泛函分析试题九

合集下载

泛函分析考试题集与答案

泛函分析考试题集与答案
以及若
d1(x,y) min( d(x,y),1) 0或d2(x,y)
均有d(x,y)0成立,于是x y成立
2)d(y,x) d(x,y),
因此d1(y,x) min(d(y,x),1) min( d(x,y),1) d1(x, y)和d2(y,x)d(y,x) d(x, y)d2(x,y)
21 d(y,x) 1 d(x, y)2
若R是赋范空间,d(x,0) ||x|| |x|p,所以x,k R,必须有:||kx|||k|||x||成立,即|kx|p|k ||x|p,p1, 当p1时,若R是度量空间,p1时,若R是赋范空间。
2.若( X , d)是度量空间,则d1min( d ,1),d2d也是使X成为度量空间。
1 21 d
映射
T:
c*0l1,
f
(f(e1), f(e2), ,
f (en),
) (1,2, ,n, )
使得
x
(x1, x2, ,xn,
) c0,
有f ( x)xi i成立
i1
则T线性保距同构映射,因此c*0l1
9.设H是Hilbert空间,xn是H中正交集,则以下三条等价;
1)xn收敛,2)y H,(xn,y)收敛,3)||xn||2收敛
1取S1O(0, ) X,则T在S1上无界,因此x1S1,
使得||Tx1||1成立。
1
取S2O(0,2) X,则T在S2上无界,因此x2S2,
22
使得||Tx2||2成立。
类似地过程一直进行,直到
1
取SnO(0,n) X,则T在Sn上无界,因此xnSn,2n
使得||Txn||n成立。
因此,xnX,使得xn0,但||Txn||

泛函分析考试题型及答案

泛函分析考试题型及答案

泛函分析考试题型及答案一、选择题(每题2分,共20分)1. 设函数空间E为所有连续函数的集合,定义泛函F(u)=∫₀¹u(x)dx,则F(u)是线性的。

A. 正确B. 错误答案:A2. 每一个线性泛函都可以表示为一个内积。

A. 正确B. 错误答案:B3. 泛函分析中的“泛函”一词指的是函数的函数。

A. 正确B. 错误答案:A4. 弱收敛和强收敛是等价的。

A. 正确B. 错误答案:B5. 紧算子总是有界算子。

A. 正确B. 错误答案:A6. 每一个闭算子都是有界的。

A. 正确B. 错误答案:B7. 每一个有界线性算子都是紧算子。

A. 正确B. 错误答案:B8. 每一个线性泛函都可以用Riesz表示定理表示。

A. 正确B. 错误答案:A9. 每一个线性算子都可以分解为一个紧算子和一个有界算子的和。

A. 正确B. 错误答案:B10. 每一个线性算子都可以分解为一个有界算子和一个紧算子的和。

A. 正确B. 错误答案:A二、填空题(每题3分,共15分)1. 设X是赋范线性空间,如果对于X中的每一个序列{x_n},都有‖x_n‖→0当且仅当x_n→0,则称X是______空间。

答案:完备2. 设T是线性算子,如果T(X)是X的闭子空间,则称T是______算子。

答案:闭3. 设E是Hilbert空间,如果对于每一个x∈E,都有∥Tx∥≥∥x∥,则称T是______算子。

答案:正4. 设E是Banach空间,如果对于每一个序列{x_n}⊂E,都有∑‖x_n‖<∞当且仅当∑x_n收敛,则称E是______空间。

答案:自反5. 设E是线性空间,如果对于每一个序列{x_n}⊂E,都有∑x_n收敛当且仅当∑‖x_n‖<∞,则称E是______空间。

答案:序列完备三、简答题(每题10分,共30分)1. 简述Hahn-Banach定理的内容。

答案:Hahn-Banach定理指出,如果X是一个赋范线性空间,p是X 的一个线性子空间,f是p上的一个线性泛函,并且存在一个常数M使得对于所有x∈p,有|f(x)|≤M‖x‖,则存在X上的一个线性泛函F,使得F|p=f,并且对于所有x∈X,有|F(x)|≤M‖x‖。

泛函分析习题答案第九章习题答案

泛函分析习题答案第九章习题答案

|q
1/ q
i1


(i ) l p
( 3)
此 外 , 因 为(i ) l q, 故( i |i |q1 ) l p (其 中 i signi )


记x0 ( i | i |q1 ), 则 f ( x0 ) i |i |q1 i | i |q (4)
n
n
n
f ( x0 ) ici | ci | f x0 f , 故 | ci | f
( 2)
i 1
i 1
i 1
n
结 合(1)、(2)得 f | ci | (3) i 1
由 此 可 知 , 对 每 个RMn 上 的 有 界 线 性 泛 函 , 存在 唯 一 的(c1 ,, cn ) Rn,
n
上 的 一 个 有 界 线 性 泛 函, 记ci f (ei ), 则(ci ) Rn, 且 f ( x) ici i 1
n
n
x

(1 ,,n ),f
( x)

max
1 i n
|

i
|
| ci
i 1
|,

f | ci | i 1
(1)
又 当 f 0时 , 记 i signci , x0 (1 ,, n ), 则 x0 1, 且
令 x

x
f (x) f ( x )
x,

f
(
x
)

0, 故x

N,


x
x
(x, N )
所以 f (x) f ( x )
f (x) f ( x ) x

(完整word版)大连理工大学泛函分析复习题与答案

(完整word版)大连理工大学泛函分析复习题与答案

泛函分析期末复习题和答案(2005-2006年度)此为答案 复习题在后面1、 所有元素均为0的n ×n 矩阵2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x ,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。

子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。

3、 设L 是线性空间E 的子空间,x 0∈E\L ,则集合x 0+L={x 0+l ,l ∈L}称为E 中一个线性流形。

4、 设M 是线性空间E 中一个集合,如果对任何x ,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。

5、 设x ,y 是线性空间E 中的两个元素,d(x ,y)为其之间的距离,它必须满足以下条件:(1) 非负性:d(x ,y)>0,且d(x ,y)=0<―――>x=y (2) 对称性:d(x ,y)=d(y ,x)(3) 三角不等式:d(x ,y)≤d(x ,z)+d(y ,z) for every x ,y ,z ∈E n 维欧几里德空间常用距离定义:设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }Td 2(x ,y)=(21||niii x y=-∑)1/2d 1(x ,y)=1||ni i i x y =-∑d p (x ,y) = (1||np iii x y=-∑ )1/p d ∞(x ,y)=1max ||i i i nx y ≤≤-6、距离空间(x ,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)→0(n →∞),这时记作0lim nn xx -->∞=,或简单地记作x n →x 07、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数(3)||x+y||≤||x||+||y||,for every x ,y ∈E8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N ,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。

泛函分析考试题集与答案

泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令py x y x d ||),(-=,当p 为何值时,R 是度量空间,p 为何值时,R 是赋范空间。

是赋范空间。

解:若R 是度量空间,所以R z y x Î",,,必须有:),(),(),(z y d y x d z x d +£成立成立即pppz y y x z x ||||||-+-£-,取1,0,1-===z y x ,有2112=+£pp p ,所以,1£p若R 是赋范空间,px x x d ||||||)0,(==,所以R k x Î",, 必须有:||||||||||x k kx ×=成立,即ppx k kx ||||||=,1=p , 当1£p 时,若R 是度量空间,1=p 时,若R 是赋范空间。

是赋范空间。

2.若),(d X 是度量空间,则)1,min(1d d =,dd d +=12也是使X 成为度量空间。

为度量空间。

解:由于),(d X 是度量空间,所以X z y x Î",,有:有: 1)0),(³y x d ,因此0)1),,(min(),(1³=y x d y x d 和0),(1),(),(2³+=y x d y x d y x d 且当y x =时0),(=y x d ,于是0)1),,(min(),(1==y x d y x d 和0),(1),(),(2=+=y x d y x d y x d以及若以及若0)1),,(min(),(1==y x d y x d 或),(1),(),(2=+=y x d y x d y x d均有0),(=y x d 成立,于是y x =成立成立 2)),(),(y x d x y d =,因此),()1),,(min()1),,(min(),(11y x d y x d x y d x y d ===和),(),(1),(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+=3)),(),(),(z y d y x d z x d +£,因此,因此}1),,(),(min{)1),,(min(),(1z y d y x d z x d z x d +£= ),(),()1),,(min()1),,(min(11z y d y x d z y d y x d +=+£以及设x x x f +=1)(,0)1(1)(2>+=¢x x f ,所以)(x f 单增,单增,所以),(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++£+=),(),(1),(),(),(1),(z y d y x d z y d z y d y x d y x d +++++=),(),(),(1),(),(1),(22z y d y x d z y d z y d y x d y x d +=+++£综上所述)1,min(1d d =和d dd +=12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

泛函分析习题

泛函分析习题

第七章 度量空间和赋范线性空间复习题:1。

设(,)X d 为一度量空间,令0000(,){|,(,)},(,){|,(,)},U x x x X d x x S x x x X d x x εεεε=∈<=∈≤问0(,)U x ε的闭包是否等于0(,)S x ε?2.设[,]C a b ∞是区间[,]a b 上无限次可微函数的全体,定义()()()()01|()()|(,)max.21|()()|r r r r r a t b r f t g t d f g f t g t ∞≤≤=-=+-∑ 证明[,]C a b ∞按(,)d f g 成度量空间.3。

设B 是度量空间X 中闭集,证明必有一列开集12,,,,n O O O 包含B ,而且1.n n O B ∞==4.设(,)d x y 为空间X 上的距离,证明(,)(,)1(,)d x y d x y d x y =+也是X 上的距离.5。

证明点列{}n f 按题2中距离收敛于[,]f C a b ∞∈的充要条件为n f 的各阶导数在[,]a b 上一致收敛于f的各阶导数.6.设[,]B a b ⊂,证明度量空间[,]C a b 中的集 {|t , (t)=0}fB f ∈当时为[,]C a b 中的闭集,而集 {||()|}(0)A ft B f t a a =∈<>当时,为开集的充要条件是B 为闭集。

7。

设E 及F 是度量空间中两个集,如果(,)0d E F >,证明必有不相交开集O 及G 分别包含E 及F 。

8.设[,]B a b 表示[,]a b 上实有界函数全体,对[,]B a b 中任意两元素,[,]f g B a b ∈,规定距离为(,)sup |()()|.a t bd f g f t g t ≤≤=-证明[,]B a b 不是可分区间.9.设X 是可分距离空间,f 为X 的一个开覆盖,即f 是一族开集,使得对每个x X∈,有f 中开集O ,使x O ∈,证明必可从f 中选出可数个集组成X 的一个覆盖. 10。

泛函分析期末试题及答案

泛函分析期末试题及答案一、选择题1. 下列哪个不是泛函分析的主要研究对象?A. 函数空间B. 向量空间C. 线性映射D. 点集答案:D2. 泛函是指将一个向量空间的元素映射到一个标量的函数。

以下哪个选项是泛函的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶空间答案:C3. 在泛函分析中,范数是一种度量向量空间中向量大小的方法。

以下哪个选项是范数的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶范数答案:B4. 下列哪个不是泛函分析中的基本定理?A. 嵌入定理B. 开铃定理C. Hahn-Banach定理D. Banach-Steinhaus定理答案:B5. 泛函分析中的内积是指满足一定条件的映射。

以下哪个选项是内积的定义?A. 函数空间B. 向量空间C. 线性映射D. 内积空间答案:D二、填空题1. 完成下列范数的定义:范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。

2. 填写完整的Hahn-Banach定理的表述:设X是一个实或复数的线性空间,Y是X的一个线性子空间,f是定义在Y上的线性泛函,对于所有的y∈Y,有f(y) ≤ p(y),其中p是X上的一个次线性泛函,且满足p(y) ≤ p(x)对所有的x∈X成立,则存在一个定义在整个X上的线性泛函F,满足F(x) ≤ p(x)对所有的x∈X成立,并且在Y上,F和f的限制是相等的。

三、计算题1. 对于给定的函数空间C[0,1],计算函数f(x) = x^2在C[0,1]上的范数。

解答:根据范数的定义,范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。

(完整word版)泛函分析试卷

泛函分析期末考试试卷(总分100分) 一、选择题(每个3分,共15分)1、设X 是赋范线性空间,X y x ∈,,T 是X 到X 中的压缩映射,则下列哪个式子成立( ).A .10<<-≤-αα, y x Ty Tx B.1≥-≤-αα, y x Ty Tx C.10<<-≥-αα, y x Ty Tx D.1≥-≥-αα, y x Ty Tx 2、设X 是线性空间,X y x ∈,,实数x 称为x 的范数,下列哪个条件不是应满足的条件:( ).A. 0等价于0且,0==≥x x xB.()数复为任意实,αααx x =C. y x y x +≤+D. y x xy +≤ 3、下列关于度量空间中的点列的说法哪个是错误的( ). A .收敛点列的极限是唯一的 B. 基本点列是收敛点列 C .基本点列是有界点列 D.收敛点列是有界点列 4、巴拿赫空间X 的子集空间Y 为完备的充要条件是( ). A .集X 是开的 B.集Y 是开的 C.集X 是闭的 D.集Y 是闭的5、设(1)p l p <<+∞的共轭空间为q l ,则有11p q+的值为( ).A. 1-B.12 C. 1 D. 12- 二、填空题(每个3分,共15分)1、度量空间中的每一个收敛点列都是( )。

2、任何赋范线性空间的共轭空间是( )。

3、1l 的共轭空间是( )。

4、设X按内积空间<x,y>成为内积空间,则对于X中任意向量x,y 成立不等式()当且仅当x与y线性相关时不等式等号成立。

5、设T为复希尔伯特空间X上有界线性算子,则T为自伴算子的充要条件是()。

三、判断题(每个3分,共15分)1、设X是线性赋范空间,X中的单位球是列紧集,则X必为有限维。

( )2、距离空间中的列紧集都是可分的。

( )3、若范数满足平行四边形法则,范数可以诱导内积。

( )4、任何一个Hilbert空间都有正交基。

泛函分析试题及答案

泛函分析试题及答案一、选择题1. 在泛函分析中,以下哪个概念描述了一个函数对于输入变量的敏感程度?A. 泛函B. 导数C. 凸函数D. 可测函数答案:B. 导数2. 设X和Y是两个Banach空间,f:X→Y是一个线性算子。

以下哪个条件可以保证f是有界线性算子?A. f是可逆的B. f是连续的C. f是紧致的D. f是自共轭的答案:B. f是连续的3. 在泛函分析中,以下哪个概念描述了一个函数在每个点上的局部模式与全局模式之间的一致性?A. 可微性B. 凸性C. 全纯性D. 一致连续性答案:B. 凸性4. 设X和Y是两个赋范空间,f:X→Y是一个线性算子。

以下哪个条件可以保证f是有界线性算子?A. f是单射且存在常数C>0,使得对于所有x∈X都有||f(x)|| ≤C||x||B. 对于每个有界集A ⊂ X,f(A)是有界集C. f是连续的D. f是满射答案:A. f是单射且存在常数C>0,使得对于所有x∈X都有||f(x)|| ≤ C||x||二、填空题1. 在Hilbert空间中,内积运算满足线性性和_____________性。

答案:共轭对称性2. 设X是一个有界完备度量空间,那么X是一个____________空间。

答案:Banach空间3. 在泛函分析中,将一个函数的导数定义为其_____________。

答案:弱导数4. 设X是一个线性空间,D是X上的一个有界线性算子。

如果对于所有x和y都有⟨Dx, y⟩ = ⟨x, Dy⟩,那么D被称为______________。

答案:自伴算子三、解答题1. 请简要说明什么是范数,并给出一些范数的例子。

范数是定义在一个线性空间上的一种函数,用于衡量该空间中的向量的大小。

它满足以下三个性质:- 非负性:对于任意向量x,其范数必须大于等于0,即||x|| ≥ 0,并且当且仅当x为零向量时,范数等于0。

- 齐次性:对于任意向量x和任意实数α,有||αx|| = |α| ||x||,其中|α|表示α的绝对值。

泛函分析习题及参考答案




ξi( n ) < ε p 对任何自然数 n 成立。
1 p
p
p⎞ ⎛ ∞ (n) (n) 证明:必要性证明,由 d ( xn , x) = ⎜ ∑ ξi − ξi ⎟ → 0 可知, ξi → ξi , i = 1, 2, ⎝ i =1 ⎠

由 x = (ξ1 ,

, ξi , ) ∈ l p 可知, ∀ε > 0 ,存在 N1 > 0 ,使得
1 3
1 3
1 1 1 ⎧ ⎫ O( x, ) ∩ O( y, ) = Φ ,从而 ⎨O( x, ) x ∈ M ⎬ 是一族互不相交的球,其总数是不可数的。 3 3 3 ⎩ ⎭
(或:由 ∪O 因此 {y n }至少也有不可数个,这与 {y n }是可数的相矛盾。 (yn , ) ⊃l ⊃M 以

1 3
p p
En
∫x
n
பைடு நூலகம்
− x dt +
p
Fn
∫x
n
− x dt 。此时,
p
1 1 ⎡ ⎤ p p p p p p x x dt ( x dt ) ( x dt ) − ≤ + ⎢ ⎥ , ∫ x n − x dt < (b − a ) ⋅ ε 。 n n ∫ ∫ ∫ ⎢ En ⎥ Fn En En ⎣ ⎦
依测度收敛于 x(t ) 。
, 令n → ∞, 可得 m( E ( x n − x ≥ σ ) → 0 。 即 x n (t )
由 x(t ) 的积分绝对连续性可知,对任何 ε > 0 ,存在 δ 1 > 0 ,使得 e ⊂ E ,me < δ 1 时,
( ∫ x(t ) dt ) <
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泛函分析试题九
一、叙述题(每小题10分,共20分)
1. 叙述赋范线性空间的定义.
2. 证明:如果X 是一个赋范线性空间,则X 范数||||⋅作为X 上的一个泛函是连续的.
二. 证明题 (每小题15分,共60分)
1. 设X 是距离空间, ρ是其上的距离. 令X A ⊂非空,令),(inf )(y x x f A y ρ∈= )(X y ∈. 证明)(x f 是X 上的连续函数.
2. 设H 是内积空间, H y x ∈,. 如果对任何数α, 有||||||||x y x ≥+α, 证明:y x ⊥.
3.设E 是赋范线性空间,E K ⊂为紧集,K E x \∈,证明:存在K 中的元素y ,使得z x y x K
z -=-∈inf ; 4. 设E 是Banach 空间,点列E x n ⊂}{满足∑∞
=∞<=1n n M x ,其中0>M 为常数,
证明:存在E x ∈,使得∑∞
==1n n x x 且M x ≤.
三. 判断分析题 (20分)
设X 为赋范线性空间,X x ∈0. 如果对任意的*X f ∈(*X 为X 的对偶空间),都有0)(0=x f . 问:是否有θ=0x ?要给出理由.。

相关文档
最新文档