平均指标练习题
平均指标和变异指标练习题

平均指标和变异指标练习题题目一某班级共有40名学生,他们的身高数据如下:学生姓名身高(cm)小明160小红158小华165小李172小张155……请你使用平均指标和变异指标回答以下问题:1.计算这40名学生的平均身高。
2.计算这40名学生的身高的标准差。
3.根据平均身高和标准差,判断哪些学生的身高属于正常范围内(身高在平均身高的正负1个标准差范围内)。
题目二一家工厂连续30天生产的产品数量如下:日期产品数量2022-01-01 1002022-01-02 982022-01-03 1022022-01-04 992022-01-05 101……请你使用平均指标和变异指标回答以下问题:1.计算这30天内产品数量的平均值。
2.计算这30天内产品数量的极差。
3.根据平均值和极差,判断哪些天的产品数量与平均水平相差较大。
题目三某城市连续7天的气温数据如下:日期最高气温(℃)2022-01-01 102022-01-02 122022-01-03 82022-01-04 152022-01-05 20……请你使用平均指标和变异指标回答以下问题:1.计算这7天内最高气温的平均值。
2.计算这7天内最高气温的方差。
3.根据平均值和方差,判断这7天里的气温波动情况。
解答题目一1.计算这40名学生的平均身高。
使用平均指标,计算40名学生的平均身高可以通过求所有学生身高的和再除以学生人数得到。
平均身高 = (160 + 158 + 165 + 172 + 155 + ... + ... ) / 402.计算这40名学生的身高的标准差。
使用变异指标,计算40名学生的身高的标准差可以通过以下步骤进行:•计算每个学生身高与平均身高的差值。
•计算所有差值的平方和。
•求平方和的平均值。
•对平方和的平均值进行开方。
标准差可以描述数据的离散程度,数值越大表示数据的离散程度越大。
3.根据平均身高和标准差,判断哪些学生的身高属于正常范围内。
平均指标练习及答案

第三章平均指标与标志变异指标一、填空题1.平均指标是表明__________某一标志在具体时间、地点、条件下达到的_________的统计指标,也称为平均数。
2.权数对算术平均数的影响作用不决定于权数的大小,而决定于权数的________的大小。
3.几何平均数是n个__________的n次方根,.它是计算和平均速度的最适用的一种方法。
4.当标志值较大而次数较多时,平均数接近于标志值较的一方;当标志值较小而次数较多时,平均数靠近于标志值较的一方。
5.当时,加权算术平均数等于简单算术平均数。
6.利用组中值计算加权算术平均数是假定各组内的标志值是分布的,其计算结果是一个。
7.中位数是位于变量数列的那个标志值,众数是在总体中出现次数的那个标志值。
中位数和众数也可以称为平均数。
8.调和平均数是平均数的一种,它是的算术平均数的。
9.当变量数列中算术平均数大于众数时,这种变量数列的分布呈分布;反之算术平均数小于众数时,变量数列的分布则呈分布。
10.较常使用的离中趋势指标有、、、、、。
11.标准差系数是与之比。
12.已知某数列的平均数是200,标准差系数是30%,则该数列的方差是。
13.对某村6户居民家庭共30人进行调查,所得的结果是,人均收入400元,其离差平方和为5100000,则标准差是,标准差系数是。
14.在对称分配的情况下,平均数、中位数与众数是的。
在偏态分配的情况下,平均数、中位数与众数是的。
如果众数在左边、平均数在右边,称为偏态。
如果众数在右边、平均数在左边,则称为偏态。
15.采用分组资料,计算平均差的公式是,计算标准差的公式是。
二、单项选择题1.加权算术平均数的大小( )A受各组次数f的影响最大B受各组标志值X的影响最大C只受各组标志值X的影响 D受各组次数f和各组标志值X的共同影响2,平均数反映了( )A总体分布的集中趋势 B总体中总体单位分布的集中趋势C总体分布的离散趋势 D总体变动的趋势3.在变量数列中,如果标志值较小的一组权数较大,则计算出来的算术平均数( )A接近于标志值大的一方 B接近于标志值小的一方C不受权数的影响D无法判断4.根据变量数列计算平均数时,在下列哪种情况下,加权算术平均数等于简单算术平均数( )A各组次数递增 B各组次数大致相等 C各组次数相等 D各组次数不相等5.已知某局所属12个工业企业的职工人数和工资总额,要求计算该局职工的平均工资,应该采用( )A简单算术平均法 B加权算术平均法 C加权调和平均法 D几何平均法6.已知5个水果商店苹果的单价和销售额,要求计算5个商店苹果的平均单价,应该采用( )A简单算术平均法 B加权算术平均法 C加权调和平均法 D几何平均法7.计算平均数的基本要求是所要计算的平均数的总体单位应是( )A大量的 B同质的 C差异的 D少量的8.某公司下属5个企业,已知每个企业某月产值计划完成百分比和实际产值,要求计算该公司平均计划完成程度,应采用加权调和平均数的方法计算,其权数是( )A计划产值 B实际产值 C工人数 D企业数9.由组距变量数列计算算术平均数时,用组中值代表组内标志值的一般水平,有一个假定条件,即( )A各组的次数必须相等 B各组标志值必须相等C各组标志值在本组内呈均匀分布 D各组必须是封闭组10.离中趋势指标中,最容易受极端值影响的是( )A极差 B平均差 C标准差 D标准差系数11.平均差与标准差的主要区别在于( )A指标意义不同 B计算条件不同 C计算结果不同 D 数学处理方法不同12.某贸易公司的20个商店本年第一季度按商品销售额分组如下:则该公司20个商店商品销售额的平均差为( )A 7万元B 1万元C 12 万元D 3万元13.当数据组高度偏态时,哪一种平均数更具有代表性? ( )A算术平均数 B中位数 C众数 D几何平均数14.方差是数据中各变量值与其算术平均数的( )A离差绝对值的平均数 B离差平方的平均数C离差平均数的平方 D离差平均数的绝对值15.一组数据的偏态系数为1.3,表明该组数据的分布是( )A 正态分布 B平顶分布 C左偏分布 D右偏分布16.当一组数据属于左偏分布时,则( )A平均数、中位数与众数是合而为一的 B众数在左边、平均数在右边C众数的数值较小,平均数的数值较大 D众数在右边、平均数在左边17.四分位差排除了数列两端各( )单位标志值的影响。
统计第三章练习题

第三章 数据分布特征的描述(一)单项选择题(在下列备选答案中,只有一个是正确的,请将其顺序号填入括号内)1.平均指标反映了( )。
①总体变量值分布的集中趋势 ②总体分布的离散特征 ③总体单位的集中趋势 ④总体变动趋势 2.加权算术平均数的大小( )。
①受各组标志值的影响最大 ②受各组次数的影响最大③受各组权数系数的影响最大 ④受各组标志值和各组次数的共同影响3.在变量数列中,如果变量值较小的一组权数较大,则计算出来的算术平均数( )。
①接近于变量值大的一方 ②接近于变量值小的一方 ③不受权数的影响 ④无法判断4.权数对于平均数的影响作用取决于( )。
①总体单位总量 ②各组的次数多少 ③各组标志值的大小 ④各组次数在总体单位总量中的比重 5.由组距变量数列计算算术平均数时,用组中值代表组内标志值的一般水平,有一个假定条件,即( )。
①各组的次数必须相等 ②各组标志值必须相等 ③各组标志值在本组内呈均匀分布 ④各组必须是封闭组 6.如果次数分布中,各个标志值扩大为原来的2倍,各组次数都减小为原来的1/2,则算术平均数( )。
①增加到原来的21 ②稳定不变 ③减少到原来的21④扩大为原来的2倍 7.已知某市场某种蔬菜早市、午市、晚市的每公斤价格,在早市、午市、晚市的销售额基本相同的情况下,计算平均价格可采取的平均数形式是( )。
①简单算术平均数 ②加权算术平均数③简单调和平均数 ④加权调和平均数8.凡是变量值的连乘积等于总比率或总速度的现象,要计算其平均比率或平均速度都可以采用( )。
①算术平均法 ②调和平均法 ③几何平均法 ④中位数法 9.四分位差排除了数列两端各( )单位标志值的影响。
①10% ②15% ③25% ④ 35% 10.如果一组变量值中有一项为零,则不能计算( )。
①算术平均数 ②调和平均数 ③众数 ④中位数11.在掌握了各组单位成本和各组产量资料时,计算平均单位成本所使用的方法应是( )。
平均指标和变异指标练习题

平均指标和变异指标练习题准差分别为4.3和4.7,则两个企业职工平一、平均工资的代表性是()1。
按人口计算的平均粮食产量是平均值。
A大于B,B大于a2。
算术平均值的大小仅受无法在整体上用每个单位的相同标准C判断D值的影响。
(6)这两组数字的平均值分别为100和14.5。
3.在特定条件下,加权算术平均值等于Jane,其标准偏差分别为12.8和3.7,然后为()单算术平均值。
(a) a系列平均值的代表性高于B系列平均值。
这种模式在整体上是最常见的。
(b)序列b的平均数的代表性高于序列a的平均指数和变异指数5、权数对算术平均数的影响作用只表现为各组出现次数的多少,与各组次数占总次数的比重无关。
()6、标志变异指标数值越大,说明总体中各单位标志值的变异程度就越大,则平均指标的代表性就越小。
()7、中位数和众数都属于平均数,因此他们数值的大小受到总体内各单位标志值大小的影响。
()8、对任何两个性质相同的变量数列,比较其平均数的代表性,都可以采用标准差指标。
()9、比较两总体平均数的代表性,标准差系数越大,说明平均数的代表性越好。
()10、工人劳动生产率是一个平均数。
()二、单选题1、计算平均指标最常用的方法和最基本的形式是()a中位数b众数c调和平均数d算术平均数2、计算平均指标的基本要求是所要计算的平均指标的总体单位应该是()a大量的b同质的c有差异的d不同总体的3、在标志变异指标中,由总体中最大变量值和最小变量值之差决定的是()a标准差系数b标准差c平均差d全距(极差)4、为了用标准差比较分析两个同类总体平均指标的代表性,其基本的前提条件是()a两个总体的标准差应相等b两个总体的平均数应相等c两个总体的单位数应相等d两个总体的离差之和应相等5、已知两个同类型企业职工平均工资的标C两个系列平均值的代表性是相同的。
D这两个系列的平均值的代表性无法比较。
7.对于不同水平的人群,变异程度不能直接与标准差进行比较。
统计第三章练习题

第三章 数据分布特征的描述(一)单项选择题(在下列备选答案中,只有一个是正确的,请将其顺序号填入括号内)1.平均指标反映了( )。
①总体变量值分布的集中趋势 ②总体分布的离散特征 ③总体单位的集中趋势 ④总体变动趋势 2.加权算术平均数的大小( )。
①受各组标志值的影响最大 ②受各组次数的影响最大③受各组权数系数的影响最大 ④受各组标志值和各组次数的共同影响3.在变量数列中,如果变量值较小的一组权数较大,则计算出来的算术平均数( )。
①接近于变量值大的一方 ②接近于变量值小的一方 ③不受权数的影响 ④无法判断4.权数对于平均数的影响作用取决于( )。
①总体单位总量 ②各组的次数多少 ③各组标志值的大小 ④各组次数在总体单位总量中的比重 5.由组距变量数列计算算术平均数时,用组中值代表组内标志值的一般水平,有一个假定条件,即( )。
①各组的次数必须相等 ②各组标志值必须相等 ③各组标志值在本组内呈均匀分布 ④各组必须是封闭组 6.如果次数分布中,各个标志值扩大为原来的2倍,各组次数都减小为原来的1/2,则算术平均数( )。
①增加到原来的21 ②稳定不变 ③减少到原来的21④扩大为原来的2倍 7.已知某市场某种蔬菜早市、午市、晚市的每公斤价格,在早市、午市、晚市的销售额基本相同的情况下,计算平均价格可采取的平均数形式是( )。
①简单算术平均数 ②加权算术平均数③简单调和平均数 ④加权调和平均数8.凡是变量值的连乘积等于总比率或总速度的现象,要计算其平均比率或平均速度都可以采用( )。
①算术平均法 ②调和平均法 ③几何平均法 ④中位数法 9.四分位差排除了数列两端各( )单位标志值的影响。
①10% ②15% ③25% ④ 35% 10.如果一组变量值中有一项为零,则不能计算( )。
①算术平均数 ②调和平均数 ③众数 ④中位数11.在掌握了各组单位成本和各组产量资料时,计算平均单位成本所使用的方法应是( )。
初中数学上册平均数计算练习35题(含答案)

初中数学上册平均数计算练习35题(含答
案)
本文档提供了初中数学上册平均数计算练的35个题目及其答案。
以下是每个题目的描述和解答:
1. 题目:某班级有30名学生,他们的身高分别为160cm、165cm、170cm、158cm......。
请计算这个班级学生的平均身高。
解答:将所有学生的身高相加,然后除以学生人数即可得到平均身高。
2. 题目:小明连续7天每天的运动里程分别为3km、4km、
5km、6km、7km、8km、9km。
请计算这7天的平均运动里程。
解答:将连续7天的运动里程相加,然后除以7即可得到平均运动里程。
3. 题目:某家庭连续5个月的水费分别为100元、120元、150元、90元、110元。
请计算这5个月的平均水费。
解答:将连续5个月的水费相加,然后除以5即可得到平均水费。
......
35. 题目:某地区过去10年的年平均温度分别为20摄氏度、22摄氏度、19摄氏度、21摄氏度......。
请计算这个地区的年平均温度。
解答:将过去10年的年平均温度相加,然后除以10即可得到年平均温度。
本文档提供了35个平均数计算练习的题目和答案,希望对初中数学学习有所帮助。
2015年《统计学》第五章 平均指标习题及满分答案

2015年《统计学》第五章平均指标习题及满分答案(一)填空题1.平均数可以反映总体各单位标志值分布的(集中趋势)。
2.社会经济统计中,常用的平均指标有(算术平均指标)、(调和平均指标)、(几何平均指标)、(中位数)和(众数)。
3.算术平均数不仅受(标志值)大小的影响,而且也受(权数)多少的影响。
4.各变量值与其算术平均数离差之和等于(零),各变量值与其算术平均数离差平方和为(最小)。
5.调和平均数是平均数的一种,它是(标志值倒数)的算术平均数的(倒数),又称(倒数)平均数。
6.几何平均数是计算平均比率和平均速度最适用的一种方法,凡是变量值的连乘积等于(总比率)或(总速度)的现象,都可以使用几何平均数计算平均比率或平均速度。
7.众数决定于(分配次数)最多的变量值,因此不受(极端值)的影响,中位数只受极端值的(位置)影响,不受其(大小)的影响。
(二)单项选择题1.平均数反映了(A)。
A、总体分布的集中趋势B、总体中总体单位的集中趋势C、总体分布的离中趋势D、总体变动的趋势2.加权算术平均数的大小(D)。
A、受各组标志值的影响最大B、受各组次数的影响最大C、受各组权数系数的影响最大D、受各组标志值和各组次数的共同影响3.在变量数列中,如果变量值较小的一组权数较大,则计算出来的算术平均数(B)。
A、接近于变量值大的一方B、接近于变量值小的一方C、不受权数的影响D、无法判断4.权数对于算术平均数的影响,决定于(D)。
A、权数的经济意义B、权数本身数值的大小C、标志值的大小D、权数对应的各组单位数占总体单位数的比重5.各总体单位的标志值都不相同时(A)。
A、众数不存在B、众数就是最小的变量值C、众数是最大的变量值D、众数是处于中间位置的变量值6.凡是变量值的连乘积等于总比率或总速度的现象,要计算其平均比率或平均速度都可以采用( C )。
A、算术平均法B、调和平均法C、几何平均法D、中位数法7.如果次数分布中,各个标志值扩大为原来的2倍,各组次数都减小为原来的1/2,则算术平均数(D)。
平均指标和变异指标练习题

平均指标和变异指标练习题在这个段落中,我们将介绍《平均指标和变异指标练题》的目的和重要性。
我们将解释为什么掌握这些指标对于统计分析和数据比较是至关重要的。
在这个段落中,我们将讨论平均指标对于衡量集中趋势的重要性。
我们将介绍如何计算平均值,并提供一些实际应用的例子。
我们还将解释如何解释和比较不同数据集的平均值。
平均指标是统计学中常用的一种指标,用来度量一组数据的集中趋势。
它可以帮助我们理解数据的平均水平或中心位置。
计算平均值的一种常见方法是将所有数据值相加,然后除以数据的总数量。
举例来说,假设我们有一组数据:5、7、9、11、13.为了计算这组数据的平均值,我们将所有数据值相加得到45,然后除以数据的总数量(5个),得到平均值为9.平均值在实际应用中有许多用途。
例如,在教育领域,教育者可以使用学生的平均成绩来了解整个班级的学业水平。
在经济领域,平均工资可以帮助我们了解某个地区的经济水平。
在医学研究中,平均生存时间可以用来比较不同治疗方案的效果。
不同数据集的平均值可以用来进行比较和解释。
例如,假设我们有两个班级的学生数据,一个班级的平均成绩为80,另一个班级的平均成绩为90.我们可以得出结论,第二个班级的学生平均成绩比第一个班级更好。
然而,需要注意的是,平均值仅提供一种衡量集中趋势的指标,可能会忽略数据的分布情况和其他重要的变异指标。
在下一段,我们将继续讨论变异指标,以帮助我们更全面地理解数据。
变异指标在这个段落中,我们将介绍变异指标对于衡量数据分散程度的重要性。
我们将讨论标准差和方差,并解释它们如何帮助我们理解数据的离散程度。
我们还将提供一些实际应用的例子,并讨论如何比较不同数据集的变异程度。
标准差是指一组数据的平均离差平方根。
它衡量了数据集中每个数据点与平均值之间的离散程度。
标准差越大,说明数据点相对于平均值的离散程度越大,数据分布越分散;标准差越小,说明数据点相对于平均值的离散程度越小,数据分布越集中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
300
5~10
10
1500
10~15
5
2500
合计
20
4550
3.甲、乙两农贸市场某农产品价格及成交量、成交额的资料如下:
品种
价格(元/公斤)
甲市场成交额(万元)
乙市场成交量(万公斤)
甲
2
乙
1
丙
1
合计
——
4
试问该农产品哪一个市场的平均价格比较高
4.某公司两工厂工人按照技术级别分配如下:
技术级别
工人数(人)
甲厂
乙厂
1
220
200
2
540
500
3
420
430
4
450
450
5
200
220
6
100
110
7
50
60
8
20
30
合计
2000
2000
试确定这两工厂和全公司工人技术:
耕地按亩产分组(公斤)
耕地面积(万亩)
350以下
350~400
400~425
425~450
(3)《统计学》考试结果,有半数考生成绩在80分以下,得84分的考生最多。
精心搜集整理,只为你的需要
测验题
1.某厂50个工人,各级工人工资和工人数资料如下:
技术级别
月工资(元)
工人数(人)
1
546
5
2
552
15
3
560
18
4
570
10
5
585
2
合计
——
50
试计算工人的平均技术级别和平均月工资
2.根据集团公司所属的企业资金利润资料计算平均利润率:
利润率(%)
企业数(个)
资金(万元)
-5~0
2
250
0~5
450~475
475~500
500以上
合计
试计算该地区粮食耕地亩产众数和中位数。
6.下面各题为研究平均指标的算术平均数、众数、中位数三者的关系。请根据已知两平均指标数据推算另一个未知平均指标,并确定其偏态。
(1)某市农民人均纯收入达到2500元,众数为2560元。
(2)根据工时消耗的资料,工厂食堂午餐平均用时13分钟;中位数为16分钟。