡量一组数据的离散程度(即波动大小)的优缺点:(回忆)
3.方差(或标准差):
(1)方差计算公
式:;
标准差计算公
式:。

注意:①方差的单位是;而标准差的单位
是。

②方差(或标准差)越小,这组数据的离散程度(即波动大小)就
越,这组数据就越。

③两组数据比较时,一组数据的极差大,这组数据的方差(或标准
差)不一定
...就大!
(2)填表:
(3)区分“二选一”和“对二者做出评价”这两类题型的回答的不同:(回忆)
【达标测试】
1.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为:
13=甲x ,13=乙x ,6.3S 2=甲,8.15S 2=乙,则小麦长势比较整齐的试验田是 。

2.一组数据1-,0,3,5,x 的极差是7,那么x 的值可能是__________
3. 已知一组数据1,2,0,-1,x ,1的平均数是1,则这组数据的极差为 .
4. 在统计中,样本的标准差可以反映这组数据的
A .平均状态
B .分布规律
C .离散程度
D .数值大小
7.已知甲、乙两组数据的平均数分别是80x =甲,90x =乙,方差分别是210S =甲
,25S =乙,比较这两组数据,下列说法正确的是
A .甲组数据较好
B .乙组数据较好
C .甲组数据的极差较大
D .乙组数据的波动较小
8.下列说法正确的是
A .两组数据的极差相等,则方差也相等
B .数据的方差越大,说明数据的波动越小
C .数据的标准差越小,说明数据越稳定
D .数据的平均数越大,则数
据的方差越大
9.一组数据的极差为4,方差为2将这组数据都扩大3倍,则所得一组新数据的极差和方差是
A.4,2 B.12,6 C.4,32 D.12,18 10.为了从甲、乙两名学生中选拔一人参加竞赛,•学校每个月对他们的学习进行一次测验,如图是两人赛前5次测验成绩的折线统计图.
(1)分别求出甲、乙两名学生5次测验成绩的平均数、极差及方差;
(2)如果你是他们的辅导教师,应选派哪一名学生参加这次竞赛.•请结合所学习的统计知识说明理由.
第三章二次根式复习教学案
【知识回顾】
1.二次根式:形如_______________叫做二次根式。

2、二次根式的双重非负性:___________________________________________
3.最简二次根式:必须同时满足下列条件:
⑴____________________;⑵____________________;⑶
_____________________。

4.同类二次根式:
二次根式化成最简二次根式后,若__________相同,则这几个二次根式就是同类二次根式。

5.二次根式的性质:
(1)(a)2=_______ (_________);(2)6.二次根式的运算:
______(a>0)_________(a<
_______(a=0);
⑴二次根式的加减运算:
先把二次根式化成___________二次根式,然后合并____________根式即可。

⑵二次根式的乘除运算:
ab =__________(___________);()_____________________ 【达标测试】
1. 有意义的条件是 。

2. )
3. 2x =-,则x 的取值范围是 。

4. 当0a ≤,0b __________=。

5. 下列根式中,是最简二次根式的是( )
6. 计算:_____________=。

7. 下列各式不是最简二次根式的是( )
C. 4
8. -和- )
A. 32--
B. 32--
C. -=-不能确定
9.若最简二次根式____,____a b ==。

10. 计算:
11. 计算:
⑴.
+ ⑵(231⎛++ ⎝ 12.化简:
第一课件网系列资料。

相关文档
最新文档