泛函分析习题解答
应用泛函分析习题解答

|| xn − xm ||≥||| xn || − || xm ||| 可知道, {|| xn ||} 是一个 Cauchy 数列,令 lim || xn ||= λ 。若
λ = 0 ,取 x = θ ,就有 lim x n = x 。当 λ ≠ 0 ,任取 x ' ∈ X , x ' ≠ θ ,令 x =
第一部分 预备知识
1. 证明 有理数集 Q 是可数的。 2. 设 A = aij 是一个实的 n × n 矩阵, 证明
( )
⎧ ⎫ ⎧ ⎫ min ⎨max aij ⎬ ≥ max ⎨min aij ⎬ , 1≤ j ≤ n ⎩ 1≤i ≤ n ⎭ 1≤i ≤ n ⎩ 1≤ j ≤ n ⎭
何时上面的等号成立? 3. 求 f ( x ) = ⎨ 4. 求 lim 5. 试从
k →∞
, n 。 这 样 就 当 k > N 时 , 有 d ∞ ( xk , x0 ) < ε , 即 有
lim d ∞ ( xk , x0 ) = 0 。所以 ( X , d ∞ ) 是完备的。
3.证明:对任意的 α1 = ( x1 , y1 ) 与 α 2 = ( x2 , y2 ) ∈ X × Y ,令
这样 d ( x, y ) ≥| d ( x, z ) − d ( z , y ) | 。 2.证明:任取 X 的一个 Cauchy 序列 xk = (ξ1 , ξ 2 ,
(k ) (k )
k , l →∞
{
, ξ n( k ) )}
∞ k =1
,由
(0)
lim d ∞ ( xk − xl ) = 0 及知道 {ξi( k ) }
m∈M
个凸集。
10.解:令 f ( x) =
泛函分析考试题型及答案

泛函分析考试题型及答案一、选择题(每题2分,共20分)1. 设函数空间E为所有连续函数的集合,定义泛函F(u)=∫₀¹u(x)dx,则F(u)是线性的。
A. 正确B. 错误答案:A2. 每一个线性泛函都可以表示为一个内积。
A. 正确B. 错误答案:B3. 泛函分析中的“泛函”一词指的是函数的函数。
A. 正确B. 错误答案:A4. 弱收敛和强收敛是等价的。
A. 正确B. 错误答案:B5. 紧算子总是有界算子。
A. 正确B. 错误答案:A6. 每一个闭算子都是有界的。
A. 正确B. 错误答案:B7. 每一个有界线性算子都是紧算子。
A. 正确B. 错误答案:B8. 每一个线性泛函都可以用Riesz表示定理表示。
A. 正确B. 错误答案:A9. 每一个线性算子都可以分解为一个紧算子和一个有界算子的和。
A. 正确B. 错误答案:B10. 每一个线性算子都可以分解为一个有界算子和一个紧算子的和。
A. 正确B. 错误答案:A二、填空题(每题3分,共15分)1. 设X是赋范线性空间,如果对于X中的每一个序列{x_n},都有‖x_n‖→0当且仅当x_n→0,则称X是______空间。
答案:完备2. 设T是线性算子,如果T(X)是X的闭子空间,则称T是______算子。
答案:闭3. 设E是Hilbert空间,如果对于每一个x∈E,都有∥Tx∥≥∥x∥,则称T是______算子。
答案:正4. 设E是Banach空间,如果对于每一个序列{x_n}⊂E,都有∑‖x_n‖<∞当且仅当∑x_n收敛,则称E是______空间。
答案:自反5. 设E是线性空间,如果对于每一个序列{x_n}⊂E,都有∑x_n收敛当且仅当∑‖x_n‖<∞,则称E是______空间。
答案:序列完备三、简答题(每题10分,共30分)1. 简述Hahn-Banach定理的内容。
答案:Hahn-Banach定理指出,如果X是一个赋范线性空间,p是X 的一个线性子空间,f是p上的一个线性泛函,并且存在一个常数M使得对于所有x∈p,有|f(x)|≤M‖x‖,则存在X上的一个线性泛函F,使得F|p=f,并且对于所有x∈X,有|F(x)|≤M‖x‖。
泛函分析试题及答案

泛函分析试题及答案一、选择题1. 在泛函分析中,以下哪个概念描述了一个函数对于输入变量的敏感程度?A. 泛函B. 导数C. 凸函数D. 可测函数答案:B. 导数2. 设X和Y是两个Banach空间,f:X→Y是一个线性算子。
以下哪个条件可以保证f是有界线性算子?A. f是可逆的B. f是连续的C. f是紧致的D. f是自共轭的答案:B. f是连续的3. 在泛函分析中,以下哪个概念描述了一个函数在每个点上的局部模式与全局模式之间的一致性?A. 可微性B. 凸性C. 全纯性D. 一致连续性答案:B. 凸性4. 设X和Y是两个赋范空间,f:X→Y是一个线性算子。
以下哪个条件可以保证f是有界线性算子?A. f是单射且存在常数C>0,使得对于所有x∈X都有||f(x)|| ≤C||x||B. 对于每个有界集A ⊂ X,f(A)是有界集C. f是连续的D. f是满射答案:A. f是单射且存在常数C>0,使得对于所有x∈X都有||f(x)|| ≤ C||x||二、填空题1. 在Hilbert空间中,内积运算满足线性性和_____________性。
答案:共轭对称性2. 设X是一个有界完备度量空间,那么X是一个____________空间。
答案:Banach空间3. 在泛函分析中,将一个函数的导数定义为其_____________。
答案:弱导数4. 设X是一个线性空间,D是X上的一个有界线性算子。
如果对于所有x和y都有⟨Dx, y⟩ = ⟨x, Dy⟩,那么D被称为______________。
答案:自伴算子三、解答题1. 请简要说明什么是范数,并给出一些范数的例子。
范数是定义在一个线性空间上的一种函数,用于衡量该空间中的向量的大小。
它满足以下三个性质:- 非负性:对于任意向量x,其范数必须大于等于0,即||x|| ≥ 0,并且当且仅当x为零向量时,范数等于0。
- 齐次性:对于任意向量x和任意实数α,有||αx|| = |α| ||x||,其中|α|表示α的绝对值。
泛函分析习题解答

因为P, Q, P Q 是投影, 所以KerP = (ranP )⊥ , KerQ = (ranQ)⊥ , KerP Q = (ranP Q)⊥ , ∴ KerP Q ⊃ KerP ∩ KerQ. 其次证明KerP Q ⊂ KerP ∩ KerQ. 对∀x ∈ KerP Q, ∵ P 是投影, ∴ P 是幂等的, ∴ H = KerP + ranP, h = (h − P h) + P h, ∀h ∈ H. ∴ x = (x − P x) + P x, 其中x − P x ∈ KerP. 注 意 到, P Q(x − P x) = P Qx − P QP x = P Qx − P P Qx(∵ P Q 是 投 影⇐⇒ P Q = QP ) = P Qx − P 2 Qx = P Qx − P Qx = 0, ∴ x − P x ∈ KerP Q. ∵ KerP Q 是线性空间, ∴ P x = x − (x − P x) ∈ KerP Q, (∵ x ∈ KerP Q, x − P x ∈ KerP Q), ∴ P Q(P x) = 0, ∴ Q(P x) = QP x = QP (P x) = P Q(P x) = 0, 这表明P x ∈ KerQ. ∴ x = (x − P x) + P x ∈ KerP + KerQ, ∴ KerP Q ⊂ KerP + KerQ. 综上所述:KerP Q = KerP ∩ KerQ.
2
0, ∀h ∈ H,
= 0 =⇒ QP (h) = 0, and < QP h, P h >= 0.
(B)P + Q 是投影=⇒ ranP + ranQ = ran(P + Q), Ker(P + Q) = KerP ∩ KerQ. 证明:I)P + Q 是投影=⇒ ranP + ranQ = ran(P + Q) 1.如果P = 0 or Q = 0 ,显然。 2.如果P = 0 and Q = 0,这时可以证明P + Q = 0.(上面已证) 首先,ran(P + Q) ⊂ ranP + ranQ ,显然。 下证ran(P + Q) ⊃ ranP + ranQ,即∀h, g ∈ H, P h + Qg ∈ ran(P + Q). ∵ P + Q = 0 是投影, ∴ P + Q : H −→ ran(P + Q)是 正 交 投 影 , 而(P + Q)(P h + Qg ) = P (P h + Qg ) + Q(P h + Qg ) = P 2 h + P Qg + QP h + Q2 g = P h + Qg ,(这 是 因 为 由 (A) 知P + Q 是 投 影⇐⇒ ranP ⊥ranQ ⇐⇒ ranP ⊂ (ranQ)⊥ = KerQ(Q 是投影),ranQ ⊂ (ranP )⊥ = KerP (P 是投影), ∵ QP h ∈ ranP ⊂ KerQ,∴ QP h = 0.同理,P Qg = 0.) ∴ P h + Qg ∈ ran(P + Q), ∴ ranP + ranQ ⊂ ran(P + Q). 2
《泛函分析》习题解答(不完全版)

第一章 练习题1. 记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下:(,)|()()|,,([,])baf g f x g x dx f g C a b ρ=-∀∈⎰,(1)([,])C a b 按ρ是否完备?(2)(([,]),)C a b ρ的完备化空间是什么? 答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2,n =,定义,01,():1,1 2.n n x x f x x ⎧≤<=⎨≤≤⎩则{()}([0,2])n f x C ⊂在本题所定义的距离的意义下是Cauchy 列, 因为111(,)|()()|110,(,).11n m n m n m f f f x f x dxx dx x dxm n n m ρ=-≤+=+→→∞++⎰⎰⎰另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有0,[0,1)()()1,[1,2].n x f x g x x ∈⎧→=⎨∈⎩因此, 根据Lebesgue 有界收敛定理, 可以得到11100(,)|()()|1|0|0.1n n nnf g f x g x dxx dx x dx n ρ=-=-==→+⎰⎰⎰但()([0,2])g x C ∉.(2) ([,])C a b 的完备化空间是1([,])L a b . 因为(i) 在距离ρ的意义下, ([,])C a b 是1([,])L a b 的稠密子集. 事实上, 任意取定一个1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得[,](,)|()()|a b f g f x g x dx ρε=-<⎰.事实上, 首先根据积分的绝对连续性, 存在0δ>, 使得当[,]E a b ⊂, 只要mE δ<, 就有|()|3Ef x dx ε<⎰.因为()f x (Lebesque)可积, 故几乎处处有限, 即10N N mE ∞==,其中{[,]||()|}N E x a b f x N =∈>. 由此可以得到 lim ()0N N m E →∞=(因为{}N E 是渐缩集列并且[,]a b 的测度有限),故存在某个自然数N , 使得N mE δ<且|()|3NE f x dx ε<⎰,因此有|()|f x N ≤,[,]\N x a b E ∈.引入一个新函数定义为(),[,]\():0,,NN f x x a b E f x E ∈⎧=⎨⎩显然对于[,]x a b ∈恒有|()|f x N ≤. 由Lusin 定理, 存在连续函数()(,)g x C ∈-∞+∞和闭集[,]F a b ⊂, 使得([,]\)min{,/3}m a b F N δε<且|()|g x N ≤, 进而()()g x f x ≡,x F ∈.则()g x 限制在[,]a b 即为所求, 因为:[,](,)|()()|a b f g f x g x dx ρ=-⎰([,]\)|()()|a b F Ff xg x dx ⋃=-⎰[,]\|()()||()()|a b FFf xg x dx f x f x dx ≤-+-⎰⎰[,]\\(|()|)|()()||()()|NNa b FF E F E f x N dxf x f x dx f x f x dx⋂≤++-+-⎰⎰⎰[,]\|()|([,]\)a b Ff x dx Nm a b F ≤+⎰\|()|0NNF E F E f x dx dx ⋂++⎰⎰333εεεε<++=.(ii) 1(([,]),)L a b ρ是完备的空间.2. 设(,)X ρ是距离空间,A 是X 的子集,对任意的x X ∈,记(,)inf (,)y Ax A x y ρρ∈=,则(1)(,)x A ρ是x 的连续函数.(2) 若{}n x 是X 中的点列, 使(,)0n x A ρ→,{}n x 是否为Cauchy 列? 为什么? 证:(1) 任意取定12,x x X ∈, 对于任意的y X ∈根据三角不等式, 有1122(,)(,)(,)x y x x x y ρρρ≤+, 2211(,)(,)(,)x y x x x y ρρρ≤+.对两端关于y A ∈取下确界, 可以得到1122inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+, 2211inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+. 即1122(,)(,)(,)x A x x x A ρρρ≤+, 2211(,)(,)(,)x A x x x A ρρρ≤+.由此可得1212|(,)(,)|(,)x A x A x x ρρρ-≤.由此容易证明()f x (,)x A ρ=是X 上的连续函数, 实际上, (,)x A ρ还满足Lipschitz 常数等于1的Lipschitz 条件.(2) 答: 未必是Cauchy 列. 例如取X =R , 其中的距离是Euclid 距离. 对于{1,1}A =-, 对于1,2,n =, 定义点列为1(1).n n x n=-+对于点列{}n x ,不难验证,1(,)0n x A nρ=→; 但显然{}n x 不是Cauchy 列. 这里的原因就在于(,)x A ρ不是点到点之间的距离, 而是点到集合的距离, 当这个集合A 含有不止一个点时, (,)x A ρ不再具有点点之间距离的性质. 3. E 是nR 中的Lebesgue 可测集合, 试证()L E ∞按距离(,)esssup |()()|x Ef g f x g x ρ∈=-是不可分空间.证法一:记为方便起见, 设[,]E a b =. 定义[,]1,[,],()()0,(,].a x a f x x x b λλλχλ∈⎧==⎨∈⎩显然()f x λ有界,可测, 因此必属于([,])L a b ∞. 记{()|(,]}A f x a b λλ=∈.则([,])A L a b ∞⊂.既然对于不同的12,[,]a b λλ∈, 1f λ与2f λ不同的部分是正测度集, 容易看出A 的势是ℵ.进而有(不妨设12λλ<)1212121212[,][,]\0[,][,]\0[,][,][,][,]\0(,][,][,]\0(,)infsup |()()|inf sup |()()|inf sup |()()|infsup () 1.E a b x a b EmE E a b x a b E mE a a E a b x a b E mE E a b x a b E mE f f f x f x f x f x x x x λλλλλλλλλλρχχχ⊂∈=⊂∈=⊂∈=⊂∈==-=-=-==我们用反证法证明所需的结论.设([,])L a b ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g ,因此至少有一个i g 属于两个不同的1(,1/3)S f λ和2(,1/3)S f λ.而由三角不等式, 我们有12121(,)(,)(,)112.333i i f f f g g f λλλλρρρ=≤+≤+=这是一个矛盾. 因此([,])L a b ∞不可能是可分的.证法二:既然E 是正测度集,存在0R >使得((0,))0m S R E ⋂>. 不难验证, 存在一列正数1{}i i R ∞=满足:120i R R R R <<<<<<;且1([(0,)\(0,)])0i i m E S R S R +⋂>.对于每一个12(,,,,)i λλλλ=,其中0i λ=或1, 定义1(),[(0,)\(0,)]i i i f x x E S R S R λλ+=∈⋂,1,2,i =. 显然()f x λ有界,可测, 因此必属于()L E ∞. 记{()|{0,1}}A f x λλ=∈N ,其中{0,1}N 表示具有上述性质的λ的全体. 则()A L E ∞⊂.既然对于不同的,λμ∈{0,1}N , (不妨设1(,,,)i λλλ=, 1(,,,)i μμμ=且对于某个i ,0i λ=1i μ=)f λ与f μ不同的部分至少是正测度集1[(0,)\(0,)]i i E S R S R +⋂, 容易看出A 的势与{0,1}N 的势都是连续统的势ℵ.进而有11\0((0,)\(0,))\0((0,)\(0,))\01(,)inf sup |()()|infsup|()()|inf sup|| 1.i i i i F E x E F mF F E x E S R S R FmF i i F E x E S R S R F mF f f f x f x f x f x λμλμλμρλμ++⊂∈=⊂∈⋂=⊂∈⋂=≥=-≥-=-= 我们用反证法证明所需的结论.设()L E ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g , 因此至少有一个j g 属于两个不同的(,1/3)S f λ和(,1/3)S f μ.而由三角不等式, 我们有1(,)(,)(,)11.33j j f f f g g f λμλμρρρ=≤+≤+这是一个矛盾. 因此()L E ∞不可能是可分的. 补充题.证明[,]L a b ∞是不可分空间. 证:记{}[,]()a t K x a t b χ=<<,其中[,]1,,():0,.a t a x t x t x b χ≤≤⎧=⎨<≤⎩显然[,]K L a b ∞⊂, 且只要12,[,]t t a b ∈,12t t ≠, 则有12[,][,],a t a t K χχ∈, 且因为(不妨设12t t <)12(,]t t 的测度为正, 故1212[,][,][,][,][,]||||sup |()()|a t a t a t a t L a b ess x x χχχχ∞-=-1212(,](,]sup |()|1t t x t t x χ∈==.因此, 由(,)a b 是不可数集, 而K 的基数与(,)a b 的基数相同, 故也是不可数集,且K 中任何两个不同元的距离均为1.如果[,]L a b ∞是可分的, 因此有一个可数的稠密子集合{()|1,2,}k A f x k ==, 且11(,)3k k S f K ∞=⊇.但这是荒谬的, 因为上式左端只有可数多个开球, 右端有不可数多个元, 所以至少有K 中的两个不同的12[,][,],a t a t χχ属于同一个开球01(,)3k S f , 由此得到矛盾:121002[,][,][,][,][,][,][,]1||||||||||||112.333a t a t L ab a t k k a t L a b L a b f f χχχχ∞∞∞=-≤-+-<+= 此矛盾表明[,]L a b ∞不可能是可分的.4. 设([,])k C a b 是闭区间[,]a b 上具有k 阶连续导数的函数全体, 定义:()()[,](,)max |()()|,,([,])ki i k x a b i f g f x g x f g C a b ρ∈==-∈∑试证:(1)([,])kC a b 是完备的距离空间; (2)若定义||||(,0)f f ρ=,则(([,]),||||)kC a b ⋅是Banach 空间.证:(1) 这里只证明该距离是完备的. 设1{()}n n f x ∞=是([,])k C a b (0k =时, 0([,])C a b 就理解为[,]C a b )中该距离意义下的Cauchy 列. 因此当,m n →∞时,有()()[,]0(,)max |()()|0ki i m n m n x a b i f f f x f x ρ∈==-→∑.由此容易知道对于每一个0,1,,i k =, ()1{()}i n n f x ∞=是0([,])C a b 中的Cauchy 列. 根据0([,])C a b 的完备性,知()1{()}i n n f x ∞=收敛到0([,])C a b 中的某个元, 记其为()i f x , 则0()([,])i f x C a b ∈, 且()()()i i n f x f x −−→−−→,,0,1,,n i n →∞=,其中“−−→−−→”表示是一致收敛. 如果我们记0()()f x f x =,利用数学分析中函数序列一致收敛的分析性质, 可以得到12()()(),()(),,()().k kf x f x f x f x fx f x '''=== (*)例如, 因为1()()n f x f x −−→−−→', 故 1()()xxn aaf t dt f t dt −−→−−→'⎰⎰, 即1()()()xn n af x f a f t dt −−→−−→-⎰, 又0()()n f x f x −−→−−→及0()()nf a f a −−→−−→, 故 001()()()xaf x f a f t dt -=⎰.求导即可得到01()()f x f x '=, 即 1()()f x f x '=.归纳地可得(*).因此0()()f x f x =([,])kC a b ∈且()[,](,)max |()()|ki i n n x a b i f f f x f x ρ∈==-∑()()[,]max |()()|0ki i n x a b i f x f x ∈==-→∑.即([,])kC a b 是完备的距离空间. (2)证略.7. 证明有限维线性赋范空间是完备的.证:记该有限维(实)线性赋范空间为E , 是n 维的,范数记为||||x ,需要证明(,||||)E ⋅是完备的. 记E 中的一组基为:12,,,n v v v .因此对于任意的x E ∈, 存在唯一一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v ,反之亦然.(i) 我们断言存在一个与x 无关的常数0K >, 使得||||||i x K x ≤, 1,2,,i n =. (*)首先定义一个映射:nf →为: 对于任意的12(,,,)n x x x n∈,121122(,,,):||||||||n n n f x x x x x x x ==+++v v v .则对于任意的,x y E ∈(1122n n y y y y =+++v v v )有1122||||(,,,)n n x y f x y x y x y -=---111||||||||||||n n n x y x y ≤-⋅++-⋅v v2222111()()||||||||n n n x y x y ≤-++-⋅++v v .由此容易知道f 是n R 上的连续函数. 记1B ∂是n R 中的单位球面, 即21121{(,,,)|1}nn k k B x x x x =∂==∑. 则对于任意的11(,,)n x x B ∈∂, 有1(,,)0n f x x >.(事实上, 若有1(,,)0n f x x =则111(,,)||||0n n n f x x x x =++=v v ,因此110n n x x ++=v v , 但12,,,n v v v 线性无关, 故必有120n x x x ====, 此与11(,,)n x x B ∈∂相矛盾. )注意到1B ∂是n R 中的有界闭集(紧子集), 连续函数f 必可在其上达到正的最小值1/0K >.现在我们可以证明式(*). 事实上, 对于任意的x E ∈,存在唯一的一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v , 不失一般性, 可设0x ≠因此,12,,,n x x x 不全为零, 注意到111222111,,,n nnn kkk k k k x x x y B xxx ===⎛⎫ ⎪ ⎪=∈∂ ⎪ ⎪⎝⎭∑∑∑,故111222211111222111()1,,,,nn nnnkkkk k k n nnn kkk k k k x x x f y xxxx x x f K xxx ======+++=⎛⎫ ⎪⎪=≥ ⎪ ⎪⎝⎭∑∑∑∑∑∑v v v或2112211||||nn n kk x x x x xK==+++≥∑v v v .由此容易得出(*)式.(ii) 设()1{}k k x ∞=是E 中的基本列, 这里()()()()1122k k k k n n x x x x =+++v v v ,即()()||||0k l x x -→, 当,k l →∞.利用(*)式便可以得到对于每一个1,2,,i n =, 成立()()()()||||||0k l k l i i x x K x x -≤-→, 当,k l →∞.即()1{}k i k x ∞=是1中的基本列, 因此收敛. 设()(0)k i i x x →, (k →∞,1,2,,i n =).记(0)()(0)(0)1122k n n xx x x =+++v v v , 显然(0)x E ∈. 根据E 中收敛的等价性(即按范数收敛意味着每个分量收敛或即按坐标收敛), 容易得到()(0)||||0k x x -→, 当k →∞.因此(,||||)E ⋅是完备的.9. 设X 为线性赋范空间, 0X 是X 的线性闭子空间. 在X 中定义等价关系为0xy x y X ⇔-∈. 对任意的x X ∈, 以[]x 记x 的等价类, 令0/{[]|}X X x x X =∈.称0/X X 为商空间, 在0/X X 上定义线性运算如下: (i) [][][]x y x y +=+, ,x y X ∈, (ii) [][]x x λλ=, ,x X λ∈∈C .并定义0||[]||inf ||||y X x x y ∈=+.试证: 0/X X 按0||[]||x 也是一个线性赋范空间.证:(一) 0/X X 按照所定义的线性运算是线性空间 (证明略).(二) 0||[]||x 是0/X X 中的范数. 按照定义, 对于每一个 0[]/x X X ∈显然0||[]||inf ||||y X x x y ∈=+是一个确定的数, 因此00||||:/X X ⋅→R 是映射.(i) (非负性) 对于x X ∈, 显然0||[]||inf ||||0y X x x y ∈=+≥.(正定性) 当0[]=[0]=x X 时, 有00||[]||||[0]||inf ||||0y X x y ∈===.反之, 如果我们假设0000||[]||inf ||||0y X x x y ∈=+=, 需要证明 00[]=[0]=x X , 也只需证明00x X ∈. 事实上, 根据下确界的定义, 对每一个自然数1,2,k =, 存在0k y X ∈, 使得00000111||||||[]||inf ||||k y X x y x x y k k k∈+<+=++=, 由此得到一个序列0{}k y X ⊂且||||0k y x ⋅−−−→-.因为0X 是闭子空间因此00x X -∈故00x X ∈, 即00[]=[0]=x X . (ii) (正齐性) 对于,x X λ∈∈C , 如果0λ=, 则000x x X λ==∈, 故0[][0]0[][]x X x x λλ====. 如果0λ≠, 则当y 取遍0X 中的所有元时,yλ也取遍0X 中的所有元, 反之亦然, 因此 00||[]||inf ||||inf ||||||y X y X yx x y x λλλλ∈∈=+=⋅+||inf ||||||inf ||||yy X X yyx x λλλλλ∈∈=+=+||inf ||||||||[]||z X x z x λλ∈=+=⋅,(iii) (三角不等式) 设,x y X ∈. 设0,u v X ∈, 当,u v 取遍0X 中的所有元时, u v +也取遍0X 中的所有元, 反之亦然, 进而, ,u v 的取法是相互独立的, 因此0||[]||inf ||||u X x y x y u ∈+=++,inf ||||u v X x y u v ∈=+++()0,inf ||||||||u v X x u y v ∈≤+++inf ||||inf ||||u X v X x u y v ∈∈=+++00||[]||||||x y =+.也可用下面的证明方法: 对于任意的0ε>, 由下确界的定义, 存在0,u v X εε∈使得0||||||[]||x u x εε+<+, 0||||||[]||y v y εε+<+,因此可以得到0||[]||inf ||||||||u X x y x y u x y u v εε∈+=++≤+++||||||||x u y v εε≤+++ 00||[]||||[]||2x y ε<++.因为0ε>的任意性, 可得0||[]||x y +00||[]||||[]||x y ≤+.10. 设X 为线性赋范空间,1nn x∞=∑收敛, 即1kk nn S x==∑按X 中的范数收敛, 则11nn n n xx ∞∞==≤∑∑.证:记1kk n n S x ==∑.对于有限项之和, 利用三角不等式, 成立111||||kk k nn n n n n S xx x ∞====≤≤∑∑∑. (*)又因为1kk nn S x==∑在范数意义下收敛, 其极限自然可以记为1nn x∞=∑, 即1k n n S x ∞=→∑,再一次利用三角不等式, 可以得到当k →∞时11||||0k nk n n n S xS x ∞∞==-≤-→∑∑,即1||||k nn S x∞=→∑, 因此在(*)式中令k →∞, 可得11nn n n xx ∞∞==≤∑∑.11. 设{0}X ≠为线性赋范空间, 试证X 是Banach 空间当且仅当{|||||1}x X x ∈=是完备的.证:记{|||||1}T x X x =∈=.(必要性) 设X 是Banach 空间, {}n x T ⊂是T 中的Cauchy 列, 即||||1n x =且||||0m n x x -→(当,m n →∞).因为X 是Banach 空间, 故{}n x 收敛, 即存在0x X ∈, 使得||||0n x x ⋅−−→, 由三角不等式容易得到:||||||||||||x y x y -≤-,因此00||||||||||||0n n x x x x -≤-→,知0||||||||n x x →, 故0||||1x =因此0x T ∈, 即T 完备.(充分性) 设T 是完备的, 并设{}n x X ⊂是X 中的Cauchy 列, 即||||0m n x x -→当,m n →∞. 由||||||||||||0m n m n x x x x -≤-→,知{||||}n x 是1中的Cauchy 数列, 因此收敛, 即存在某个数A ∈使得||||n x A →.如果0A =, 显然{}n x 收敛于X 中的零元, 故不妨设0A >. 由此知当n 充分大时, 总有||||0n x >, 不失一般性, 可设对所有的n , 都有||||0n x >. 考虑新的点列:||||nn n x y x =, 显然n y T ∈. 进而 ||||||||||||m n m n m n x xy y x x -=- ||||||||||||||||m m m n m n n n x x x xx x x x ≤-+- 111||||||||||||||||m m n m n n x x x x x x =-+-, 由此易知{}n y T ⊂是T 中的Cauchy 列. 因为T 作为距离空间是完备的, 故{}n y 收敛, 即存在0y T ∈, 使得||||0n y y ⋅−−→. 最后我们断言: ||||0n x Ay ⋅−−→.事实上,0||||||||||||||||n n n n n x Ay x Ay x x x -=- 0||||||||n n n Ay x y x =-00||||||||n n n Ay x y y y x ⎛⎫≤-+-⎪⎝⎭00||||1||||n n n A x y y y x ⎛⎫=-+- ⎪⎝⎭0→.综上可得X 是Banach 空间.15.试证定理4中(f)式定义的(,)x y 的确满足内积分的定义.证明: 即要证明: 对于赋范线性空间(,||||)X ⋅, 如果范数满足平行四边形法则:2222||||||||2(||||||||)x y x y x y ++-=+(*)则由221(,):[||||||||]4x y x y x y =+--R (K =R 时) (f ’)或221(,):[||||||||4x y x y x y =+--C22||||||||]i x iy i x iy ++-- (K =C 时) (f)所定义的确实是内积. (i) 对于x X ∈,221(,)[||||||||4x x x x x x =+--C22||||||||]i x ix i x ix ++--2||||0x =≥,因为|1||1|i i +=-, 并且根据范数的性质2(,)00(,)||||0x x x x x x =⇔==⇔=C C .同理可证(,)0x x ≥R 且(,)00x x x =⇔=R . (ii)首先考虑K =R 时的情形, 对于,,x y z X ∈, 可将(,)(,)x z y z +R R 表示为如下形式: (,)(,)x z y z +R R221[||||||||4x z x z =+--22||||||||]y z y z ++-- ()()22221||||||||||||||||4x z y z x z y z ⎡⎤=+++--+-⎣⎦ 22142222x y x yx y x yz z ⎛⎫+-+-=++++-⎪ ⎪⎝⎭ 22142222x y x y x y x y z z ⎛⎫+-+---++--⎪ ⎪⎝⎭, 再由平行四边形法则222222x y x yx y x yz z +-+-++++-22222x y x y z ⎛⎫+-=++ ⎪ ⎪⎝⎭; 222222x y x yx y x yz z +-+--++--22222x y x y z ⎛⎫+-=-+ ⎪ ⎪⎝⎭. 因此(,)(,)x z y z +R R 221222x y x yz z⎛⎫++=+-- ⎪ ⎪⎝⎭2,2x y z +⎛⎫= ⎪⎝⎭R.进而, 令0y =可以得到(,)x z R 2,2x z ⎛⎫= ⎪⎝⎭R,这里利用了(0,)0z =R . 因为x 是任意的, 故可将x 换为x y +, 即可得到(,)x y z +R 2,2x y z +⎛⎫= ⎪⎝⎭R. 对照上述二式, 即有(,)(,)x z y z +R R =(,)x y z +R .(**)至于K =C 时的情形, 注意到从形式上看(,)=(,)(,)x y x y i x iy +C R R ,利用上述已经证明了的等式(**)不难得到(,)(,)x z y z +C C =(,)x y z +C .(iii) 首先考虑K =R 时的情形, 对于,x z X ∈和任意实数,s t ∈R , 由已经证明的(**)式有(,)(,)sx z tx z +R R =((),)s t x z +R ,可知函数():(,)f t tx z =R 满足如下的函数方程:()()()f s f t f s t +=+.(***)又():(,)f t tx z =R 关于t 是连续的, 因此必有()(1)(,)f t f t t x z ==R .(事实上, 由(***)式对于任意的正整数n 和m , 利用数学归纳法有()()f ns f s s s =+++()()()()f s f s f s nf s =+++=;进而取1s n =, 有11()(1)f f n n=, 因此 1()()(1)n nf nf f m m m==. 又(***)中取0s t ==可得(0)0f =, 取s t =-可得()()f s f s -=-. 因此对于所有的有理数, 均成立()(1)f s sf =.利用()f s 的连续性, 可知对所有的实数也成立. ) 因此得到(,)()(1)(,)tx z f t f t t x z ===R R .至于K =C 时的情形, 注意到由(f)221(,)[||||||||4ix y ix y ix y =+--C 22||||||||]i ix iy i ix iy ++--221[||||||||4ix y ix y =+--22||||||||]i x y i x y ++-- 22221[||||||||4i ix y i ix y =-++-22||||||||]i x y i x y ++-- 22[||||||||4ii x iy i x iy =--++22||||||||]x y x y ++-- (,)i x y =C .由此也容易得到, 对于t ∈C(,)(,)tx z t x z =C C .(iv) 当K =R 时, 容易知道221(,)[||||||||](,)4x y x y x y y x =+--=R R ;而当K =C 时, 直接计算也可得到221(,)[||||||||4x y x y x y =+--C 22||||||||]i x iy i x iy -++-221[||||||||4y x y x =+--22||||||||]i y ix i y ix --++ (,)y x =C .16.设D 是C 中单位开圆盘, 即{|||1}D z z =∈<C . dA 是D 上的面积测度, 2()a L D 定义为22(){|()|}a L D f f Df z dz =<∞⎰在中解析且|. (见课本第六页例4)在2()a L D 中定义内积为,()()Df g f z g z dA =⎰.试证(1)1()n n nz z ϕπ-=(1,2,n =)构成2()a L D 的正交基.(2) 若2()a f L D ∈的Taylor 展开式是0()kk k f z a z∞==∑, 则21kk a k ∞=<∞+∑;(3) 若2()ag L D ∈的展开式是0()kk k g z b z∞==∑, 则0,1k kk a b f g kπ∞==+∑.证:先给出一个预备性结果: 对于2()a f L D ∈,因为()f z 是解析函数, 因此可以展开为幂级数: 0()kk k f z a z∞==∑.由此可以断言:(),()n f z z ϕ=1.n a nπ- (*)事实上,因为()f z 是解析函数,幂级数kk k a z∞=∑在D 中内闭一致收敛, 即对于D 的任意闭子集F ,kk k a z∞=∑在F 上一致收敛. 对于01ε<<, 以下取闭子集F 为:{|||1}D z D z εε=∈≤-.容易知道D ε是D 中的闭子集.对于每一个1,2,n =, 注意到级数10kn k k a z z π-=∑在D ε中仍旧一致收敛, 以下的积分号和求和号可以交换顺序:(),()()()n n Df z z f z z dA ϕϕ=⎰0lim ()()n D f z z dA εεϕ→=⎰100lim kn k D k na z z dA εεπ∞-→==∑⎰10limk n k D k na z z dA εεπ∞-→==∑⎰10lim(cos sin )(cos(1)sin(1))k n k D k na r k i k n i n dAεεθθπθθ∞+-→==+⋅⋅---∑⎰2110lim(cos sin )(cos(1)sin(1))k n k k na d r k i k n i n rdrπεεθθθπθθ∞-+-→==+⋅⋅---∑⎰⎰1210lim(cos sin )(cos(1)sin(1))k n k k na r rdr k i k n i n d επεθθπθθθ∞-+-→==+⋅⋅---∑⎰⎰12110lim2n n na r dr εεππ---→=⎰210(1)lim 22nn n a nεεππ-→-= 1.n a nπ-=因此(*)式得证.(1) 首先证明{}111()n n n n n z z ϕπ∞∞-==⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是正交集.事实上, 对于复数(cos sin )z r i θθ=+,根据所给的定义11112(),()(cos sin )(cos sin )m n m n Dm n n m Dz z z z dAmni i r dAϕϕππθθθθππ----+-==+-⎰⎰2(cos(1)sin(1))(cos(1)sin(1))n m Dmnr m i m n i n dAθθπθθ+-=-+-⋅⋅---⎰2120(cos(1)sin(1))(cos(1)sin(1))n m mnd r m i m n i n rdrπθθθπθθ+-=-+-⋅⋅---⎰⎰122(cos(1)(1)sin )(cos(1)sin(1))n m mnrrdr m i m n i n d πθθπθθθ+-=-+-⋅---⎰⎰121,,20,.mm m n mm n ππ⎧==⎪=⎨⎪≠⎩因此{}1()n n z ϕ∞=是正交集. 因为2()a L D 是完备的空间, 故只需再证{}1()n n z ϕ∞=是完备的即可得知其也是正交基. 设有2()a f L D ∈且{}1()()n n f z z ϕ∞=⊥. 因为()f z 是解析函数, 因此可以展开为幂级数:()k k k f z a z ∞==∑.根据(*)式,可以得到,对于每一个1,2,n =,0(),()n f z z ϕ=1.n a nπ-=由此即得10n a -=, (1,2,n =). 所以()0f z ≡. 即{}1()n n z ϕ∞=是完备的, 因此是2()a L D 中的正交基.(2) 既然{}1()n n z ϕ∞=是基,由Parseval 等式可以得到221(),()||||n n f z z f ϕ∞==<∞∑.利用(*)式,上式的左端可以表示为:2122211110(),().1n n n n n n n n f z z a aa nn n ϕπππ∞=∞∞∞--======+∑∑∑∑由此可得所预期的结论. (3) 对于0()kk k f z a z∞==∑和0()kk k g z b z∞==∑, 有10()()1kk k f z a z k πϕ∞+==+∑和10()()1kk k g z b z k πϕ∞+==+∑,利用内积的连续性和(*)式,10,(),()1kk k f g a z g z k πϕ∞+==+∑10(),()1kk k a z g z k πϕ∞+==+∑10(),()1kk k a g z z k πϕ∞+==+∑11kk k a b k k ππ∞=⎛⎫= ⎪++⎝⎭∑0.1k kk a b k π∞==+∑18.设H 是内积空间,{}n e 是H 中的正交集, 求证:1(,)(,)||||||||nnn x e y e x y ∞=≤⋅∑, (,x y H ∀∈).证: 对于任意的正整数k , 由Cauchy 不等式和Bessel 不等式可以得到22111(,)(,)(,)(,)kkkn n n n n n n x e y e x e y e ===≤⋅∑∑∑2211(,)(,)n n n n x e y e ∞∞==≤⋅∑∑||||||||x y ≤⋅,由k 的任意性, 知正项级数1(,)(,)nnn x e y e ∞=∑收敛, 因此级数1(,)(,)nnn x e y e ∞=∑绝对收敛,并且11(,)(,)(,)(,)||||||||nnnnn n x e y e x e y e x y ∞∞==≤≤⋅∑∑.19.试证2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭构成2([0,])L π的正交基, 但不是2([,])L ππ-的正交基. 证:(1) 首先证明{}112()sin n n n t nt ϕπ∞∞==⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是2([0,])L π中的正交集. 事实上,[]022(),()sin sin 2cos()cos()2m n t t mtntdtm n t m n t dtππϕϕπππ==-+--⎰⎰1()1,,0,.m n m n ππ⎧--==⎪=⎨⎪≠⎩因此{}1()n n t ϕ∞=是2([0,])L π中的正交集. 同理, 也容易证明{}1()n n t ϕ∞=还是2([,])L ππ-中的正交集.(2) 因为2([0,])L π是完备的空间, 故只需再证{}1()n n t ϕ∞=是完备的即可得知其也是正交基.设有2([0,])f L π∈且{}1()()n n f t t ϕ∞=⊥. 将()f t 做奇延拓成为()f t :(),[0,],():(),[,0).f t t f t f t t ππ∈⎧=⎨--∈-⎩则()f t ∈2([,])L ππ-. 注意到对于1,2,n =, 利用{}1()()n n f t t ϕ∞=⊥,,()sin n f f t ntdt ππϕ-=⋅⎰()sin ()sin f t ntdt f t ntdt ππ-=⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰00()sin ()()sin f s n s ds f t ntdt ππ=-⋅-+⋅⎰⎰2()sin 0f t ntdt π=⋅=⎰.设{}{}00()cos n n n t nt ψ∞∞===,对于0,1,2,n =,利用()f t 是奇函数, 可得,()cos 0n f f t ntdt ππψ-=⋅=⎰.因此{}{}()10()()()n n n n f t t t ϕψ∞∞==⊥⋃.进而也容易得到()f t ⊥1cos sin cos sin ,,,,,,2t tnt ntπππππ⎧⎫⎨⎬⎩⎭. 又已经知道与{}{}{}{}1010()()sin )cos n n n n n n t t t nt ϕψ∞∞∞∞====⋃=⋃仅相差一个常数因子的三角函数系1cos sin cos sin ,,,,,,2t tnt ntπππππ⎧⎫⎨⎬⎩⎭是2([,])L ππ-中的正交基, 因此()0f t =, a.e. [,]t ππ∈-,即有()0f t =, a.e. [0,]t π∈.因此{}1()n n t ϕ∞=是2([0,])L π中的正交基.(3) 注意到2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭在2([,])L ππ-中不是完备的, 例如对于恒等于常数1的函数2()1([,])f t L ππ≡∈-是非零元, 但对于1,2,n =,,1sin 0n f ntdt ππϕ-=⋅=⎰.因此, 2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭虽然是2([,])L ππ-的正交集, 但不是正交基.24. 试给出1([,])C a b 中列紧集的判别条件. 证:设子集1([,])A C a b ⊂且0x 是[,]a b 中一个数. 记{()|()}A f x f x A ''=∈及0{()|()}B f x f x A =∈.则A 是1([,])C a b 中的列紧集的充分必要条件是 (i) A '在([,])C a b 中有界; (ii) B 是R 中的有界集;(iii) A '是([,])C a b 中等度连续的集合.[充分性] 设1([,])A C a b ⊂满足条件(i), (ii)和(iii). 根据1([,])C a b 中范数的定义: 对于1([,])f C a b ∈,1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+,容易看出,1([,])([,])C a b C a b k k f f f f −−−−→⇔−−−−→且([,])C a b k f f ''−−−−→因此只需证明A 和A '分别是([,])C a b 中的列紧集即可, 根据Arzela-Ascoli 定理, 这也只需证明A 和A '分别在([,])C a b 中有界且等度连续即可. 事实上, A '在([,])C a b 中有界性和等度连续已由所给条件得到保证(即(i)和(iii)). 还需证明A 在([,])C a b 中的有界性和等度连续性. 记A '在([,])C a b 中的一个界为A M ',B 作为R 中的有界集, 一个界纪为B M .对于任意的[,]x a b ∈, 利用中值定理, 有0000|()||()()||()||()()||()|().A B f x f x f x f x f x x f x M b a M ξ'≤-+'=-+≤-+ 此即表明[,]m a x |()|()A B x a b f x Mb a M '∈≤-+, 所以A 在([,])C a b 中有界,且界为()A B M b a M '-+. 进而对于,[,]x y a b ∈|()()||()()|||.A f x f y f x y M x y ξ''-=-≤-由此易知A 具有等度连续性.[必要性] 设A 是1([,])C a b 中的列紧集, 即对于A 的任何点列1{()}n n f x ∞=, 1{()}n n f x ∞=在1([,])C a b 中的范数(距离)1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+意义下都有收敛的子列1{()}k n k f x ∞=. 因此, 1{()}n n f x ∞=和1{()}n n f x ∞='分别在([,])C a b 中有收敛的子列的1{()}k n k f x ∞=和1{()}k n k f x ∞='. 这表明, 根据Arzela- Ascoli 定理, A 和A '均是([,])C a b 中的列紧集, 因此A 和A '均在([,])C a b 中有界且等度连续, 因此得到(i)和(iii). 由A 的有界性, 可以知道集合0{()|()}B f x f x A =∈对于任意的0x [,]a b ∈都是R 中的有界集, 因此得到(ii). 26. 设(,)X ρ是紧距离空间,映射:f X X →满足1212((),())(,)f x f x x x ρρ<. (12x x ≠)则(1) f 是否有唯一的不动点? (2) f 是否为压缩映射?解答: (1) f 存在唯一的不动点, 证明如下: (存在性) 定义映射:h X →R 为()(,())h x x f x ρ=.由所给条件知此映射是连续的, 而X 是紧空间表明此映射能在X 中取得上下确界. 因此存在y X ∈, 使得()(,())inf ()x Xh y y f y h x ρ∈==.断言()inf ()0x Xh y h x ∈==,则y 是f 的不动点:()y f y =. 若不然, ()0h y >, 则在所给的条件中取()x f y =有(())((),(()))(,())()h f y f y f f y y f y h y ρρ=<=,此与y 达到()h x 的下确界相矛盾.(唯一性) 若还有z X ∈使得()z f z =但z y ≠. 仍由所给的条件, 有0(,)((),())(,)z y f z f y z y ρρρ<=<.这是个矛盾. 故必有z y =.(2) f 可以不是压缩映射. 反例如下:[反例1] 记[0,1]X =, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈,(,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,():1x T x x=+. 显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 则,x y 中至少有一个不为零, 由此容易得到||(,)11(1)(1)x y x y Tx Ty x y x y ρ-=-=++++ ||x y <-(,)x y ρ=.所以T 满足所需的条件, 但T 不是压缩映射, 因为,[0,1],[0,1](,)1supsup 1(,)(1)(1)x y x y x yx yTx Ty x y x y ρρ∈∈≠≠==++.因此不存在常数[0,1)α∈, 使得对于所有的,x y X ∈,(,)(,)Tx Ty x y ραρ≤.[反例2] 记1{0}1,2,X n n ⎧⎫=⋃=⎨⎬⎩⎭, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈, (,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,11,,():10,0,x T x n n x ⎧=⎪=+⎨⎪=⎩显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 如果,\{0}x y X ∈, 则有正整数,m n , m n ≠, 使得11,x y n m==, 且11||(,)11(1)(1)m n Tx Ty n m n m ρ-=-=++++ ||m n nm -<11(,)x y n mρ=-=; 如果,x y 中有一个为零, 例如0x =, 也有11(,)011Tx Ty m m ρ=-=++1m<(,)x y ρ=. 所以T 满足所需的条件, 但T 不是压缩映射, 因为例如对于 11,x y n m==, 当,m n →∞时, 成立11(,)11111(,)(1)(1)Tx Ty mnn m x y n m n mρρ-++==→++-,即不存在[0,1)α∈, 使得(,)(,)Tx Ty x y ραρ≤..补充题. 设二元函数(,)([,][,])g x y C a b a b ∈⨯,A 是([,])C a b 中的一个有界集, 记():(,)()()ba A F x g x y f y dy f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.(i) 证明A 是([,])C a b 中的列紧集;(ii) 问当A 还是([,])C a b 中的闭集时, A 是不是紧集?证:(i) 因为(,)([,][,])g x y C a b a b ∈⨯, 不难得知A ⊆ ([,])C a b . 根据Arzela-Ascoli 定理, 只需再证明A 在([,])C a b 中有界且等度连续即可.(a) A 在([,])C a b 中有界, 即A 作为由连续函数组成的集合是一致有界的. 事实上, 如果记A 的一个界为M , |(,)|g x y 在[,][,]a b a b ⨯上的最大值为K , 则对于任意取定的()F x A ∈, 有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰, 由此得知|()|(,)()baF x g x y f y dy =⎰|(,)()|bag x y f y dy ≤⎰max |(,)|max |()|ba xb a y ba a y bg x y f y dy ≤≤≤≤≤≤≤⎰[,]||||bC a b af Kdy =⎰[,]||||()C a b f K b a ≤- ()KM b a ≤-.因此A 是([,])C a b 中有界集, 且A 的一个界为()KM b a -.(b) A 在([,])C a b 中等度连续. 对于()F x A ∈,有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰. 因为(,)([,][,])g x y C a b a b ∈⨯, 因此在[,][,]a b a b ⨯上一致连续, 故对于任意的0ε>,存在0δ>, 当,[,]x x a b '∈且||x x δ'-<时, 有|(,)(,)|g x y g x y ε'-< ([,]y a b ∀∈),由此可以得到|()()|(,)()(,)()bbaaF x F x g x y f y dy g x y f y dy ''-=-⎰⎰[(,)(,)]()bag x y g x y f y dy '=-⎰|(,)(,)||()|ba g x y g x y f y dy '≤-⎰max |()||(,)(,)|ba y ba f y g x y g x y dy ≤≤'≤-⎰[,]|||||(,)(,)|bC a b af g x y g x y dy '=-⎰()M b a ε≤-. 由此易知A 具有等度连续性.(ii) 当A 还是([,])C a b 中的闭集时, A 未必是紧集! 反例可以构造如下: 考虑([0,1])C 中的集合{|1,2,}k A x k ==,显然A 是([0,1])C 中的有界集, 一个界可以取为1.可以断言A 是([0,1])C 中的闭集, 因为对于任意的,klx x A ∈, 不妨设l k >, 则[0,1][0,1]max ||k lk l C x x x x x ∈-=-1k l k l kl kl kk k k k l l l l ---⎛⎫⎛⎫⎛⎫⎡⎤=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 对于任意固定的k , 当l 趋于无穷大时, 右端项趋向于1, 由此容易知道, 作为([0,1])C 中的子点列, 集合A 不是Cauchy 列, 因此不可能在([0,1])C 中有收敛的子列, 故集合A 没有聚点, 因此是([0,1])C 中的闭集.定义(,)1K x y =,显然(,)([0,1][0,1])K x y C ∈⨯. 对于上述的集合A , 不难计算{}11()|1,2,|1,2,1k A F x x dx k k k ⎧⎫=====⎨⎬+⎩⎭⎰ 显然, A 是([0,1])C 中列紧集,唯一的聚点是零函数,但零函数不在A 中,因此不是闭集. 补充题. 设A 是([,])C a b 中的一个有界集, 记():()()xa B F x f t dt f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.证明B 是([,])C a b 中的列紧集.证:根据Arzela-Ascoli 定理, 需证明B 在([,])C a b 中有界且等度连续即可.(i) B 在([,])C a b 中有界, 即B 作为由函数组成的集合是一致有界的. 事实上, 如果记A 的界为M ,则对于任意取定的()F xB ∈, 有某个()f t A ∈, 使得()()xaF x f t dt =⎰, 由此得知|()|()|()|xxaaF x f t dt f t dt =≤⎰⎰[,]max |()|||||x xC a b a t baaf t dt f dt ≤≤≤=⎰⎰[,]||||()()C a b f b a M b a ≤-≤-.因此B 是([,])C a b 中有界集, 且B 的界为()M b a -.(ii) B 在([,])C a b 中等度连续. 对于()F x B ∈,有某个()f t A ∈, 使得()()xaF x f t dt =⎰.对于,[,]x x a b ∈|()()|()()xxaaF x F x f t dt f t dt -=-⎰⎰()|()|xxxxf t dt f t dt =≤⎰⎰[,]max |()|||||xxC a b a t bxxf t dt f dt ≤≤≤=⎰⎰||M x x ≤-. 由此易知B 具有等度连续性.补充题.证明课本20页定理8:对于距离空间(,)X ρ中的任何集合G , G '与G 均是闭集. 证:(i) 根据闭集的定义, 仅需证明()G G '''⊆.事实上, 设()y G ''∈, 则对于任意的0ε>((,)\{})S y y G ε'⋂≠∅.设((,)\{})x S y y G ε'∈⋂, 根据极限点的定义, 对于min{(,),(,)}0x y x y δρερ=->,有((,)\{})S x x G δ⋂≠∅.又(,)(,)S x S y δε⊆,因此有((,)\{})((,)\{})S y y G S x x G εδ⋂⊇⋂≠∅.注意到0ε>的任意性, 即可得到y G '∈. 因此G '是闭集. (ii) 需证明的是G G '⊆. 因为G G G '=⋃, 又()A B A B '''⋃⊆⋃,(*)故由(i)中已经证明了的结果, 有()G G G G G G G '''''''=⋃⊆⋃⊆⊆,因此G 是闭集.如下证明(*): 设y A B ''∉⋃, 则y A '∉, 且 y B '∉.由前者知存在某个00ε>, 使得0((,)\{})S y y A ε⋂=∅;由后者知存在某个10ε>, 使得1((,)\{})S y y B ε⋂=∅.取001min{,}δεε=, 则00δ>, 且0((,)\{})()S y y A B δ⋂⋃=∅,所以()y A B '∉⋃, 即(*)得证.。
泛函分析答案(压缩版)

10.4.证明 Banach 空间 X 自反的充要条件是 X’自反。
证明:若 X 是 Banach 空间,则存在一个从 X 到 X’’的自然的等距同构映射 J : X X '' , J (X ) 若 x x 这样定义的,若 x X , 同构映射 为d xn , xN MX ', 则称 X 是自反的, 其中Jx 是an 1 n因此 xn 是有界点列。
an supx x'df X ' , J ( x)( f ) f ( x) 为方便起见,记 X 到 X’’的自然的等距7.18.设 X 为完备度量空间,A 是 X 到 X 中映射,记 射 A 有唯一不动点。
证明:因n A x, A x an d x, x ,若 n1 ,则映n n ' 'J1 ( X ') X ''' ,若 J o ( X ) X '' ,对任意 F X ''' ,定义 f X ' :若 x X , f ( x) F ( J o ( x)) , 对 任 意 x X , ( J1 ( f ))( J o ( x)) J o ( x)( f ) f ( x) F ( J o ( x)) 因'' ,因此 J则存在 F X ''' , F 在 J ( X ) 上恒为零, F 1 , J (X ) X ' 使 而 但 ' ( X ) X '' , 1 o 有1J o ,X’到 X’’’的自然的等距同构映射为 J 1 ,我们要证明 J o ( x) X '' 的充要条件(f)F, ,这就证明了d A x, A x a N d x , xn ', 则 必 有 N , 使 aN 1 , 这 样 对 任 意 一'x, x ' XJo ( X ) X而J 必oJ1 ( X ') X,''' ,反之,若 J对 任1( X ') Xx X 这样由压缩映射原理, AN 有不动点 x* ,即 Ax AN x* ,x1是 A 的任意不动点,即,若 *x x' , 则''' ,, , 由于AN Ax* AAN x* Ax* , Ax* 也是 AN 的不动点, AN 的不动点是唯一的,因此*f X 'o使J1 ( f ) F1意x* Ax* 即 xx* x1是 A 的不动点。
泛函分析课后习题答案

___ ___ ___
1 n
d ( x, y ) 1 d ( x, y )
t 在 [o, ) 上是单增函数, 1 t
___ d ( x, y ) d ( x, z ) d ( y , z ) d ( x, y ) 1 d ( x, y ) 1 d ( x, z ) d ( y , z )
1 n
x1 B ,使 d ( x0 , x1 )
1 1 。设 d ( x0 , x1 ) 0, 则易验证 U ( x0 , ) on ,这就 n n
证明了 on 是 开集 显然 n on B 。若 x on 则对每一个 n,有 xn B 使 d ( x , x1 ) ,因 1 n 1 此 xn x(n ) 。因 B 是闭集,必有 x B ,所以 on B 。证毕 n 1 4 设 d(x,y)为空间 X 上的距离,证明 d ( x, y ) 是 X 上的距离 证明 (1)若 d ( x, y ) 0 则 d ( x, y ) 0 ,必有 x=y (2)因 d ( x, y ) d ( x, z ) d ( y, z ) 而 于是 d ( x, y ) =
___
因此 f o (t ) A 由于 A 是开集,必有 0 ,当 f C[a,b]且 d ( f , f 0 ) 时, f A 定义,n=1,2。 。 。 。 。则 d ( f n , f 0 ) | t n t0 | 0(n ) 因此当 | t n t0 | 时, f n A 。 但是 f n (t n ) a | t t0 | | t n t0 | a ,此与 f n A 的必要条件:对 任意
t B ,有 f n (t ) a 矛盾
泛函分析习题及参考答案

En
∫x
n
− x dt +
p
Fn
∫x
n
− x dt 。此时,
p
1 1 ⎡ ⎤ p p p p p p x x dt ( x dt ) ( x dt ) − ≤ + ⎢ ⎥ , ∫ x n − x dt < (b − a ) ⋅ ε 。 n n ∫ ∫ ∫ ⎢ En ⎥ Fn En En ⎣ ⎦
泛函分析习题及参考答案
一、在 R 中定义如下三种距离: x = ( x1 , x2 ), y = ( y1 , y2 ) ∈ R ,
2
2
d1 ( x, y ) = ( x1 − y1 ) 2 + ( x2 − y2 ) 2 , d 2 ( x, y ) = max{ x1 − y1 , x2 − y2 } ,
i =1
= ∑ ξi( n ) − ξi +
p i =1
K
i = K +1∑∞ξi( n ) − ξi
p
≤∑ξ
i =1
K
(n) i
− ξi
p
∞ p 1 ⎛ ∞ p 1 ⎞ + ⎜ ( ∑ ξi( n ) ) p + ( ∑ ξi ) p ⎟ < 2ε p 。 i = K +1 ⎝ i = K +1 ⎠
1
取 δ = min(δ 1 , δ 2 ) ,则 e ⊂ E , me < δ 时,
∫
e
x n (t ) dt ) p < ε ,对每个自然数 n 成立。
p
即 {x n (t )} 在 [a, b] 上具有等度绝对连续的积分。 充分性证明,对任何 ε > 0 ,令 E n (ε ) = E ( x n − x ≥ ε ) ,则 mE n (ε ) → 0 。由此可知, 对任何 δ > 0 ,存在 N > 0 ,使得 n > N 时, mE n (ε ) < δ 。 令 Fn (ε ) = E ( x n − x < ε ) ,则 ρ ( x n , x ) =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 练习题1. 记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下:(,)|()()|,,([,])baf g f x g x dx f g C a b ρ=-∀∈⎰,(1)([,])C a b 按ρ是否完备?(2)(([,]),)C a b ρ的完备化空间是什么?答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2,n =,定义,01,():1,1 2.n n x x f x x ⎧≤<=⎨≤≤⎩ 则{()}([0,2])n f x C ⊂在本题所定义的距离的意义下是Cauchy 列, 因为111(,)|()()|110,(,).11n m n m n m f f f x f x dxx dx x dxm n n m ρ=-≤+=+→→∞++⎰⎰⎰另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有0,[0,1)()()1,[1,2].n x f x g x x ∈⎧→=⎨∈⎩因此, 根据Lebesgue 有界收敛定理, 可以得到11100(,)|()()|1|0|0.1n n nnf g f x g x dxx dx x dx n ρ=-=-==→+⎰⎰⎰但()([0,2])g x C ∉.(2) ([,])C a b 的完备化空间是1([,])L a b . 因为(i) 在距离ρ的意义下, ([,])C a b 是1([,])L a b 的稠密子集. 事实上, 任意取定一个1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得[,](,)|()()|a b f g f x g x dx ρε=-<⎰.事实上, 首先根据积分的绝对连续性, 存在0δ>, 使得当[,]E a b ⊂, 只要mE δ<, 就有|()|3Ef x dx ε<⎰.因为()f x (Lebesque)可积, 故几乎处处有限, 即10N N mE ∞==,其中{[,]||()|}N E x a b f x N =∈>. 由此可以得到 lim ()0N N m E →∞=(因为{}N E 是渐缩集列并且[,]a b 的测度有限),故存在某个自然数N , 使得N mE δ<且|()|3NE f x dx ε<⎰,因此有|()|f x N ≤,[,]\N x a b E ∈.引入一个新函数定义为(),[,]\():0,,NNf x x a b E f x E ∈⎧=⎨⎩ 显然对于[,]x a b ∈恒有|()|f x N ≤. 由Lusin 定理, 存在连续函数()(,)g x C ∈-∞+∞和闭集[,]F a b ⊂, 使得([,]\)min{,/3}m a b F N δε<且|()|g x N ≤, 进而()()g x f x ≡,x F ∈.则()g x 限制在[,]a b 即为所求, 因为: [,](,)|()()|a b f g f x g x dx ρ=-⎰([,]\)|()()|a b F Ff xg x dx ⋃=-⎰[,]\|()()||()()|a b FFf xg x dx f x f x dx ≤-+-⎰⎰[,]\\(|()|)|()()||()()|NNa b FF E F E f x N dxf x f x dx f x f x dx⋂≤++-+-⎰⎰⎰[,]\|()|([,]\)a b Ff x dx Nm a b F ≤+⎰\|()|0NNF E F E f x dx dx ⋂++⎰⎰333εεεε<++=.(ii) 1(([,]),)L a b ρ是完备的空间.2. 设(,)X ρ是距离空间,A 是X 的子集,对任意的x X ∈,记(,)inf (,)y Ax A x y ρρ∈=,则(1)(,)x A ρ是x 的连续函数.(2) 若{}n x 是X 中的点列, 使(,)0n x A ρ→,{}n x 是否为Cauchy 列? 为什么? 证:(1) 任意取定12,x x X ∈, 对于任意的y X ∈根据三角不等式, 有1122(,)(,)(,)x y x x x y ρρρ≤+, 2211(,)(,)(,)x y x x x y ρρρ≤+.对两端关于y A ∈取下确界, 可以得到1122inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+, 2211inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+.即1122(,)(,)(,)x A x x x A ρρρ≤+, 2211(,)(,)(,)x A x x x A ρρρ≤+.由此可得1212|(,)(,)|(,)x A x A x x ρρρ-≤.由此容易证明()f x (,)x A ρ=是X 上的连续函数, 实际上, (,)x A ρ还满足Lipschitz 常数等于1的Lipschitz 条件.(2) 答: 未必是Cauchy 列. 例如取X =R , 其中的距离是Euclid 距离. 对于{1,1}A =-, 对于1,2,n =, 定义点列为1(1).n n x n=-+对于点列{}n x ,不难验证,1(,)0n x A nρ=→; 但显然{}n x 不是Cauchy 列. 这里的原因就在于(,)x A ρ不是点到点之间的距离, 而是点到集合的距离, 当这个集合A 含有不止一个点时, (,)x A ρ不再具有点点之间距离的性质.3. E 是nR 中的Lebesgue 可测集合, 试证()L E ∞按距离(,)esssup |()()|x Ef g f x g x ρ∈=-是不可分空间.证法一:记为方便起见, 设[,]E a b =. 定义[,]1,[,],()()0,(,].a x a f x x x b λλλχλ∈⎧==⎨∈⎩显然()f x λ有界,可测, 因此必属于([,])L a b ∞. 记{()|(,]}A f x a b λλ=∈.则([,])A L a b ∞⊂.既然对于不同的12,[,]a b λλ∈, 1f λ与2f λ不同的部分是正测度集, 容易看出A 的势是ℵ.进而有(不妨设12λλ<)1212121212[,][,]\0[,][,]\0[,][,][,][,]\0(,][,][,]\0(,)infsup |()()|inf sup |()()|inf sup |()()|infsup () 1.E a b x a b E mE E a b x a b E mE a a E a b x a b E mE E a b x a b E mE f f f x f x f x f x x x x λλλλλλλλλλρχχχ⊂∈=⊂∈=⊂∈=⊂∈==-=-=-==我们用反证法证明所需的结论.设([,])L a b ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g , 因此至少有一个i g 属于两个不同的1(,1/3)S f λ和2(,1/3)S f λ.而由三角不等式, 我们有12121(,)(,)(,)112.333i i f f f g g f λλλλρρρ=≤+≤+=这是一个矛盾. 因此([,])L a b ∞不可能是可分的.证法二:既然E 是正测度集,存在0R >使得((0,))0m S R E ⋂>. 不难验证, 存在一列正数1{}i i R ∞=满足:120i R R R R <<<<<<;且1([(0,)\(0,)])0i i m E S R S R +⋂>.对于每一个12(,,,,)i λλλλ=,其中0i λ=或1, 定义 1(),[(0,)\(0,)]i i i f x x E S R S R λλ+=∈⋂,1,2,i =. 显然()f x λ有界,可测, 因此必属于()L E ∞. 记{()|{0,1}}A f x λλ=∈N ,其中{0,1}N表示具有上述性质的λ的全体. 则()A L E ∞⊂.既然对于不同的,λμ∈{0,1}N, (不妨设1(,,,)i λλλ=, 1(,,,)i μμμ=且对于某个i ,0i λ=1i μ=)f λ与f μ不同的部分至少是正测度集1[(0,)\(0,)]i i E S R S R +⋂, 容易看出A 的势与{0,1}N的势都是连续统的势ℵ.进而有11\0((0,)\(0,))\0((0,)\(0,))\01(,)inf sup |()()|infsup|()()|inf sup|| 1.i i i i F E x E F mF F E x E S R S R FmF i i F E x E S R S R F mF f f f x f x f x f x λμλμλμρλμ++⊂∈=⊂∈⋂=⊂∈⋂=≥=-≥-=-= 我们用反证法证明所需的结论.设()L E ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g , 因此至少有一个j g 属于两个不同的(,1/3)S f λ和(,1/3)S f μ.而由三角不等式, 我们有1(,)(,)(,)11.33j j f f f g g f λμλμρρρ=≤+≤+这是一个矛盾. 因此()L E ∞不可能是可分的. 补充题.证明[,]L a b ∞是不可分空间. 证:记{}[,]()a t K x a t b χ=<<,其中[,]1,,():0,.a t a x t x t x b χ≤≤⎧=⎨<≤⎩显然[,]K L a b ∞⊂, 且只要12,[,]t t a b ∈,12t t ≠, 则有12[,][,],a t a t K χχ∈, 且因为(不妨设12t t <)12(,]t t 的测度为正, 故1212[,][,][,][,][,]||||sup |()()|a t a t a t a t L a b ess x x χχχχ∞-=-1212(,](,]sup |()|1t t x t t x χ∈==.因此, 由(,)a b 是不可数集, 而K 的基数与(,)a b 的基数相同, 故也是不可数集,且K 中任何两个不同元的距离均为1.如果[,]L a b ∞是可分的, 因此有一个可数的稠密子集合{()|1,2,}k A f x k ==, 且11(,)3k k S f K ∞=⊇.但这是荒谬的, 因为上式左端只有可数多个开球, 右端有不可数多个元, 所以至少有K 中的两个不同的12[,][,],a t a t χχ属于同一个开球01(,)3k S f , 由此得到矛盾:121002[,][,][,][,][,][,][,]1||||||||||||112.333a t a t L ab a t k k a t L a b L a b f f χχχχ∞∞∞=-≤-+-<+= 此矛盾表明[,]L a b ∞不可能是可分的.4. 设([,])kC a b 是闭区间[,]a b 上具有k 阶连续导数的函数全体, 定义:()()[,](,)max |()()|,,([,])ki i k x a b i f g f x g x f g C a b ρ∈==-∈∑试证:(1)([,])kC a b 是完备的距离空间; (2)若定义||||(,0)f f ρ=,则(([,]),||||)kC a b ⋅是Banach 空间.证:(1) 这里只证明该距离是完备的. 设1{()}n n f x ∞=是([,])k C a b (0k =时, 0([,])C a b 就理解为[,]C a b )中该距离意义下的Cauchy 列. 因此当,m n →∞时,有()()[,]0(,)max |()()|0ki i m n m n x a b i f f f x f x ρ∈==-→∑.由此容易知道对于每一个0,1,,i k =, ()1{()}i n n f x ∞=是0([,])C a b 中的Cauchy 列. 根据0([,])C a b 的完备性,知()1{()}i n n f x ∞=收敛到0([,])C a b 中的某个元, 记其为()i f x , 则0()([,])i f x C a b ∈, 且()()()i i n f x f x −−→−−→,,0,1,,n i n →∞=,其中“−−→−−→”表示是一致收敛. 如果我们记0()()f x f x =,利用数学分析中函数序列一致收敛的分析性质, 可以得到12()()(),()(),,()().k kf x f x f x f x fx f x '''=== (*)例如, 因为1()()n f x f x −−→−−→', 故 1()()xxn aaf t dt f t dt −−→−−→'⎰⎰, 即1()()()xn n af x f a f t dt −−→−−→-⎰, 又0()()n f x f x −−→−−→及0()()nf a f a −−→−−→, 故 001()()()xaf x f a f t dt -=⎰.求导即可得到01()()f x f x '=, 即 1()()f x f x '=.归纳地可得(*).因此0()()f x f x =([,])kC a b ∈且()[,](,)max |()()|ki i n n x a b i f f f x f x ρ∈==-∑()()[,]max |()()|0ki i n x a b i f x f x ∈==-→∑.即([,])kC a b 是完备的距离空间.(2)证略.7. 证明有限维线性赋范空间是完备的.证:记该有限维(实)线性赋范空间为E , 是n 维的,范数记为||||x ,需要证明(,||||)E ⋅是完备的. 记E 中的一组基为:12,,,n v v v .因此对于任意的x E ∈, 存在唯一一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v ,反之亦然.(i) 我们断言存在一个与x 无关的常数0K >, 使得||||||i x K x ≤, 1,2,,i n =.(*)首先定义一个映射:nf →为: 对于任意的12(,,,)n x x x n∈,121122(,,,):||||||||n n n f x x x x x x x ==+++v v v .则对于任意的,x y E ∈(1122n n y y y y =+++v v v )有1122||||(,,,)n n x y f x y x y x y -=---111||||||||||||n n n x y x y ≤-⋅++-⋅v v2221()||||||||n n n x y ≤++-⋅++v v .由此容易知道f 是n R 上的连续函数. 记1B ∂是nR 中的单位球面, 即21121{(,,,)|1}nn k k B x x x x =∂==∑. 则对于任意的11(,,)n x x B ∈∂, 有1(,,)0n f x x >.(事实上, 若有1(,,)0n f x x =则111(,,)||||0n n n f x x x x =++=v v ,因此110n n x x ++=v v , 但12,,,n v v v 线性无关, 故必有120n x x x ====, 此与11(,,)n x x B ∈∂相矛盾. )注意到1B ∂是n R 中的有界闭集(紧子集), 连续函数f 必可在其上达到正的最小值1/0K >.现在我们可以证明式(*). 事实上, 对于任意的x E ∈,存在唯一的一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v , 不失一般性, 可设0x ≠因此,12,,,n x x x 不全为零, 注意到12,n nx y Bx ⎛⎫ ⎪=∈∂∑,故122()1,,nn nn n x f y xx f K x +++=⎛⎫ ⎪=≥∑∑v或1122||||n n x x x x =+++≥v v v 由此容易得出(*)式.(ii) 设()1{}k k x ∞=是E 中的基本列, 这里()()()()1122k k k k n n x x x x =+++v v v ,即()()||||0k l x x -→, 当,k l →∞.利用(*)式便可以得到对于每一个1,2,,i n =, 成立()()()()||||||0k l k l i i x x K x x -≤-→, 当,k l →∞.即()1{}k i k x ∞=是1中的基本列, 因此收敛. 设()(0)k i i x x →, (k →∞,1,2,,i n=).记(0)()(0)(0)1122k n n xx x x =+++v v v , 显然(0)x E ∈. 根据E 中收敛的等价性(即按范数收敛意味着每个分量收敛或即按坐标收敛), 容易得到()(0)||||0k x x -→, 当k →∞.因此(,||||)E ⋅是完备的.9. 设X 为线性赋范空间, 0X 是X 的线性闭子空间. 在X 中定义等价关系为0xy x y X ⇔-∈. 对任意的x X ∈, 以[]x 记x 的等价类, 令0/{[]|}X X x x X =∈.称0/X X 为商空间, 在0/X X 上定义线性运算如下: (i) [][][]x y x y +=+, ,x y X ∈, (ii) [][]x x λλ=, ,x X λ∈∈C .并定义0||[]||inf ||||y X x x y ∈=+.试证: 0/X X 按0||[]||x 也是一个线性赋范空间.证:(一) 0/X X 按照所定义的线性运算是线性空间 (证明略).(二) 0||[]||x 是0/X X 中的范数. 按照定义, 对于每一个 0[]/x X X ∈显然0||[]||inf ||||y X x x y ∈=+是一个确定的数, 因此00||||:/X X ⋅→R 是映射.(i) (非负性) 对于x X ∈, 显然0||[]||inf ||||0y X x x y ∈=+≥.(正定性) 当0[]=[0]=x X 时, 有00||[]||||[0]||inf ||||0y X x y ∈===.反之, 如果我们假设0000||[]||inf ||||0y X x x y ∈=+=, 需要证明 00[]=[0]=x X , 也只需证明00x X ∈. 事实上, 根据下确界的定义, 对每一个自然数1,2,k =, 存在0k y X ∈, 使得00000111||||||[]||inf ||||k y X x y x x y k k k∈+<+=++=, 由此得到一个序列0{}k y X ⊂且||||0k y x ⋅−−−→-.因为0X 是闭子空间因此00x X -∈故00x X ∈, 即00[]=[0]=x X . (ii) (正齐性) 对于,x X λ∈∈C , 如果0λ=, 则000x x X λ==∈, 故0[][0]0[][]x X x x λλ====. 如果0λ≠, 则当y 取遍0X 中的所有元时,yλ也取遍0X 中的所有元, 反之亦然, 因此 00||[]||inf ||||inf ||||||y X y X yx x y x λλλλ∈∈=+=⋅+||inf ||||||inf ||||yy X X yyx x λλλλλ∈∈=+=+||inf ||||||||[]||z X x z x λλ∈=+=⋅,(iii) (三角不等式) 设,x y X ∈. 设0,u v X ∈, 当,u v 取遍0X 中的所有元时, u v +也取遍0X 中的所有元, 反之亦然, 进而, ,u v 的取法是相互独立的, 因此0||[]||inf ||||u X x y x y u ∈+=++,inf ||||u v X x y u v ∈=+++()0,inf ||||||||u v X x u y v ∈≤+++inf ||||inf ||||u X v X x u y v ∈∈=+++00||[]||||||x y =+.也可用下面的证明方法: 对于任意的0ε>, 由下确界的定义, 存在0,u v X εε∈使得0||||||[]||x u x εε+<+, 0||||||[]||y v y εε+<+,因此可以得到0||[]||inf ||||||||u X x y x y u x y u v εε∈+=++≤+++||||||||x u y v εε≤+++ 00||[]||||[]||2x y ε<++.因为0ε>的任意性, 可得0||[]||x y +00||[]||||[]||x y ≤+.10. 设X 为线性赋范空间,1nn x∞=∑收敛, 即1kk nn S x==∑按X 中的范数收敛, 则11nn n n xx ∞∞==≤∑∑.证:记1kk n n S x ==∑.对于有限项之和, 利用三角不等式, 成立111||||kk k nn n n n n S xx x ∞====≤≤∑∑∑. (*)又因为1kk nn S x==∑在范数意义下收敛, 其极限自然可以记为1nn x∞=∑, 即1k n n S x ∞=→∑,再一次利用三角不等式, 可以得到当k →∞时11||||0k nk n n n S xS x ∞∞==-≤-→∑∑,即1||||k nn S x∞=→∑, 因此在(*)式中令k →∞, 可得11nn n n xx ∞∞==≤∑∑.11. 设{0}X ≠为线性赋范空间, 试证X 是Banach 空间当且仅当{|||||1}x X x ∈=是完备的.证:记{|||||1}T x X x =∈=.(必要性) 设X 是Banach 空间, {}n x T ⊂是T 中的Cauchy 列, 即||||1n x =且||||0m n x x -→(当,m n →∞).因为X 是Banach 空间, 故{}n x 收敛, 即存在0x X ∈, 使得||||0n x x ⋅−−→, 由三角不等式容易得到:||||||||||||x y x y -≤-,因此00||||||||||||0n n x x x x -≤-→,知0||||||||n x x →, 故0||||1x =因此0x T ∈, 即T 完备.(充分性) 设T 是完备的, 并设{}n x X ⊂是X 中的Cauchy 列, 即||||0m n x x -→当,m n →∞. 由||||||||||||0m n m n x x x x -≤-→,知{||||}n x 是1中的Cauchy 数列, 因此收敛, 即存在某个数A ∈使得||||n x A →.如果0A =, 显然{}n x 收敛于X 中的零元, 故不妨设0A >. 由此知当n 充分大时, 总有||||0n x >, 不失一般性, 可设对所有的n , 都有||||0n x >. 考虑新的点列:||||nn n x y x =, 显然n y T ∈. 进而 ||||||||||||m n m n m n x xy y x x -=- ||||||||||||||||m m m n m n n n x x x xx x x x ≤-+- 111||||||||||||||||m m n m n n x x x x x x =-+-, 由此易知{}n y T ⊂是T 中的Cauchy 列. 因为T 作为距离空间是完备的, 故{}n y 收敛, 即存在0y T ∈, 使得||||0n y y ⋅−−→. 最后我们断言: ||||0n x Ay ⋅−−→.事实上,0||||||||||||||||n n n n n x Ay x Ay x x x -=- 0||||||||n n n Ay x y x =-000||||||||n n n Ay x y y y x ⎛⎫≤-+- ⎪⎝⎭00||||1||||n n n A x y y y x ⎛⎫=-+-⎪⎝⎭0→.综上可得X 是Banach 空间.15.试证定理4中(f)式定义的(,)x y 的确满足内积分的定义.证明: 即要证明: 对于赋范线性空间(,||||)X ⋅, 如果范数满足平行四边形法则:2222||||||||2(||||||||)x y x y x y ++-=+(*)则由221(,):[||||||||]4x y x y x y =+--R (K =R 时) (f ’)或221(,):[||||||||4x y x y x y =+--C22||||||||]i x iy i x iy ++-- (K =C 时) (f)所定义的确实是内积. (i) 对于x X ∈,221(,)[||||||||4x x x x x x =+--C22||||||||]i x ix i x ix ++--2||||0x =≥,因为|1||1|i i +=-, 并且根据范数的性质2(,)00(,)||||0x x x x x x =⇔==⇔=C C .同理可证(,)0x x ≥R 且(,)00x x x =⇔=R . (ii)首先考虑K =R 时的情形, 对于,,x y z X ∈, 可将(,)(,)x z y z +R R 表示为如下形式: (,)(,)x z y z +R R221[||||||||4x z x z =+--22||||||||]y z y z ++-- ()()22221||||||||||||||||4x z y z x z y z ⎡⎤=+++--+-⎣⎦ 22142222x y x yx y x yz z ⎛⎫+-+-=++++-⎪ ⎪⎝⎭ 22142222x y x y x y x y z z ⎛⎫+-+---++--⎪ ⎪⎝⎭, 再由平行四边形法则222222x y x y x y x yz z +-+-++++-22222x y x y z ⎛⎫+-=++ ⎪ ⎪⎝⎭; 222222x y x y x y x yz z +-+--++--22222x y x y z ⎛⎫+-=-+ ⎪ ⎪⎝⎭. 因此(,)(,)x z y z +R R 221222x y x yz z⎛⎫++=+-- ⎪ ⎪⎝⎭2,2x y z +⎛⎫= ⎪⎝⎭R.进而, 令0y =可以得到(,)x z R 2,2x z ⎛⎫= ⎪⎝⎭R,这里利用了(0,)0z =R . 因为x 是任意的, 故可将x 换为x y +, 即可得到(,)x y z +R 2,2x y z +⎛⎫= ⎪⎝⎭R. 对照上述二式, 即有(,)(,)x z y z +R R =(,)x y z +R .(**)至于K =C 时的情形, 注意到从形式上看(,)=(,)(,)x y x y i x iy +C R R ,利用上述已经证明了的等式(**)不难得到(,)(,)x z y z +C C =(,)x y z +C .(iii) 首先考虑K =R 时的情形, 对于,x z X ∈和任意实数,s t ∈R , 由已经证明的(**)式有(,)(,)sx z tx z +R R =((),)s t x z +R ,可知函数():(,)f t tx z =R 满足如下的函数方程:()()()f s f t f s t +=+.(***)又():(,)f t tx z =R 关于t 是连续的, 因此必有()(1)(,)f t f t t x z ==R .(事实上, 由(***)式对于任意的正整数n 和m , 利用数学归纳法有()()f ns f s s s =+++()()()()f s f s f s nf s =+++=;进而取1s n =, 有11()(1)f f n n=, 因此 1()()(1)n nf nf f m m m==. 又(***)中取0s t ==可得(0)0f =, 取s t =-可得()()f s f s -=-. 因此对于所有的有理数, 均成立()(1)f s sf =.利用()f s 的连续性, 可知对所有的实数也成立. ) 因此得到(,)()(1)(,)tx z f t f t t x z ===R R .至于K =C 时的情形, 注意到由(f)221(,)[||||||||4ix y ix y ix y =+--C 22||||||||]i ix iy i ix iy ++--221[||||||||4ix y ix y =+--22||||||||]i x y i x y ++-- 22221[||||||||4i ix y i ix y =-++-22||||||||]i x y i x y ++-- 22[||||||||4ii x iy i x iy =--++22||||||||]x y x y ++-- (,)i x y =C .由此也容易得到, 对于t ∈C(,)(,)tx z t x z =C C .(iv) 当K =R 时, 容易知道221(,)[||||||||](,)4x y x y x y y x =+--=R R ;而当K =C 时, 直接计算也可得到221(,)[||||||||4x y x y x y =+--C 22||||||||]i x iy i x iy -++-221[||||||||4y x y x =+--22||||||||]i y ix i y ix --++ (,)y x =C .16.设D 是C 中单位开圆盘, 即{|||1}D z z =∈<C . dA 是D 上的面积测度, 2()a L D 定义为22(){|()|}a L D f f Df z dz =<∞⎰在中解析且|. (见课本第六页例4)在2()a L D 中定义内积为,()()Df g f z g z dA =⎰.试证(1)1()n n z ϕ-=(1,2,n =)构成2()a L D 的正交基.(2) 若2()af L D ∈的Taylor 展开式是0()kk k f z a z ∞==∑, 则201kk a k∞=<∞+∑;(3) 若2()ag L D ∈的展开式是0()kk k g z b z∞==∑, 则,1k kk a b f g k π∞==+∑. 证:先给出一个预备性结果: 对于2()a f L D ∈,因为()f z 是解析函数, 因此可以展开为幂级数: 0()kk k f z a z∞==∑.由此可以断言:(),()n f z z ϕ=n a - (*)事实上,因为()f z 是解析函数,幂级数kk k a z∞=∑在D 中内闭一致收敛, 即对于D 的任意闭子集F ,kk k a z∞=∑在F 上一致收敛. 对于01ε<<, 以下取闭子集F 为:{|||1}D z D z εε=∈≤-.容易知道D ε是D 中的闭子集.对于每一个1,2,n =,注意到级数10k k a z -=∑在ε中仍旧一致收敛, 以下的积分号和求和号可以交换顺序:(),()()()n n Df z z f z z dA ϕϕ=⎰lim ()()n D f z z dA εεϕ→=⎰100lim k D k a z dA εε∞-→==∑⎰10k n k D a z z dA εε∞-→==⎰10(cos sin )(cos(1)sin(1))k n k D a r k i k n i n dAεεθθθθ∞+-→==+⋅⋅---⎰2110(cos sin )(cos(1)sin(1))k n k a d r k i k n i n rdrπεεθθθθθ∞-+-→==+⋅⋅---⎰⎰1210(cos sin )(cos(1)sin(1))k n k a r rdr k i k n i n d επεθθθθθ∞-+-→==+⋅⋅---⎰⎰12110n n a r dr εεπ---→=⎰210(1)2nn a nεεπ-→-=n a -=因此(*)式得证.(1) 首先证明{}111()n n n n z ϕ∞∞-==⎫⎪=⎬⎪⎭是正交集. 事实上, 对于复数(cos sin )z r i θθ=+,根据所给的定义112(),()sin)sin)mm nm n n mz z dAi i r dAϕϕθθθθ----+-==+-⎰⎰2(cos(1)sin(1))(cos(1)sin(1))n mDr m i mn i n dAθθθθ+-=-+-⋅⋅---21200(cos(1)sin(1))(cos(1)sin(1))n md r m i mn i n rdrπθθθπθθ+-=-+-⋅⋅---⎰⎰12200(cos(1)(1)sin)(cos(1)sin(1))n mr rdr m i mn i n dπθθθθθ+-=-+-⋅---⎰11,,20,.m nmm nππ==⎪=⎨⎪≠⎩因此{}1()n nzϕ∞=是正交集. 因为2()aL D是完备的空间, 故只需再证{}1()n nzϕ∞=是完备的即可得知其也是正交基. 设有2()af L D∈且{}1()()n nf z zϕ∞=⊥. 因为()f z是解析函数, 因此可以展开为幂级数:()kkkf z a z∞==∑.根据(*)式,可以得到,对于每一个1,2,n =,0(),()nf z zϕ=na-=由此即得1na-=, (1,2,n =). 所以()0f z≡. 即{}1()n nzϕ∞=是完备的, 因此是2()aL D中的正交基.(2) 既然{}1()n nzϕ∞=是基,由Parseval等式可以得到221(),()||||nnf z z fϕ∞==<∞∑.利用(*)式,上式的左端可以表示为:21221110(),().1nnn nnn n nf z za aan nϕππ∞=∞∞∞--======+∑∑∑∑由此可得所预期的结论.(3) 对于()kkkf z a z∞==∑和()kkkg z b z∞==∑, 有1()()kkf z a z∞+==∑和1()()kkg z b z∞+==∑,利用内积的连续性和(*)式,1,(),()kkf g a z g z∞+==∑1(),()kka z g z∞+==∑ka∞==∑kka∞==∑.1k kka bkπ∞==+∑18.设H是内积空间,{}n e是H中的正交集, 求证:1(,)(,)||||||||n nnx e y e x y∞=≤⋅∑, (,x y H∀∈).证:对于任意的正整数k, 由Cauchy不等式和Bessel不等式可以得到1(,)(,)kn nnx e y e=≤∑≤||||||||x y≤⋅,由k的任意性, 知正项级数1(,)(,)n nnx e y e∞=∑收敛, 因此级数1(,)(,)n nnx e y e∞=∑绝对收敛,并且11(,)(,)(,)(,)||||||||nnnnn n x e y e x e y e x y ∞∞==≤≤⋅∑∑.19.试证nt ⎫⎪⎬⎪⎭构成2([0,])L π的正交基, 但不是2([,])L ππ-的正交基. 证:(1) 首先证明{}11()n n n t nt ϕ∞∞==⎫⎪=⎬⎪⎭是2([0,])L π中的正交集. 事实上,[]0(),()2cos()cos()2m n t t ntdtm n t m n t dtππϕϕπ==-+--⎰1()1,,0,.m n m n ππ⎧--==⎪=⎨⎪≠⎩因此{}1()n n t ϕ∞=是2([0,])L π中的正交集. 同理, 也容易证明{}1()n n t ϕ∞=还是2([,])L ππ-中的正交集.(2) 因为2([0,])L π是完备的空间, 故只需再证{}1()n n t ϕ∞=是完备的即可得知其也是正交基. 设有2([0,])f L π∈且{}1()()n n f t t ϕ∞=⊥. 将()f t 做奇延拓成为()f t :(),[0,],():(),[,0).f t t f t f t t ππ∈⎧=⎨--∈-⎩则()f t ∈2([,])L ππ-.注意到对于1,2,n =, 利用{}1()()n n f t t ϕ∞=⊥,,()sin n f f t ntdt ππϕ-=⋅⎰()sin ()sin f t ntdt f t ntdt ππ-=⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰00()sin ()()sin f s n s ds f t ntdt ππ=-⋅-+⋅⎰⎰2()sin 0f t ntdt π=⋅=⎰.设{}{}00()cos n n n t nt ψ∞∞===,对于0,1,2,n =,利用()f t 是奇函数, 可得,()cos 0n f f t ntdt ππψ-=⋅=⎰.因此{}{}()10()()()n n n n f t t t ϕψ∞∞==⊥⋃.进而也容易得到()f t ⊥cos sin ,,,nt nt ππ⎫⎬⎭. 又已经知道与{}{}{}{}1010()()sin )cos n n n n n n t t t nt ϕψ∞∞∞∞====⋃=⋃仅相差一个常数因子的三角函数系cos sin ,,,nt nt ππ⎫⎬⎭是2([,])L ππ-中的正交基, 因此()0f t =, a.e. [,]t ππ∈-,即有()0f t =, a.e. [0,]t π∈.因此{}1()n n t ϕ∞=是2([0,])L π中的正交基.(3) 注意到nt ⎫⎪⎬⎪⎭在2([,])L ππ-中不是完备的, 例如对于恒等于常数1的函数2()1([,])f t L ππ≡∈-是非零元, 但对于1,2,n =,,1sin 0n f ntdt ππϕ-=⋅=⎰.因此, nt ⎫⎪⎬⎪⎭虽然是2([,])L ππ-的正交集, 但不是正交基.24. 试给出1([,])C a b 中列紧集的判别条件. 证:设子集1([,])A C a b ⊂且0x 是[,]a b 中一个数. 记{()|()}A f x f x A ''=∈及0{()|()}B f x f x A =∈.则A 是1([,])C a b 中的列紧集的充分必要条件是 (i) A '在([,])C a b 中有界; (ii) B 是R 中的有界集;(iii) A '是([,])C a b 中等度连续的集合.[充分性] 设1([,])A C a b ⊂满足条件(i), (ii)和(iii). 根据1([,])C a b 中范数的定义: 对于1([,])f C a b ∈,1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+,容易看出,1([,])([,])C a b C a b k k f f f f −−−−→⇔−−−−→且([,])C a b k f f ''−−−−→ 因此只需证明A 和A '分别是([,])C a b 中的列紧集即可, 根据Arzela-Ascoli 定理, 这也只需证明A 和A '分别在([,])C a b 中有界且等度连续即可. 事实上, A '在([,])C a b 中有界性和等度连续已由所给条件得到保证(即(i)和(iii)). 还需证明A 在([,])C a b 中的有界性和等度连续性. 记A '在([,])C a b 中的一个界为A M ',B 作为R 中的有界集, 一个界纪为B M .对于任意的[,]x a b ∈, 利用中值定理, 有0000|()||()()||()||()()||()|().A B f x f x f x f x f x x f x M b a M ξ'≤-+'=-+≤-+ 此即表明[,]max |()|()A B x a b f x M b a M '∈≤-+, 所以A 在([,])C a b 中有界,且界为()A B M b a M '-+. 进而对于,[,]x y a b ∈|()()||()()|||.A f x f y f x y M x y ξ''-=-≤-由此易知A 具有等度连续性.[必要性] 设A 是1([,])C a b 中的列紧集, 即对于A 的任何点列1{()}n n f x ∞=, 1{()}n n f x ∞=在1([,])C a b 中的范数(距离)1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+意义下都有收敛的子列1{()}k n k f x ∞=. 因此,1{()}n n f x ∞=和1{()}n n f x ∞='分别在([,])C a b 中有收敛的子列的1{()}k n k f x ∞=和1{()}k n k f x ∞='. 这表明, 根据Arzela- Ascoli 定理, A 和A '均是([,])C a b 中的列紧集, 因此A 和A '均在([,])C a b 中有界且等度连续, 因此得到(i)和(iii). 由A 的有界性, 可以知道集合0{()|()}B f x f x A =∈对于任意的0x [,]a b ∈都是R 中的有界集, 因此得到(ii). 26. 设(,)X ρ是紧距离空间,映射:f X X →满足1212((),())(,)f x f x x x ρρ<. (12x x ≠)则(1) f 是否有唯一的不动点? (2) f 是否为压缩映射?解答: (1) f 存在唯一的不动点, 证明如下: (存在性) 定义映射:h X →R 为()(,())h x x f x ρ=.由所给条件知此映射是连续的, 而X 是紧空间表明此映射能在X 中取得上下确界. 因此存在y X ∈, 使得()(,())inf ()x Xh y y f y h x ρ∈==.断言()inf ()0x Xh y h x ∈==,则y 是f 的不动点:()y f y =. 若不然, ()0h y >, 则在所给的条件中取()x f y =有(())((),(()))(,())()h f y f y f f y y f y h y ρρ=<=,此与y 达到()h x 的下确界相矛盾.(唯一性) 若还有z X ∈使得()z f z =但z y ≠. 仍由所给的条件, 有0(,)((),())(,)z y f z f y z y ρρρ<=<.这是个矛盾. 故必有z y =.(2) f 可以不是压缩映射. 反例如下:[反例1] 记[0,1]X =, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈,(,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,():1x T x x=+. 显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 则,x y 中至少有一个不为零, 由此容易得到||(,)11(1)(1)x y x y Tx Ty x y x y ρ-=-=++++ ||x y <-(,)x y ρ=.所以T 满足所需的条件, 但T 不是压缩映射, 因为,[0,1],[0,1](,)1supsup 1(,)(1)(1)x y x y x yx yTx Ty x y x y ρρ∈∈≠≠==++.因此不存在常数[0,1)α∈, 使得对于所有的,x y X ∈,(,)(,)Tx Ty x y ραρ≤.[反例2] 记1{0}1,2,X n n ⎧⎫=⋃=⎨⎬⎩⎭, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈, (,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,11,,():10,0,x T x n n x ⎧=⎪=+⎨⎪=⎩显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 如果,\{0}x y X ∈, 则有正整数,m n , m n ≠, 使得11,x y n m==,且11||(,)11(1)(1)m n Tx Ty n m n m ρ-=-=++++ ||m n nm-<11(,)x y n m ρ=-=; 如果,x y 中有一个为零, 例如0x =, 也有11(,)011Tx Ty m m ρ=-=++1m<(,)x y ρ=. 所以T 满足所需的条件, 但T 不是压缩映射, 因为例如对于 11,x y n m==, 当,m n →∞时, 成立11(,)11111(,)(1)(1)Tx Ty mnn m x y n m n mρρ-++==→++-,即不存在[0,1)α∈, 使得(,)(,)Tx Ty x y ραρ≤..补充题. 设二元函数(,)([,][,])g x y C a b a b ∈⨯,A 是([,])C a b 中的一个有界集, 记():(,)()()ba A F x g x y f y dy f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.(i) 证明A 是([,])C a b 中的列紧集;(ii) 问当A 还是([,])C a b 中的闭集时, A 是不是紧集?证:(i) 因为(,)([,][,])g x y C a b a b ∈⨯, 不难得知A ⊆ ([,])C a b . 根据Arzela-Ascoli 定理, 只需再证明A 在([,])C a b 中有界且等度连续即可.(a) A 在([,])C a b 中有界, 即A 作为由连续函数组成的集合是一致有界的. 事实上, 如果记A 的一个界为M , |(,)|g x y 在[,][,]a b a b ⨯上的最大值为K , 则对于任意取定的()F x A ∈, 有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰, 由此得知|()|(,)()baF x g x y f y dy =⎰|(,)()|bag x y f y dy ≤⎰max |(,)|max |()|ba xb a y ba a y bg x y f y dy ≤≤≤≤≤≤≤⎰[,]||||bC a b af Kdy =⎰[,]||||()C a b f K b a ≤-()KM b a ≤-.因此A 是([,])C a b 中有界集, 且A 的一个界为()KM b a -.(b) A 在([,])C a b 中等度连续. 对于()F x A ∈,有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰. 因为(,)([,][,])g x y C a b a b ∈⨯, 因此在[,][,]a b a b ⨯上一致连续, 故对于任意的0ε>,存在0δ>, 当,[,]x x a b '∈且||x x δ'-<时, 有|(,)(,)|g x y g x y ε'-< ([,]y a b ∀∈),由此可以得到|()()|(,)()(,)()bbaaF x F x g x y f y dy g x y f y dy ''-=-⎰⎰[(,)(,)]()bag x y g x y f y dy '=-⎰|(,)(,)||()|ba g x y g x y f y dy '≤-⎰max |()||(,)(,)|ba y ba f y g x y g x y dy ≤≤'≤-⎰[,]|||||(,)(,)|bC a b af g x y g x y dy '=-⎰()M b a ε≤-. 由此易知A 具有等度连续性.(ii) 当A 还是([,])C a b 中的闭集时, A 未必是紧集! 反例可以构造如下: 考虑([0,1])C 中的集合{|1,2,}k A x k ==,显然A 是([0,1])C 中的有界集, 一个界可以取为1.可以断言A 是([0,1])C 中的闭集, 因为对于任意的,klx x A ∈, 不妨设l k >, 则[0,1][0,1]max ||k l k l C x x x x x ∈-=-1k l k l kl kl kk k k k l l l l ---⎛⎫⎛⎫⎛⎫⎡⎤=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 对于任意固定的k , 当l 趋于无穷大时, 右端项趋向于1, 由此容易知道, 作为([0,1])C 中的子点列, 集合A 不是Cauchy 列, 因此不可能在([0,1])C 中有收敛的子列, 故集合A 没有聚点, 因此是([0,1])C 中的闭集.定义(,)1K x y =,显然(,)([0,1][0,1])K x y C ∈⨯. 对于上述的集合A , 不难计算{}11()|1,2,|1,2,1k A F x x dx k k k ⎧⎫=====⎨⎬+⎩⎭⎰ 显然, A 是([0,1])C 中列紧集,唯一的聚点是零函数,但零函数不在A 中,因此不是闭集. 补充题. 设A 是([,])C a b 中的一个有界集, 记():()()xa B F x f t dt f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.证明B 是([,])C a b 中的列紧集.证:根据Arzela-Ascoli 定理, 需证明B 在([,])C a b 中有界且等度连续即可.(i) B 在([,])C a b 中有界, 即B 作为由函数组成的集合是一致有界的. 事实上, 如果记A 的界为M ,则对于任意取定的()F xB ∈, 有某个()f t A ∈, 使得()()xaF x f t dt =⎰, 由此得知|()|()|()|xxaaF x f t dt f t dt =≤⎰⎰[,]max |()|||||x xC a b a t baaf t dt f dt ≤≤≤=⎰⎰[,]||||()()C a b f b a M b a ≤-≤-.因此B 是([,])C a b 中有界集, 且B 的界为()M b a -.(ii) B 在([,])C a b 中等度连续. 对于()F x B ∈,有某个()f t A ∈, 使得()()xaF x f t dt =⎰.对于,[,]x x a b ∈|()()|()()xxaaF x F x f t dt f t dt -=-⎰⎰()|()|xxxxf t dt f t dt =≤⎰⎰[,]max |()|||||xxC a b a t bxxf t dt f dt ≤≤≤=⎰⎰||M x x ≤-. 由此易知B 具有等度连续性.补充题.证明课本20页定理8:对于距离空间(,)X ρ中的任何集合G , G '与G 均是闭集. 证:(i) 根据闭集的定义, 仅需证明()G G '''⊆.事实上, 设()y G ''∈, 则对于任意的0ε>((,)\{})S y y G ε'⋂≠∅.设((,)\{})x S y y G ε'∈⋂, 根据极限点的定义, 对于min{(,),(,)}0x y x y δρερ=->,有((,)\{})S x x G δ⋂≠∅.又(,)(,)S x S y δε⊆,因此有((,)\{})((,)\{})S y y G S x x G εδ⋂⊇⋂≠∅.注意到0ε>的任意性, 即可得到y G '∈. 因此G '是闭集. (ii) 需证明的是G G '⊆. 因为G G G '=⋃, 又()A B A B '''⋃⊆⋃,(*)故由(i)中已经证明了的结果, 有()G G G G G G G '''''''=⋃⊆⋃⊆⊆,因此G 是闭集.如下证明(*): 设y A B ''∉⋃, 则y A '∉, 且 y B '∉.由前者知存在某个00ε>, 使得0((,)\{})S y y A ε⋂=∅;由后者知存在某个10ε>, 使得1((,)\{})S y y B ε⋂=∅.取001min{,}δεε=, 则00δ>, 且0((,)\{})()S y y A B δ⋂⋃=∅,所以()y A B '∉⋃, 即(*)得证.补充题. 判断集合2121(,,,,)||,1,2,m m A y y y y l y m m ⎧⎫==∈≤=⎨⎬⎩⎭是否为2l 中的列紧集?答:A 是2l 中的列紧集, 证明如下.因为211(1,,,,)2l m ∈,即级数211m m∞=∑收敛,因此,对于任意的0ε>,存在某个0m ,使得0211m m mε∞=+<∑. 考虑集合:{}001212(,,,,0,)(,,,,)m m m A y yy y y y y A ==∈容易知道0m A 是A 的ε-网,且如果视其为0mR 空间中的子集,0m A 是有界集(一个界是,因此列紧,在2l 中仍然是列紧的. 进而知道2l 是完备的,因此根据前面补充题的结论(A 是列紧集的充分必要条件是对于任意的0ε>,A 有列紧的ε-网),可以得到A 是2l 中的列紧集.补充题. 设(,)X ρ是完备的距离空间, A X ⊂. 证明:A 是列紧集的充分必要条件是对于任意的0ε>,A 有列紧的ε-网.证明:[必要性] 设A 是列紧集, 因此A 是完全有界集, 即对于任意的0ε>,A 存在有限ε-网B ,12{,,,}n B x x x =.又有限集一定是列紧集, 因此B 是A 的列紧的ε-网.[充分性] 设条件成立, 即对于任意的0ε>, A 有列紧的/2ε-网B . 因为B 列紧, 因此全有界, 即存在有限的/2ε-网C . 不难证明C 是A 的有限ε-网. 由此可以得知, A 是全有界集, 又(,)X ρ是完备的距离空间,因此A 是列紧集.。