人教版数学高二-备课资料求曲线轨迹方程的五种方法

合集下载

人教版数学高二-备课资料轨迹方程的求法

人教版数学高二-备课资料轨迹方程的求法

轨迹方程的求法 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.本文结合具体实例对求曲线的轨迹方程的常用方法作一归纳。

一.直接法 如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法.例1.AB 是圆O 的直径,且|AB |=2a ,M 为圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使|OP |=|MN |,求点P 的轨迹.解:以圆心O 为原点,AB 所在直线为x 轴建立直角坐标系(如图),则⊙O 的方程为x 2+y 2=a 2,设点P 坐标为(x ,y ),并设圆与y 轴交于C 、D 两点,作PQ ⊥AB 于Q ,则有||||OM OP =||||MN PQ . ∵|OP |=|MN |,∴|OP |2=|OM |·|PQ |.∴x 2+y 2=a |y |, 即 x 2+(y ±2a )2=(2a )2.轨迹是分别以CO 、OD 为直径的两个圆. 二.定义法 如果能够确定动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法.例2.某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r,则|PA|+|PO|=1+r+1.5-r=2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为(x -21)2+34y 2=1② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r=73)1412()149(2322=+-,故所求圆柱的直径为76 cm. 三.代入法 如果轨迹动点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程.此法称为代入法.例3.如图所示,已知P(4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB=90°,求矩形APBQ 的顶点Q 的轨迹方程.解:设AB 的中点为R ,坐标为(x,y),则在Rt △ABP 中,|AR|=|PR|.又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR|2=|AO|2-|OR|2=36O y A BP Q M N C D-(x 2+y 2) 又|AR|=|PR|=22)4(y x +-,所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动.设Q(x,y),R(x 1,y 1),因为R 是PQ 的中点,所以x 1=20,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.点评:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.四.参数法 如果轨迹动点P (x ,y )的坐标之间的关系不易找到,也没有相关点可用时,可先考虑将x 、y 用一个或几个参数来表示,消去参数得轨迹方程,此法称为参数法.参数法中常选变角、变斜率等为参数.例4.过抛物线y 2=4x 的焦点的直线l 与抛物线交于A 、B 两点,O 为坐标原点.求△AOB 的重心G 的轨迹C 的方程.解:抛物线的焦点坐标为(1,0),当直线l 不垂直于x 轴时,设方程为y=k (x -1),代入y 2=4x ,得k 2x 2-x (2k 2+4)+k 2=0.设l 方程与抛物线相交于两点,∴k ≠0.设点A 、B 的坐标分别为(x 1,y 1)、(x 2,y 2), 根据韦达定理,有x 1+x 2=22)2(2k k +,从而y 1+y 2=k (x 1+x 2-2)=k 4. 设△AOB 的重心为G (x ,y ),则12120303x x x y y y ++⎧=⎪⎪⎨++⎪=⎪⎩,消去k ,得x=32+34(43y )2, ∴y 2=34x -98.当l 垂直于x 轴时,A 、B 的坐标分别为(1,2)和(1,-2),△AOB 的重心G (32,0),也适合y 2=34x - 98, 因此所求轨迹C 的方程为y 2=34x -98. 五.交轨法 所求动点是两条动直线(或动曲线)的交点且两动直(曲)线能用同一参数表示。

轨迹方程的五种求法

轨迹方程的五种求法

轨迹方程的五种求法一、直接法:直接根据等量关系式建立方程.例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,则点P 的轨迹是( ) A .圆B .椭圆C .双曲线D .抛物线解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,,由2P AP B x =·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D .二、定义法:运用有关曲线的定义求轨迹方程.例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.5b ==∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠. 三、转代法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题.例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩,,00323x x y y =+⎧⎨=⎩, ①∴. ②又00()A x y ,∵在抛物线2y x =上,200y x =∴. ③将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是2434(0)3y x x y =++≠.四、参数法:如果不易直接找出动点坐标之间的关系,可考虑借助中间变量(参数),把x ,y 联系起来例4:已知线段2AA a '=,直线l 垂直平分AA '于O ,在l 上取两点P P ',,使其满足4OP OP '=·,求直线AP 与A P ''的交点M 的轨迹方程.解:如图2,以线段AA '所在直线为x 轴,以线段AA '的中垂线为y 轴建立直角坐标系. 设点(0)(0)P t t ≠,, 则由题意,得40P t ⎛⎫' ⎪⎝⎭,.由点斜式得直线AP A P '',的方程分别为4()()t y x a y x a a ta=+=--,. 两式相乘,消去t ,得222244(0)x a y a y +=≠.这就是所求点M 的轨迹方程.评析:参数法求轨迹方程,关键有两点:一是选参,容易表示出动点;二是消参,消参的途径灵活多变.五、待定系数法:当曲线的形状已知时,一般可用待定系数法解决.例5:已知A ,B ,D 三点不在一条直线上,且(20)A -,,(20)B ,,2AD = ,1()2AE AB AD =+.(1)求E 点轨迹方程;(2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为45,且直线MN 与E 点的轨迹相切,求椭圆方程.解:(1)设()E x y ,,由1()2AE AB AD =+知E 为BD 中点,易知(222)D x y -,.又2AD =,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,.由题意设椭圆方程为222214x y a a +=-,直线MN 方程为(2)y k x =+.∵直线MN 与E 点的轨迹相切,1=,解得k =将y =(2)x +代入椭圆方程并整理,得222244(3)41630a x a x a a -++-=,2120222(3)x x a x a +==--∴, 又由题意知045x =-,即2242(3)5a a =-,解得28a =.故所求的椭圆方程为22184x y +=.配套训练一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2. 设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y xB.14922=+x yC.14922=-y x D.14922=-x y二、填空题3. △ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________.4. 高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________. 三、解答题5. 已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6. 双曲线2222by a x =1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q的交点为Q ,求Q 点的轨迹方程.7. 已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案配套训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|,∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆.答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0)∵A 1、P 1、P 共线,∴300+=--x y x x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y 解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-. 答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5y x y x +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC |=|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ).∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b2x 02-a 2y 02=a 2b 2,即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0),则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①³②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =m n m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =n m n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ ,∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0). |F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |²|OB |²sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。

求轨迹方程的五个步骤

求轨迹方程的五个步骤

求轨迹方程的五个步骤嘿,咱今儿个就来唠唠求轨迹方程的那五个步骤!这可是数学里的一块儿宝呢!你想想看,轨迹方程就像是给一个动点画出的专属路线图。

那怎么找到这条神奇的路线呢?第一步,设动点坐标。

就好像给这个小家伙起个名字,让它在数学的世界里有个明确的身份。

这一步可重要啦,没了这个名字,后面咋知道说的是谁呢?第二步,找关系。

这就好比是在动点的世界里找它和其他元素的联系,它们之间肯定有一些特殊的纽带呀。

就像人与人之间有各种关系一样,动点和其他条件之间也有它们的“小秘密”呢。

第三步,列式子。

这一步可有点像搭积木,把那些找到的关系一块一块地堆起来,慢慢就搭出了一个式子。

这个式子就是我们要找的轨迹方程的雏形啦。

第四步,化简。

哎呀呀,就跟收拾房间似的,把那些式子整理得干干净净、整整齐齐的。

把不必要的东西都去掉,留下最精华的部分。

第五步,检验。

这可不能马虎呀!就好比你做好了一件东西,得检查检查有没有瑕疵。

万一有什么遗漏或者错误,那可不行呢。

你说这五个步骤像不像一场奇妙的冒险?每一步都充满了挑战和惊喜。

要是少了一步,那可就像走在路上丢了一只鞋,别扭得很呢!比如说,有个动点在那跑来跑去,你要是不先设它的坐标,你都不知道该咋描述它。

然后呢,不找关系,那它就孤零零的,和周围都没联系。

不列式子,那就更没法把它的轨迹表示出来啦。

不化简,式子乱糟糟的,谁看得懂呀。

不检验,万一有错误,那不就前功尽弃啦。

所以呀,这五个步骤一个都不能少,它们就像五个好兄弟,一起合作才能找到那神奇的轨迹方程。

咱学数学呀,就得像这样,一步一个脚印,慢慢地去探索,去发现其中的奥秘。

你说是不是这个理儿?咱可不能小瞧了这五个步骤,它们可是打开数学大门的钥匙呢!以后再遇到求轨迹方程的问题,咱就按照这五个步骤来,肯定能轻松搞定!加油吧!。

求轨迹方程的常用方法

求轨迹方程的常用方法

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧===来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

人教版数学高二-备课资料求轨迹方程常见的几种策略

人教版数学高二-备课资料求轨迹方程常见的几种策略

求轨迹方程常见的几种策略求轨迹方程问题,是同学们在圆锥曲线学习中经常遇到的一类问题.面对此此类问题,同学们往往束手无策,难以顺利解决.下面结合几个实例谈谈这类问题的求解策略,以供参考.一、直接法如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法.例1 动点与两点A(a,0)、B(-a,0)连线的斜率之积为k(k ≤0),求点P 的轨迹方程,并从k 值的变化讨论轨迹是什么曲线. 解: 设P(x,y)是轨迹上任一点,根据题意有y y k x a x a ⋅=-+ 整理得轨迹方程22221x y a ka⋅=-. 当k<-1时,焦点在y 轴上的椭圆;当-1<k<0时,焦点在x 轴上的椭圆;当k=-1时,圆心在圆点,半径为|a|的圆;当k=0时,即y=0,它表示直线.分析: 本题的轨迹方程是容易得到的,当k 值变化时, 轨迹代表什么曲线,讨论时,一定要全面.二、定义法如果能够确定动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法.例2 在∆ABC 中,BC=24,AC 、BC 上的两条中线之和为39,求∆ABC 的轨迹方程.分析:建立适当的坐标系,利用重心坐标公式得到重心坐标(x,y)的关系.解: 以BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系如图1,M 为重心,由重心到顶点的距离等于中线长的23,可知|BM|+|CM|=23×39=26. 由椭圆的定义知,M 点的轨迹是以B 、C 为焦点的椭圆.其中C=12,a=13.∴22b a c =-∴所求∆ABC 的轨迹方程为22116925x y +=. 三、代入法如果轨迹点P(x,y)依赖于另一动点Q(a,b),而 Q(a,b)又在某已知曲线上,则可先列出关于x,y,a,b 的方程组,利用x,y 表示出a,b,把a,b 代入已知曲线方程便的动点P 的轨迹方程.这种求轨迹方程的方法称为代入法(又称转换法或相关点法).例 3 已知△ ABC 的顶点 B (-3,0)、 C (1,0),顶点 A 在抛物线 y=x 2上运动,求△ABC 的重心 G 的轨迹方程.分析:用动点 G (x ,y )的坐标来表示已知曲线上的相关点 A (x o ,y o)的坐标,再代入已知曲线方程. 解: 设 G (x ,y ), A (x o ,y o ),由重心公式,得 003133x x y y -++⎧=⎪⎪⎨⎪=⎪⎩∴ 又 A(x o ,y o)在抛物线 y=x 2上,∴200y x =.③ 将①,②代入③,得 3y=(3x +2)2(y ≠ 0) , 这就是所求曲线方程.评注:用代入法求轨迹的步骤是: (1)设所求轨迹上的动点P(x,y),再设具有某种运动规律f(x,y)=0上的动点Q('',x y );(2)找出P\Q 之间坐标关系式,并表示为'1'2(,)(,)x x y y x y ϕϕ⎧=⎪⎨=⎪⎩ (3) 将'',x y 代入f(x,y)=0,即得所求轨迹方程.四、参数法如果轨迹动点P(x,y)的坐标之间的关系不容易找到,也没有相关可用时,可先考虑将x ,y 用一个或几个参数来表示,消去参数得轨迹方程,这种求轨迹方程的方法称为参数法.例 4 如图2所示,点B 在直线x=5上滑动,等腰△OPB 的顶角∠OPB=23π,求顶点P 的轨迹方程.分析:由于OB 绕着原点运动,且命题有与三角知识有关,因此选择∠Box=θ为参数是比较好的想法.解:设∠Box=θ,|OP|=t ,P(x,y), ∴cos sin x t y t θθ=⎧⎨=⎩① ∵∠OPB=23π,由余弦定理得3, 而∠Box=θ6π±,设直线x=5与x 轴交于点A ,则|OA|=5. ∴3tcos (θ6π±)=5, 即33cos sin 52t t θθ=. ② ①代入②得P 点的轨迹方程为33100x ±-=.评注:“角”也是使用得比较多的参数之一,若直线(或点)绕着一个定点作旋转性的变化,或命题与三角知识有关,应分析选择“角”作参数是否有利.例 5 已知线段 'AA =2a ,直线垂直平分'AA 于O ,在上取两点 P , P ˊ,使有向线段OP →,'OP →满足OP →⋅'OP →=4,求两直线 AP , A ˊ P ˊ的交点 M 的轨迹方程.分析:首先应根据对称性建立直角坐标系.其次,要正确理解有向线段数量的意义.再引进参数(越少越好),刻划 P 点的纵坐标,则 P ˊ点坐标可求,两条动直线方程亦可求.进而消去参数,得所求轨迹方程.解: 如图3,以'AA 所在直线为 x 轴,以'AA 的中垂线为 y 轴建立直角坐标系,设点 P (0,t )(t ≠0),则'4(0,)P t.由点斜式得直线 AP 、A ˊP ˊ的方程分别为 .两式相乘,消去 t ,得. 这就是所求点 M 的轨迹方程.评注:用参数法求轨迹方程,关键有二:一是选参,容易写出动直线方程.二是消参.消参的途径灵活多变,有时从一个方程中解出参数,再代入另一个方程中消参;有时分别从两个方程中解出参数,再消参;有时分别解出 x , y ,再消参;有时直接或作适当变形后,通过加、减、乘、除,求平方和,求平方差等方法整体消参.小结:轨迹问题是解析几何的重要内容之一,它综合考查了学生逻辑推理能力,运算能力,分析问题解决问题的能力.求曲线方程(轨迹方程)的常用方法有:直接法,参数法,转移法,几何法等,求曲线方程时应根据题意选择适当的方法.。

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。

4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ⎩⎨⎧=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。

求曲线轨迹方程的五种方法

求曲线轨迹方程的五种方法

求曲线轨迹方程的五种方法一、直接法如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法;例1 长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB中点P的轨迹方程;解:设点P的坐标为x,y,则A2x,0,B0,2y,由|AB|=2a得2)2x-2(y+-=2a20()0化简得x2+y2=a,即为所求轨迹方程点评:本题中存在几何等式|AB|=2a,故可用直接法解之;二、定义法如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法;例2 动点P到直线x+4=0的距离减去它到M2,0的距离之差等于2,则点P的轨迹是A、直线B、椭圆C、双曲线D、抛物线解法一:由题意,动点P到点M2,0的距离等于这点到直线x=-2的距离,因此动点P的轨迹是抛物线,故选D;解法二:设P点坐标为x,y,则|x+4|-22-=2x+(y)2当x ≥-4时,x+4-22)2(y x +-=2化简得当时,y 2=8x当x <-4时,-x-4-22)2(y x +-=2无解所以P 点轨迹是抛物线y 2=8x点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显,解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算;三、 代入法如果轨迹点Px,y 依赖于另一动点Qa,b,而Qa,b 又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b,把a 、b 代入已知曲线方程便得动点P 的轨迹方程,此法称为代入法;例3 P 在以F 1、F 2为焦点的双曲线191622=-y x 上运动,则△F 1F 2P 的重心G 的轨迹方程是 ;解:设Px 0,y 0,Gx,y,则有⎪⎪⎩⎪⎪⎨⎧++=+-=)00(31)4(3100y y x x x 即⎩⎨⎧==y y x x 3300,代入 191622=-y x 得19916922=-y x 即116922=-y x 由于G 不在F 1F 2上,所以y ≠0四、 参数法如果轨迹动点Px,y 的坐标之间的关系不易找到,也没有相关的点可用时,可先考虑将x 、y 用一个或几个参数来表示,消去参数得轨迹方程,此法称为参数法;例4 已知点M 在圆13x 2+13y 2-15x-36y=0上,点N 在射线OM 上,且满足|OM|·|ON|=12,求动点N 的轨迹方程;分析:点N 在射线OM 上,而同一条以坐标原点为端点的射线上两点坐标的关系为x,y 与kx,kyk >0,故采用参数法求轨迹方程;解:设Nx,y,则Mkx,ky,k >0由|OM|·|ON|=12得)(222y x k +·22y x +=12∴kx 2+y 2=12,又点M 在已知圆上,∴13k 2x 2+13k 2y 2-15kx-36ky=0由上述两式消去x 2+y 2得5x+12y-52=0点评:用参数法求轨迹,设参尽量要少,消参较易;五、 交轨法若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点方程,此法称为交轨法;例5 已知A 1A 是椭圆12222=+by a x a >b >0的长轴,CD 是垂直于A 1A 的椭圆的弦,求直线A 1C 与AD 的交点P 的轨迹方程;解:设Px,y,Cx 0,y 0,Dx 0,-y 0,y 0≠0∵A 1-a,0,Aa,0,由A 1、C 、P 共线及A 、D 、P 共线得⎪⎪⎩⎪⎪⎨⎧-=--+=+ax ya x y a x y a x y 0000 两式相乘并由1220220=+b y a x ,消去x 0,y 0,得,所求轨迹方程为12222=+b y a x y ≠0点评:交轨法的难点是消参,如何巧妙地消参是我们研究的问题;。

求轨迹方程的常用方法

求轨迹方程的常用方法

轨迹(曲线)方程的求法求轨迹方程问题是高中数学的一个难点,求轨迹方程的常用方法有:1)直接法;2)待定系数法;3)定义法;4)代入法;5)参数法;6)交轨法. 下面分别介绍以上六种方法:(1)直接法 —— 直接利用条件通过建立x 、y 之间的关系式f (x ,y )=0,是求轨迹的最基本的方法. 课标教材(人教版)²高中数学 选修2﹣1(以下所称教材都是指该教材)的《§2.1.2 求曲线的方程》中介绍了此法.直接法求轨迹(曲线)方程一般有五个步骤:① 建立适当的坐标系,设曲线上任意一点M 的坐标为(x ,y ); ② 写出点M 运动适合的条件P 的集合:P={M |P(M)}; ③ 用坐标表示条件P(M),列出方程 f (x ,y )=0; ④ 化方程 f (x ,y )=0 为最简形式;⑤ 证明以化简后的方程的解为坐标的点都是曲线上的点. 一般地,步骤(5)可省略,如有特殊情形,可以适当说明.教材推导圆锥曲线(椭圆、双曲线、抛物线)的标准方程,都是使用直接法. 教材中还配有大量练习题(如:教材P.37练习/3,习题2.1/A 组/2、3,B 组/1、2;P.41例3,P.42练习/4,P.47例6,P.49习题2.2 / B 组/3;P.59例5,P.62习题2.3 / B 组/3;P.74习题2.4 / B 组/3;P.80复习参考题/ A 组/10,B 组/5).例1. 如图所示,线段AB 与CD 互相垂直平分于点O ,|AB|=2a (a >0),|CD|=2b (b>0),动点P 满足|PA|²|PB|=|PC|²|PD|. 求动点P 的轨迹方程.解:以O 为坐标原点,直线AB 、CD 分别为x 轴、y 轴建立直角坐标系,则A (-a ,0),B (a ,0),C (0,-b ),D (0,b ), 设P (x ,y ),由题意知 |PA|²|PB|=|PC|²|PD|,∴22)(y a x ++²22)(y a x +-=22)(b y x ++²22)(b y x -+,化简得 x 2-y 2=222b a -.故动点P 的轨迹方程为 x 2-y 2=222b a -.【练习1】 1、已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|MN |²|MP |+MN ²NP =0,求动点P (x ,y )的轨迹方程.2、如图所示,过点P (2,4)作互相垂直的直线l 1、l 2.若l 1交x 轴于A ,l 2交y 轴于B ,求线段AB 中点M 的轨迹方程.(2)待定系数法 —— 当已知所求曲线的类型(如:直线,圆锥曲线等)求曲线方程,可先根据条件设出所求曲线的方程,再由条件确定方程中的系数(待定系数),代回所设方程即可.要注意设出所求曲线的方程的技巧.(如:教材P.40例1,P.42练习/2,P.46例5,P.48练习/3、4,P.49习题2.2/A 组/2、5、9;P.54例1,P.55练习/1,P.58例4,P.61练习/2、3,P.61习题2.3 / A 组/2、4、6,B 组/1;P.67练习/1,P.68例3,P.72练习/1,P.73习题2.4 / A 组/4、7;P.80复习参考题/ A 组/1).例2 根据下列条件,求双曲线的标准方程.(1)与双曲线41622y x -=1有公共焦点,且过点(32,2). (2)与双曲线16922y x -=1有共同的渐近线,且过点(-3,23); 解: (1)设双曲线方程为2222by a x -=1. 由题意易求c=25.∵双曲线过点(32,2), ∴()2223a -24b=1. 又 ∵a 2+b 2=(25)2, ∴解得 a 2=12,b 2=8.故 所求双曲线的方程为 81222y x -=1. (2)设所求双曲线方程为16922y x -=λ(λ≠0), 将点(-3,23)代入得λ=41,∴ 所求双曲线方程为16922y x -=41, 即49422y x -=1. 【练习2】 已知抛物线C 的顶点在原点,焦点F 在x 轴正半轴上,设A 、B 是抛物线C 上的两个动点(AB 不垂直于x 轴),但|AF|+|BF|=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线的方程.(3)定义法 —— 如果根据已知能够确定动点运动的条件符合某已知曲线的定义,则可由该曲线的定义直接写出动点轨迹方程.(如:教材P.49习题2.2/A 组/1、7,B 组/2;P.54例2,P.62习题2.3/A 组/5,B 组/2)例3. 已知动圆过()1,0,且与直线1x =-相切. (1) 求动圆圆心的轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=?若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设动圆圆心为M ,定点()1,0为F ,过点M 作直线1x =-的垂线,垂足为N ,由题意知: MF MN =即动点M 到定点F 与到定直线1x =-的距离相等, 由抛物线的定义知,点M 的轨迹为抛物线, 其中()1,0F 为焦点,1x =-为准线,∴动圆圆心的轨迹方程为 x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+= △216160k k =->,01k k ∴<>或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=,即 ()11,OP x y =,()22,OQ x y =,于是12120x x y y +=, 即()()21212110ky y y y --+=,整理得 2221212(1)()0k y y k y y k +-++=,∴ 2224(1)40k k k k k +-⋅+=, 解得4k =-或0k =(舍去), 又 40k =-<,∴ 直线l 存在,其方程为440x y +-=【练习3】 1、已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹方程.2、在△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0)且满足条件x =sinC -sinB=21sinA ,则动点A 的轨迹方程是 ( ) A. 2216a x -221516a y =1(y ≠0)B. 2216a y -22316a x =1(x ≠0)C. 2216a x -221516a y =1(y ≠0)的左支 D. 2216a x -22316ay =1(y ≠0)的右支(4)代入法(也叫相关点法或转移法) ——若动点P(x ,y )随另一动点Q(x 1,y 1)的运动而运动,并且Q(x 1,y 1)又在某已知曲线上运动,则求点P 的轨迹方程问题常用此法.代入法求轨迹(曲线)方程一般有以下几个步骤:① 设所求点P 的坐标为 (x ,y ) (称之为从动点),动点Q 的坐标为(x 1,y 1) (称之为主动点) ② 找出点P 与点Q 的坐标关系;③ 用从动点的坐标x 、y 的代数式表示主动点的坐标x 1、y 1; ④ 再将x 1、y 1代入已知曲线方程,即得要求的动点轨迹方程.(如:教材P.41例2,P.50习题2.2 / B 组/1;P.74习题2.4 / B 组/1)例4. 设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN =2MP ,PM ⊥PF ,当点P 在y 轴上运动时,求点N 的轨迹方程. 解设N (x ,y ),M (x 1,0),P (0,y 0),由MN =2MP 得(x -x 1,y )=2(-x 1,y 0),∴11022x x x y y -=-⎧⎨=⎩,即1012x x y y =-⎧⎪⎨=⎪⎩.∵PM ⊥PF ,PM =(x 1,-y 0),PF =(1,-y 0), ∴(x 1,-y 0)·(1,-y 0)=0,∴x 1+y 2=0. ∴-x +42y =0,即y 2 = 4x .故所求的点N 的轨迹方程是 y 2 = 4x .【练习4】 如图所示,已知P (4,0)是圆 x 2+y 2=36 内的一点,A 、B 是圆上两动点,且满足∠APB=90°,求矩形APBQ 的顶点Q 的轨迹方程.(5)参数法 ——当动点P (x ,y )的横坐标x 、纵坐标y 之间的关系不易直接找到时,可以考虑将x 、y 都用一个中间变量(参数)来表示,即得参数方程,再消去参数就可得到普通方程.例5. 如图所示,已知点C 的坐标是(2,2),过点C 的直线CA 与x 轴交于点A ,过点C 且与直线CA 垂直的直线CB 与y 轴交于点B. 设点M 是线段AB 的中点,求点M 的轨迹方程.解 方法一(参数法):设M 的坐标为(x ,y ).若直线CA 与x 轴垂直,则可得到M 的坐标为(1,1). 若直线CA 不与x 轴垂直,设直线CA 的斜率为k ,则直线CB 的斜率为-k1, 故直线CA 方程为:y =k(x -2)+2,令y =0得x =2-k2,则A 点坐标为(2-k2,0).CB 的方程为:y =-k1(x -2)+2,令x =0,得y =2+k2, 则B 点坐标为(0,2+k 2),由中点坐标公式得M 点的坐标为⎪⎪⎪⎩⎪⎪⎪⎨⎧+=++=-=+-=k k k k 112022112022y x ①, 消去参数k 得到x +y -2=0 (x ≠1), 又∵ 点M (1,1)在直线x +y -2=0上, 综上所述,所求轨迹方程为x +y -2=0.方法二(直接法)设M (x ,y ),依题意A 点坐标为(2x ,0),B 点坐标为(0,2y ).∵|MA|=|MC|, ∴22)2(y x x +-=22)2()2(-+-y x , 化简得x +y -2=0.方法三(定义法)依题意 |MA|=|MC|=|MO|,即:|MC|=|MO|,所以动点M 是线段OC 的中垂线,故由点斜式方程得到:x +y -2=0.(6)交轨法 —— 当所求轨迹上的动点是两动曲线的交点时,只要把两动曲线(族)的方程分别求出:0),,(=t y x f 与0),,(=t y x g(t 为参数),然后消去参数t ,即得所求轨迹方程.例6. 如图,过圆224x y +=与x 轴的两个交点A 、B 作圆的切线AC 、BD ,再过圆上任意一点H 作圆的切线,交AC 、BD 于C 、D 两点,设AD 、BC 的交点为R ,求动点R 的轨迹E 的方程.解:设点H 的坐标为(0x ,0y ),则20x +20y =4 由题意可知0y ≠0,且以H 为切点的圆的切线的斜率为0x y -, ∴切线CD 方程为 y -0y =0x y -(x -0x ),展开得 0x x +0y y =20x +20y =4, 即 以H 为切点的圆的切线方程为 0x x +0y y =4,∵A (-2,0),B (2,0),将x =±2代人0x x +0y y =4 可得 点C 、D 的坐标分别为C (-2,0042x y +),D (2,042x y -), 则直线AD 、BC 的方程分别为AD l :002424y x x y +=- …… ①, BC l :002424y x x y -=+- …… ②将两式相乘并化简可得动点R 的轨迹E 的方程为 2244x y +=,即2214x y += 解法二:设点R 的坐标为(0x ,0y );直线AR 的方程分别为y =002y x +(x +0x ),与直线BD 的方程x =2联立,解得D (2,0042y x +),同法可得C (-2,0042y x --),则直线CD 斜率为002024x y x -, ∴直线CD 的方程为y -0042y x --=002024x yx -(x +2)∵直线CD 与⊙O 相切, ∴圆心O 到直线CD 的距离等于圆半径2,000244x y y -=2,化简得 (20x -4)2+420x 20y =(420y )2整理得 (20x -4)2+420y (20x -4)=0, ∴20x -4=0 (舍去)或20x -4+420y =0即 动点R 的轨迹E 的方程为2244x y +=,即2214x y +=总结:求轨迹方程的方法:(1)求单个动点的轨迹问题,用直接法 或待定系数法 或定义法; (2)求两个动点的轨迹问题,用代入法;(3)求多个动点的轨迹问题,用参数法 或交轨法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求曲线轨迹方程的五种方法
一、直接法
如果题目中的条件有明显的等量关系,或者可以利用平面几何知识推出等量关系,求方程时可用直接法。

例1 长为2a的线段AB的两个端点分别在x轴、y轴上滑动,求AB中点P的轨迹方程。

解:设点P的坐标为(x,y),
则A(2x,0),B(0,2y),由|AB|=2a得
2)
2
x-
-=2a
+
2(y
)0
2
0(
化简得x2+y2=a,即为所求轨迹方程
点评:本题中存在几何等式|AB|=2a,故可用直接法解之。

二、定义法
如果能够确立动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程,这种方法称为定义法。

例2 动点P到直线x+4=0的距离减去它到M(2,0)的距离之差等于2,则点P的轨迹是()
A、直线
B、椭圆
C、双曲线
D、抛物线
解法一:由题意,动点P到点M(2,0)的距离等于这点到直线x=-2的距离,因此动点P的轨迹是抛物线,故选D。

解法二:设P点坐标为(x,y),则
|x+4|-2
2
-=2
x+
(y
)2
当x≥-4时,x+4-2
2
-=2化简得
x+
(y
)2
当时,y 2=8x
当x <-4时,-x-4-22)2(y x +-=2无解
所以P 点轨迹是抛物线y 2=8x
点评:解法一与解法二分别用定义法和直接法求轨迹方程,明显,解法一优于后一种解法,对于有些求轨迹方程的题目,若能采用定义法,则优先采用定义法,它能大量地简化计算。

三、 代入法
如果轨迹点P (x ,y )依赖于另一动点Q (a ,b ),而Q (a ,b )又在某已知曲线上,则可先列出关于x 、y 、a 、b 的方程组,利用x 、y 表示出a 、b ,把a 、b 代入已知曲线方程便得动点P 的轨迹方程,此法称为代入法。

例3 P 在以F 1、F 2为焦点的双曲线19
1622=-y x 上运动,则△F 1F 2P 的重心G 的轨迹方程是 。

解:设P (x 0,y 0),G (x ,y ),则有
⎪⎪⎩
⎪⎪⎨⎧++=+-=)00(31)4(3100y y x x x 即⎩⎨⎧==y y x x 3300,代入 191622=-y x 得19
91692
2=-y x 即116
922
=-y x 由于G 不在F 1F 2上,所以y ≠0
四、 参数法
如果轨迹动点P (x ,y )的坐标之间的关系不易找到,也没有相关的点可用时,可先考虑将x 、y 用一个或几个参数来表示,消去参数得轨迹方程,此法称为参数法。

例4 已知点M 在圆13x 2+13y 2-15x-36y=0上,点N 在射线OM 上,且满足|OM|·|ON|=12,求动点N 的轨迹方程。

分析:点N 在射线OM 上,而同一条以坐标原点为端点的射线上两点坐标的关系为(x ,y )与(kx ,ky )(k >0),故采用参数法求轨迹方程。

解:设N (x ,y ),则M (kx ,ky ),k >0
由|OM|·|ON|=12得
)(222y x k +·22y x +=12
∴k (x 2+y 2)=12,又点M 在已知圆上,
∴13k 2x 2+13k 2y 2-15kx-36ky=0
由上述两式消去x 2+y 2得
5x+12y-52=0
点评:用参数法求轨迹,设参尽量要少,消参较易。

五、 交轨法
若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点方程,此法称为交轨法。

例5 已知A 1A 是椭圆12222=+b
y a x (a >b >0)的长轴,CD 是垂直于A 1A 的椭圆的弦,求直线A 1C 与AD 的交点P 的轨迹方程。

解:设P (x ,y ),C (x 0,y 0),D (x 0,-y 0),(y 0≠0)
∵A 1(-a ,0),A (a ,0),由A 1、C 、P 共线及A 、D 、P 共线得⎪⎪⎩⎪⎪⎨⎧-=--+=+a
x y a x y a x y a x y 0000 两式相乘并由122
0220=+b y a x ,消去x 0,y 0,得,所求轨迹方程为12222=+b y a x (y ≠0)
点评:交轨法的难点是消参,如何巧妙地消参是我们研究的问题。

相关文档
最新文档