遗传算法的C#实现及应用

合集下载

遗传算法的研究与进展

遗传算法的研究与进展

遗传算法的研究与进展一、综述随着科学技术的不断发展和计算能力的持续提高,遗传算法作为一种高效的优化方法,在许多领域中得到了广泛的应用。

本文将对遗传算法的研究进展进行综述,包括基本原理、改进策略、应用领域及最新研究成果等方面的内容。

自1975年Brendo和Wolfe首次提出遗传算法以来,该算法已经发展成为一种广泛应用于求解最优化问题的通用方法。

遗传算法主要基于自然选择的生物进化机制,通过模拟生物基因的自然选择、交叉和变异过程来寻找最优解。

在过去的几十年里,众多研究者和开发者针对遗传算法的性能瓶颈和改进方向进行了深入探讨,提出了许多重要的改进策略。

本文将对这些策略进行综述,并介绍相关的理论依据、实现方法以及在具体问题中的应用。

遗传算法的核心思想是基于种群搜索策略,在一组可行解(称为种群)中通过选择、交叉和变异等遗传操作产生新的候选解,进而根据适应度函数在种群中选择优良的候选解,重复上述过程,最终收敛于最优解。

遗传算法的关键要素包括:染色体表示、适应度函数设计、遗传操作方法等。

为进一步提高遗传算法的性能,研究者们提出了一系列改进策略。

这些策略可以从以下几个方面对遗传算法进行改进:多目标优化策略:针对单点遗传算法在求解多目标优化问题时容易出现陷入局部最优解的问题,可以通过引入多目标遗传算法来求解多目标问题。

精英保留策略:为了避免遗传算法在进化过程中可能出现未成熟个体过早死亡的现象,可以采用精英保留策略来保持种群的优良特性。

基于随机邻域搜索策略:这种策略通过对当前解的随机邻域进行搜索,可以在一定程度上避免陷入局部最优解,并提高算法的全局收敛性。

遗传算法作为一种常用的优化方法,在许多领域都有广泛应用,如组合优化、约束满足问题、机器学习参数优化、路径规划等。

随着技术的发展,遗传算法在深度学习、强化学习和智能交通系统等领域取得了显著成果。

研究者们在遗传算法的设计和应用方面取得了一系列创新成果。

基于神经网络的遗传算法被用于解决非线性优化问题;基于模型的遗传算法通过建立优化问题模型来提高算法的精度和效率;一些研究还关注了遗传算法的鲁棒性和稳定性问题,提出了相应的改进措施。

遗传算法旅行商问题c语言代码

遗传算法旅行商问题c语言代码

遗传算法是一种模拟自然选择过程的优化算法,可以用于解决各种复杂的组合优化问题。

其中,旅行商问题是一个经典的组合优化问题,也是一个典型的NP难题,即寻找最优解的时间复杂度是指数级的。

在本文中,我们将讨论如何使用遗传算法来解决旅行商问题,并给出相应的C语言代码实现。

我们将介绍旅行商问题的数学模型,然后简要介绍遗传算法的原理,最后给出C语言代码实现。

旅行商问题是指一个旅行商要拜访n个城市,恰好拜访每个城市一次,并返回出发城市,要求总路程最短。

数学上可以用一个n*n的距离矩阵d[i][j]表示城市i到城市j的距离,问题可以形式化为求解一个排列p={p1,p2,...,pn},使得目标函数f(p)=Σd[p[i]][p[i+1]]+d[p[n]][p[1]]最小。

这个问题是一个组合优化问题,其搜索空间是一个n维的离散空间。

遗传算法是一种基于生物进化过程的优化算法,主要包括选择、交叉、变异等操作。

在使用遗传算法解决旅行商问题时,可以将每个排列p看作一个个体,目标函数f(p)看作个体的适应度,通过选择、交叉和变异等操作来搜索最优解。

以下是遗传算法解决旅行商问题的C语言代码实现:1. 我们需要定义城市的距离矩阵和其他相关参数,例如城市的数量n,种裙大小pop_size,交叉概率pc,变异概率pm等。

2. 我们初始化种裙,即随机生成pop_size个排列作为初始种裙。

3. 我们进入遗传算法的迭代过程。

在每一代中,我们首先计算种裙中每个个体的适应度,然后通过选择、交叉和变异操作来更新种裙。

4. 选择操作可以采用轮盘赌选择法,即根据个体的适应度来进行选择,适应度越高的个体被选中的概率越大。

5. 交叉操作可以采用部分映射交叉方法,即随机选择两个个体,然后随机选择一个交叉点,将交叉点之后的基因片段进行交换。

6. 变异操作可以采用变异率为pm的单点变异方法,即随机选择一个个体和一个位置,将该位置的基因值进行随机变异。

7. 我们重复进行迭代操作,直到达到停止条件(例如达到最大迭代次数或者适应度达到阈值)。

遗传算法C语言代码

遗传算法C语言代码

// GA.cpp : Defines the entry point for the console application.///*这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。

代码保证尽可能少,实际上也不必查错。

对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。

注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。

该系统使用比率选择、精华模型、单点杂交和均匀变异。

如果用Gaussian变异替换均匀变异,可能得到更好的效果。

代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。

读者可以从, 目录coe/evol中的文件prog.c中获得。

要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。

输入的文件由几行组成:数目对应于变量数。

且每一行提供次序——对应于变量的上下界。

如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。

*/#include <stdio.h>#include <stdlib.h>#include <math.h>/* Change any of these parameters to match your needs *///请根据你的需要来修改以下参数#define POPSIZE 50 /* population size 种群大小*/#define MAXGENS 1000 /* max. number of generations 最大基因个数*/const int NVARS = 3; /* no. of problem variables 问题变量的个数*/#define PXOVER 0.8 /* probability of crossover 杂交概率*/#define PMUTATION 0.15 /* probability of mutation 变异概率*/#define TRUE 1#define FALSE 0int generation; /* current generation no. 当前基因个数*/int cur_best; /* best individual 最优个体*/FILE *galog; /* an output file 输出文件指针*/struct genotype /* genotype (GT), a member of the population 种群的一个基因的结构体类型*/{double gene[NVARS]; /* a string of variables 变量*/double fitness; /* GT's fitness 基因的适应度*/double upper[NVARS]; /* GT's variables upper bound 基因变量的上界*/ double lower[NVARS]; /* GT's variables lower bound 基因变量的下界*/ double rfitness; /* relative fitness 比较适应度*/double cfitness; /* cumulative fitness 积累适应度*/};struct genotype population[POPSIZE+1]; /* population 种群*/struct genotype newpopulation[POPSIZE+1]; /* new population; 新种群*//* replaces the old generation *///取代旧的基因/* Declaration of procedures used by this genetic algorithm *///以下是一些函数声明void initialize(void);double randval(double, double);void evaluate(void);void keep_the_best(void);void elitist(void);void select(void);void crossover(void);void Xover(int,int);void swap(double *, double *);void mutate(void);void report(void);/***************************************************************/ /* Initialization function: Initializes the values of genes *//* within the variables bounds. It also initializes (to zero) *//* all fitness values for each member of the population. It *//* reads upper and lower bounds of each variable from the *//* input file `gadata.txt'. It randomly generates values *//* between these bounds for each gene of each genotype in the *//* population. The format of the input file `gadata.txt' is *//* var1_lower_bound var1_upper bound *//* var2_lower_bound var2_upper bound ... *//***************************************************************/void initialize(void){FILE *infile;int i, j;double lbound, ubound;if ((infile = fopen("gadata.txt","r"))==NULL){fprintf(galog,"\nCannot open input file!\n");exit(1);}/* initialize variables within the bounds *///把输入文件的变量界限输入到基因结构体中for (i = 0; i < NVARS; i++){fscanf(infile, "%lf",&lbound);fscanf(infile, "%lf",&ubound);for (j = 0; j < POPSIZE; j++){population[j].fitness = 0;population[j].rfitness = 0;population[j].cfitness = 0;population[j].lower[i] = lbound;population[j].upper[i]= ubound;population[j].gene[i] = randval(population[j].lower[i],population[j].upper[i]);}}fclose(infile);}/***********************************************************/ /* Random value generator: Generates a value within bounds *//***********************************************************/ //随机数产生函数double randval(double low, double high){double val;val = ((double)(rand()%1000)/1000.0)*(high - low) + low;return(val);}/*************************************************************/ /* Evaluation function: This takes a user defined function. *//* Each time this is changed, the code has to be recompiled. *//* The current function is: x[1]^2-x[1]*x[2]+x[3] *//*************************************************************/ //评价函数,可以由用户自定义,该函数取得每个基因的适应度。

一个简单实用的遗传算法c程序

一个简单实用的遗传算法c程序

一个简单实用的遗传算法c程序(转载)c++ 2009-07-28 23:09:03 阅读418 评论0 字号:大中小这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。

代码保证尽可能少,实际上也不必查错。

对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。

注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。

该系统使用比率选择、精华模型、单点杂交和均匀变异。

如果用Gaussian变异替换均匀变异,可能得到更好的效果。

代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。

读者可以从,目录coe/evol 中的文件prog.c中获得。

要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。

输入的文件由几行组成:数目对应于变量数。

且每一行提供次序——对应于变量的上下界。

如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。

/**************************************************************************//* This is a simple genetic algorithm implementation where the *//* evaluation function takes positive values only and the *//* fitness of an individual is the same as the value of the *//* objective function *//**************************************************************************/#include <stdio.h>#include <stdlib.h>#include <math.h>/* Change any of these parameters to match your needs */#define POPSIZE 50 /* population size */#define MAXGENS 1000 /* max. number of generations */#define NVARS 3 /* no. of problem variables */#define PXOVER 0.8 /* probability of crossover */#define PMUTATION 0.15 /* probability of mutation */#define TRUE 1#define FALSE 0int generation; /* current generation no. */int cur_best; /* best individual */FILE *galog; /* an output file */struct genotype /* genotype (GT), a member of the population */{double gene[NVARS]; /* a string of variables一个变量字符串*/ double fitness; /* GT's fitness适应度*/double upper[NVARS]; /* GT's variables upper bound 变量的上限*/ double lower[NVARS]; /* GT's variables lower bound变量的下限*/ double rfitness; /* relative fitness 相对适应度*/double cfitness; /* cumulative fitness 累计适应度*/};struct genotype population[POPSIZE+1]; /* population */struct genotype newpopulation[POPSIZE+1]; /* new population; *//* replaces the *//* old generation */ /* Declaration of procedures used by this genetic algorithm */void initialize(void);double randval(double, double);void evaluate(void);void keep_the_best(void);void elitist(void);void select(void);void crossover(void);void Xover(int,int);void swap(double *, double *);void mutate(void);void report(void);/***************************************************************//* Initialization function: Initializes the values of genes *//* within the variables bounds. It also initializes (to zero) *//* all fitness values for each member of the population. It *//* reads upper and lower bounds of each variable from the */ /* input file `gadata.txt'. It randomly generates values *//* between these bounds for each gene of each genotype in the *//* population. The format of the input file `gadata.txt' is *//* var1_lower_bound var1_upper bound */ /* var2_lower_bound var2_upper bound ... */ /***************************************************************/void initialize(void){FILE *infile;int i, j;double lbound, ubound;if ((infile = fopen("gadata.txt","r"))==NULL){fprintf(galog,"\nCannot open input file!\n");exit(1);}/* initialize variables within the bounds */for (i = 0; i < NVARS; i++){fscanf(infile, "%lf",&lbound);fscanf(infile, "%lf",&ubound);for (j = 0; j < POPSIZE; j++){population[j].fitness = 0;population[j].rfitness = 0;population[j].cfitness = 0;population[j].lower[i] = lbound;population[j].upper[i]= ubound;population[j].gene[i] = randval(population[j].lower[i],population[j].upper[i]);}}fclose(infile);}/***********************************************************//* Random value generator: Generates a value within bounds */ /***********************************************************/double randval(double low, double high){double val;val = ((double)(rand()%1000)/1000.0)*(high - low) + low;return(val);}/*************************************************************//* Evaluation function: This takes a user defined function. *//* Each time this is changed, the code has to be recompiled. */ /* The current function is: x[1]^2-x[1]*x[2]+x[3] *//*************************************************************/void evaluate(void){int mem;int i;double x[NVARS+1];for (mem = 0; mem < POPSIZE; mem++){for (i = 0; i < NVARS; i++)x[i+1] = population[mem].gene[i];population[mem].fitness = (x[1]*x[1]) - (x[1]*x[2]) + x[3];}}/***************************************************************//* Keep_the_best function: This function keeps track of the */ /* best member of the population. Note that the last entry in */ /* the array Population holds a copy of the best individual *//***************************************************************/void keep_the_best(){int mem;int i;cur_best = 0; /* stores the index of the best individual */for (mem = 0; mem < POPSIZE; mem++){if (population[mem].fitness > population[POPSIZE].fitness){cur_best = mem;population[POPSIZE].fitness = population[mem].fitness;}}/* once the best member in the population is found, copy the genes */ for (i = 0; i < NVARS; i++)population[POPSIZE].gene[i] = population[cur_best].gene[i]; }/****************************************************************//* Elitist function: The best member of the previous generation *//* is stored as the last in the array. If the best member of *//* the current generation is worse then the best member of the *//* previous generation, the latter one would replace the worst *//* member of the current population */ /****************************************************************/void elitist(){int i;double best, worst; /* best and worst fitness values */int best_mem, worst_mem; /* indexes of the best and worst member */ best = population[0].fitness;worst = population[0].fitness;for (i = 0; i < POPSIZE - 1; ++i){if(population[i].fitness > population[i+1].fitness){if (population[i].fitness >= best){best = population[i].fitness;best_mem = i;}if (population[i+1].fitness <= worst){worst = population[i+1].fitness;worst_mem = i + 1;}}else{if (population[i].fitness <= worst){worst = population[i].fitness;worst_mem = i;}if (population[i+1].fitness >= best){best = population[i+1].fitness;best_mem = i + 1;}}}/* if best individual from the new population is better than */ /* the best individual from the previous population, then *//* copy the best from the new population; else replace the *//* worst individual from the current population with the *//* best one from the previous generation */if (best >= population[POPSIZE].fitness){for (i = 0; i < NVARS; i++)population[POPSIZE].gene[i] = population[best_mem].gene[i];population[POPSIZE].fitness = population[best_mem].fitness;}else{for (i = 0; i < NVARS; i++)population[worst_mem].gene[i] = population[POPSIZE].gene[i];population[worst_mem].fitness = population[POPSIZE].fitness;}}/**************************************************************//* Selection function: Standard proportional selection for *//* maximization problems incorporating elitist model - makes *//* sure that the best member survives *//**************************************************************/void select(void){int mem, i, j, k;double sum = 0;double p;/* find total fitness of the population */for (mem = 0; mem < POPSIZE; mem++){sum += population[mem].fitness;}/* calculate relative fitness */for (mem = 0; mem < POPSIZE; mem++){population[mem].rfitness = population[mem].fitness/sum;}population[0].cfitness = population[0].rfitness;/* calculate cumulative fitness */for (mem = 1; mem < POPSIZE; mem++){population[mem].cfitness = population[mem-1].cfitness +population[mem].rfitness;}/* finally select survivors using cumulative fitness. */for (i = 0; i < POPSIZE; i++){p = rand()%1000/1000.0;if (p < population[0].cfitness)newpopulation[i] = population[0];else{for (j = 0; j < POPSIZE;j++)if (p >= population[j].cfitness &&p<population[j+1].cfitness)newpopulation[i] = population[j+1];}}/* once a new population is created, copy it back */for (i = 0; i < POPSIZE; i++)population[i] = newpopulation[i];}/***************************************************************//* Crossover selection: selects two parents that take part in *//* the crossover. Implements a single point crossover */ /***************************************************************/void crossover(void){int i, mem, one;int first = 0; /* count of the number of members chosen */ double x;for (mem = 0; mem < POPSIZE; ++mem){x = rand()%1000/1000.0;if (x < PXOVER){++first;if (first % 2 == 0)Xover(one, mem);elseone = mem;}}}/**************************************************************//* Crossover: performs crossover of the two selected parents. *//**************************************************************/void Xover(int one, int two){int i;int point; /* crossover point *//* select crossover point */if(NVARS > 1){if(NVARS == 2)point = 1;elsepoint = (rand() % (NVARS - 1)) + 1;for (i = 0; i < point; i++)swap(&population[one].gene[i], &population[two].gene[i]);}}/*************************************************************//* Swap: A swap procedure that helps in swapping 2 variables */ /*************************************************************/void swap(double *x, double *y){double temp;temp = *x;*x = *y;*y = temp;}/**************************************************************//* Mutation: Random uniform mutation. A variable selected for *//* mutation is replaced by a random value between lower and */ /* upper bounds of this variable */ /**************************************************************/void mutate(void){int i, j;double lbound, hbound;double x;for (i = 0; i < POPSIZE; i++)for (j = 0; j < NVARS; j++){x = rand()%1000/1000.0;if (x < PMUTATION){/* find the bounds on the variable to be mutated */lbound = population[i].lower[j];hbound = population[i].upper[j];population[i].gene[j] = randval(lbound, hbound);}}}/***************************************************************//* Report function: Reports progress of the simulation. Data *//* dumped into the output file are separated by commas */ /***************************************************************/void report(void){int i;double best_val; /* best population fitness */double avg; /* avg population fitness */double stddev; /* std. deviation of population fitness */ double sum_square; /* sum of square for std. calc */ double square_sum; /* square of sum for std. calc */ double sum; /* total population fitness */sum = 0.0;sum_square = 0.0;for (i = 0; i < POPSIZE; i++){sum += population[i].fitness;sum_square += population[i].fitness * population[i].fitness;}avg = sum/(double)POPSIZE;square_sum = avg * avg * POPSIZE;stddev = sqrt((sum_square - square_sum)/(POPSIZE - 1));best_val = population[POPSIZE].fitness;fprintf(galog, "\n%5d, %6.3f, %6.3f, %6.3f \n\n", generation,best_val, avg, stddev); }/**************************************************************//* Main function: Each generation involves selecting the best *//* members, performing crossover & mutation and then */ /* evaluating the resulting population, until the terminating *//* condition is satisfied */ /**************************************************************/void main(void){int i;if ((galog = fopen("galog.txt","w"))==NULL){exit(1);}generation = 0;fprintf(galog, "\n generation best average standard \n"); fprintf(galog, " number value fitness deviation \n"); initialize();evaluate();keep_the_best();while(generation<MAXGENS){generation++;select();crossover();mutate();report();evaluate();elitist();}fprintf(galog,"\n\n Simulation completed\n");fprintf(galog,"\n Best member: \n");for (i = 0; i < NVARS; i++){fprintf (galog,"\n var(%d) = %3.3f",i,population[POPSIZE].gene[i]);}fprintf(galog,"\n\n Best fitness = %3.3f",population[POPSIZE].fitness);fclose(galog);printf("Success\n");}/***************************************************************/链接库文件?这个简单一般的第三方库文件有2种提供方式1.lib静态库,这样必须在工程设置里面添加。

遗传算法解释及代码(一看就懂)

遗传算法解释及代码(一看就懂)

遗传算法( GA , Genetic Algorithm ) ,也称进化算法。

遗传算法是受达尔文的进化论的启发,借鉴生物进化过程而提出的一种启发式搜索算法。

因此在介绍遗传算法前有必要简单的介绍生物进化知识。

一.进化论知识作为遗传算法生物背景的介绍,下面容了解即可:种群(Population):生物的进化以群体的形式进行,这样的一个群体称为种群。

个体:组成种群的单个生物。

基因 ( Gene ) :一个遗传因子。

染色体 ( Chromosome ):包含一组的基因。

生存竞争,适者生存:对环境适应度高的、牛B的个体参与繁殖的机会比较多,后代就会越来越多。

适应度低的个体参与繁殖的机会比较少,后代就会越来越少。

遗传与变异:新个体会遗传父母双方各一部分的基因,同时有一定的概率发生基因变异。

简单说来就是:繁殖过程,会发生基因交叉( Crossover ) ,基因突变( Mutation ) ,适应度( Fitness )低的个体会被逐步淘汰,而适应度高的个体会越来越多。

那么经过N代的自然选择后,保存下来的个体都是适应度很高的,其中很可能包含史上产生的适应度最高的那个个体。

二.遗传算法思想借鉴生物进化论,遗传算法将要解决的问题模拟成一个生物进化的过程,通过复制、交叉、突变等操作产生下一代的解,并逐步淘汰掉适应度函数值低的解,增加适应度函数值高的解。

这样进化N代后就很有可能会进化出适应度函数值很高的个体。

举个例子,使用遗传算法解决“0-1背包问题”的思路:0-1背包的解可以编码为一串0-1字符串(0:不取,1:取);首先,随机产生M个0-1字符串,然后评价这些0-1字符串作为0-1背包问题的解的优劣;然后,随机选择一些字符串通过交叉、突变等操作产生下一代的M个字符串,而且较优的解被选中的概率要比较高。

这样经过G代的进化后就可能会产生出0-1背包问题的一个“近似最优解”。

编码:需要将问题的解编码成字符串的形式才能使用遗传算法。

遗传算法-3

遗传算法-3

适应度函数的线性变换法
f’=α*f+β 系数的确定满足以下条件: ① f’avg= favg ② f’max= cmult f’avg cmult =1.0~2.0
适应度函数的幂函数变换法
f’= f k
k与所求优化相关
1
0.9
0.8
0.7
k
0.6
0.5
0.4
0.3
0.2
0.1
0
0.1Βιβλιοθήκη 0.20.3的概率Pi为:
3 3.0
9.00
0.26
4 1.2
1.44
0.04
Pi
fi
M
fi
i1
5 2.1
4.41
0.13
6 0.8
0.64
0.02
7 2.5
6.25
0.18
8 1.3
1.69
0.05
9 0.9
0.81
0.02
10 1.8
3.24
0.09
个体选择概率的常用分配方法 ✓ 基于排序的适应度分配(rank-based fitness
➢健全性(Soundness):GA空间中的染色体能对 应所有问题空间中的解。任何一个基因型都对应 于一个可能解。
➢非冗余性(Non-redundancy):染色体和后选 解一一对应。问题空间和表达空间一一对应。
3、编码技术 遗传算法用到的一般编码技术有: ➢一维染色体编码 ➢多参数映射编码 ➢可变染色体长度编码 ➢二维染色体编码 ➢树结构编码
染色体长度L
影响算法的计算量和交配变异操作的效果。 L的设置跟优化问题密切相关,一般由问题定义的解的 形式和选择的编码方法决定。 对于二进制编码方法,染色体的长度L根据解的取值范 围和规定精度要求选择大小。 对于浮点数编码方法,染色体的长度L 跟问题定义的解 的维数D相同。 除了染色体长度一定的编码方法,Goldberg等人还提出 了一种变长度染色体遗传算法Messy GA,其染色体的长 度并不是固定的。

遗传算法的C语言实现(二)-----以求解TSP问题为例

遗传算法的C语⾔实现(⼆)-----以求解TSP问题为例上⼀次我们使⽤遗传算法求解了⼀个较为复杂的多元⾮线性函数的极值问题,也基本了解了遗传算法的实现基本步骤。

这⼀次,我再以经典的TSP问题为例,更加深⼊地说明遗传算法中选择、交叉、变异等核⼼步骤的实现。

⽽且这⼀次解决的是离散型问题,上⼀次解决的是连续型问题,刚好形成对照。

⾸先介绍⼀下TSP问题。

TSP(traveling salesman problem,旅⾏商问题)是典型的NP完全问题,即其最坏情况下的时间复杂度随着问题规模的增⼤按指数⽅式增长,到⽬前为⽌还没有找到⼀个多项式时间的有效算法。

TSP问题可以描述为:已知n个城市之间的相互距离,某⼀旅⾏商从某⼀个城市出发,访问每个城市⼀次且仅⼀次,最后回到出发的城市,如何安排才能使其所⾛的路线最短。

换⾔之,就是寻找⼀条遍历n个城市的路径,或者说搜索⾃然⼦集X={1,2,...,n}(X的元素表⽰对n个城市的编号)的⼀个排列P(X)={V1,V2,....,Vn},使得Td=∑d(V i,V i+1)+d(V n,V1)取最⼩值,其中,d(V i,V i+1)表⽰城市V i到V i+1的距离。

TSP问题不仅仅是旅⾏商问题,其他许多NP完全问题也可以归结为TSP问题,如邮路问题,装配线上的螺母问题和产品的⽣产安排问题等等,也使得TSP问题的求解具有更加⼴泛的实际意义。

再来说针对TSP问题使⽤遗传算法的步骤。

(1)编码问题:由于这是⼀个离散型的问题,我们采⽤整数编码的⽅式,⽤1~n来表⽰n个城市,1~n的任意⼀个排列就构成了问题的⼀个解。

可以知道,对于n个城市的TSP问题,⼀共有n!种不同的路线。

(2)种群初始化:对于N个个体的种群,随机给出N个问题的解(相当于是染⾊体)作为初始种群。

这⾥具体采⽤的⽅法是:1,2,...,n作为第⼀个个体,然后2,3,..n分别与1交换位置得到n-1个解,从2开始,3,4,...,n分别与2交换位置得到n-2个解,依次类推。

哈密尔顿环 c算法

哈密尔顿环c算法全文共四篇示例,供读者参考第一篇示例:哈密尔顿环(Hamiltonian cycle)是图论中一个重要的概念,指的是图G中一条包含所有顶点且恰好经过一次的环。

哈密尔顿环问题是一个NP难题,即目前尚未找到有效的多项式时间算法来解决该问题。

寻找哈密尔顿环的有效算法一直是图论领域的热门研究方向之一。

在图论中,哈密尔顿环的存在性和性质一直备受关注。

给定一个图G,如果存在一个哈密尔顿环,那么这个图被称为哈密尔顿图;如果不存在哈密尔顿环,但是对于图中的任意两个不同的顶点u和v,存在经过这两个顶点的哈密尔顿路径(即包含u和v并且其余顶点均不重复的路径),则称之为哈密尔顿连通图。

哈密尔顿图和哈密尔顿连通图是图论中两个非常重要的概念,它们的研究对于理解各种应用问题具有重要的意义。

现在我们来介绍一种经典的哈密尔顿环算法——C算法。

C算法是一种基于回溯思想的搜索算法,它通过递归地搜索图中的所有可能的路径来找到哈密尔顿环。

虽然C算法在最坏情况下可能需要指数级的时间复杂度来解决哈密尔顿环问题,但是在实际应用中,它仍然是一种较为有效的方法。

C算法的基本思想是从图中的任意一个顶点开始,逐步向下一个未访问的顶点移动,并判断是否满足环的条件。

在搜索过程中,如果无法找到符合条件的路径,则回退到上一个节点,继续向其他未访问过的节点探索。

通过递归的方式,C算法最终可以找到所有可能的哈密尔顿环。

在实际应用中,C算法通常需要配合一些剪枝策略来提高搜索效率。

在搜索过程中,可以根据一些启发式规则来减少搜索空间,从而快速排除不可能存在哈密尔顿环的路径。

还可以利用一些局部优化技巧,如动态规划、记忆化搜索等,来加速查找哈密尔顿环的速度。

虽然C算法在最坏情况下的时间复杂度较高,但在实际应用中,它仍然是一种可行的方法。

通过合理设计剪枝策略和优化技巧,我们可以提高C算法的搜索效率,从而更快地找到哈密尔顿环。

在解决具体问题时,我们可以根据实际情况选择不同的搜索策略和优化方法,以达到更好的效果。

2遗传算法介绍


对控制参数的改进
Srinvivas等人提出自适应遗传算法,即PC和Pm 能够随适应度自动改变,当种群的各个个体适应度 趋于一致或趋于局部最优时,使二者增加,而当种 群适应度比较分散时,使二者减小,同时对适应值 高于群体平均适应值的个体,采用较低的PC和Pm, 使性能优良的个体进入下一代,而低于平均适应值 的个体,采用较高的PC和Pm,使性能较差的个体被 淘汰。
对遗传算子的改进
排序选择 均匀交叉 逆序变异
(1) 随机产生一个与个体编码长度 相同的二进制屏蔽字P = W1W2„Wn ; (2) 按下列规则从A、B两个父代个 体中产生两个新个体X、Y:若Wi = 0, 则X的第i个基因继承A的对应基因,Y 的第i个基因继承B的对应基因;若Wi = 1,则A、B的第i个基因相互交换,从 而生成X、Y的第i个基因。
模式阶用来反映不同模式间确定性的 差异,模式阶数越高,模式的确定性就越高,
所匹配的样本数就越少。在遗传操作中,即
使阶数相同的模式,也会有不同的性质,而
模式的定义距就反映了这种性质的差异。
模式定理
模式定理:具有低阶、短定义距以及平 均适应度高于种群平均适应度的模式在子代
中呈指数增长。
模式定理保证了较优的模式(遗传算法
的质量越好。适应度函数是遗传算法进化过
程的驱动力,也是进行自然选择的唯一标准,
它的设计应结合求解问题本身的要求而定。
选择算子
遗传算法使用选择运算来实现对群体中的个体 进行优胜劣汰操作:适应度高的个体被遗传到下一
代群体中的概率大;适应度低的个体,被遗传到下
一代群体中的概率小。选择操作的任务就是按某种 方法从父代群体中选取一些个体,遗传到下一代群
遗传算法应用于组合优化

(完整版)遗传算法c语言代码

//随机产生变异概率
srand((unsigned)time(NULL));
for(i=0;i<num;i++)
{
bianyip[i]=(rand()%100);
bianyip[i]/=100;
}
//确定可以变异的染色体
t=0;
for(i=0;i<num;i++)
{
if(bianyip[i]<pm)
printf("\n******************是否想再一次计算(y or n)***********************\n");
fflush(stdin);
scanf("%c",&choice);
}while(choice=='y');
return 0;
}
{
flag=0;
break;
}
}
if(flag)
{
group[i].city[j]=t;
j++;
}
}
}
printf("************初始种群如下****************\n");
for(i=0;i<num;i++)
{
for(j=0;j<cities;j++)
printf("%4d",group[i].city[j]);
{
group[i].p=1-(double)group[i].adapt/(double)biggestsum;
biggestp+=group[i].p;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

,………………………………………………“………“
实用第一/智慧密集。

.....。

,。

.。

.。

.。

.。

.。

..。

..。

,。

√,
≯||j—A疆蕊嗡嗡镧鹣潲瞒虢滁酗确斓蛹鹳曩jii11||||璐彀豫澡毽畿瓷罐甍谶羲|遵麓囊鬻谶赢薏篱瀑每||?i。

|?≯,鬣壤鋈国潆巢镶倦奄誊缝绥舔蔑善嚣≤譬I
jl。

j0j。

j瓷蚤尊嶙≮啪獬i毽赫馘每蛹戳j蠢。

‰酶鸯峨誓曩薯|≥iljij。

一iI|薯0I奄§畦姻镦添。

每孳舔溺警jlj;|0一『j_l甍遴!l邀纛纛瓣|鬣瓣◇|lii|Il||I弩酶冁醚嗡婚穆穗姆t◇9鬟湖瀵哮咚◇i谚峰岭譬ij¨¨|:鬻攀谶一≥。

|?|“ji?l疆黼誊眷懿t诵蕊囊酿褥酶姆螭t豳j酶I≮媾龋穗电鹱穰誊j|。

j|。

麓国隧嫱毒撼媳誊『:i-jl||i溪誉攀lj豢篱鬣蔷淄鬻|l|一ij鼍≥l篱鬻il豢
≤奠do≯Z处理其余的基因l城市点卜
鼍_i『瓢j树蛹嗽N哟hbor={G_e制ea淑Nejghbor誊l|ll}ig髓瞄蝴a}弼鼯礁u确瞅e脚S攀j。

一毫·。

/|l,,熊到与翦学纂蜀溉避的一个基因,并加入新染色体曩o、。

潮黼溉憾rf_{la鳓m鸯,A酬Gene椭ewGAGene
j删删N磅i鳓£躜r|I;¨警自赋£lI:_l§¨'|):
、。

-。

:,薯£酒ftP舀黼黯一一:。


j-ji。

昭铀柏舔嚣i蜩酚鳓N∞rs悄ejghboB
+寥
__l蝴Ⅺ蠢lm白赠鳓f¥缓警iO戳『;j
i毒j碜净磅囊i÷i;i喹哆?簿簪两ohr9哆j舀锣me{n。

wchr|。

而osome}:j雾雾鬻雾耩韵秘穆然取代原染色体i.
准备好以上的方法后,还要注意四个参数的设定。

交叉率一般为O.8左右,变异率一般为O.05左右,群体大小、繁殖次数要根据城市数目有所变化。

调试程序时,可以修改这些参数来观察优化过程的收敛快慢、最优解的跳变等。

三、程序调试
在Vs2005中建立windows组件解决方案,添加现有项:基因类(GAGene)、染色体类(GAChfomosome)、染色体比较类(chromosomecomparer.cs)、遗传算法类(GA),调试生成(ga.衄)组件。

建立gaTsP解决方案,添加现有项tspFORM.cs窗体,添加引用ga.dll。

运行程序如下图所示。

工具栏第一个按钮的作用是设置一个文本文件,以记录每一代群体的染色体组成及其适应度的值。

红色曲线为每一群体中最优染色体的适应度的变化,从中可以看到优化过程的收敛情况。

读者可以模仿本文的第二部分,利用ga.dU解决其他问题。

旅行商问题运行图
参考文献
1.陈国良、王煦法、庄镇.遗传算法及其应用.人民邮电出版社
2.李敏强.遗传算法的基本理论与应用.科学出版社
(收稿日期:2007年1月26日)
遗传算法的C#实现及应用
作者:吴晓春
作者单位:
刊名:
电脑编程技巧与维护
英文刊名:COMPUTER PROGRAMMING SKILLS & MAINTENANCE
年,卷(期):2007(3)
1.陈国良;王煦法;庄镇遗传算法及其应用
2.李敏强;寇纪淞;林丹;李书全遗传算法的基本理论与应用
1.徐立秋遗传算法在门式刚架优化设计中的应用[学位论文]2007
2.袁锋.Yuan Feng遗传算法在自动组卷系统中的应用[期刊论文]-山东师范大学学报(自然科学版)2006,21(1)
3.刘伟基于遗传算法的桁架结构离散变量优化设计的研究与应用[学位论文]2007
4.牛国新.王育欣.姜国强.NIU Guo-xin.WANG Yu-xin.JIANG Guo-qiang油水分离控制系统设计与应用[期刊论文]-装备制造技术2008(3)
5.苏小兵.李天平.Su Xiaobing.Li Tianping基于遗传算法的在线考试系统的研究[期刊论文]-中国教育技术装备2010(36)
6.常建娥.刘飞.CHANG Jian'e.LIU Fei基于工艺流程的零件成组方法及其实现[期刊论文]-武汉大学学报(工学版)2008,41(4)
7.王飞朝.Wang Feichao遗传算法编程分析[期刊论文]-火控雷达技术2005,34(2)
8.童海峰.张成年基于遗传算法的自动组卷系统[期刊论文]-科技创新导报2008(27)
9.杨益.方潜生.高翠云.YANG Yi.FANG Qian-sheng.GAO Cui-yun求解TSP问题的遗传算法硬件实现[期刊论文]-计算机技术与发展2009,19(4)
本文链接:/Periodical_dnbcjqywh200703004.aspx。

相关文档
最新文档