泛函分析试题一
泛函分析基础试卷参考答案

又对en{0,, 0, 1, 0,, }X, || en||1,
|| T ||sup|| x ||1|| T x |||| T en|||| {0,, 0, an, 0,} || = | an|(5分)
所以|| T ||supn| an|M.
所以|| T ||M.(3分)
所以2A x, y0x, yH
所以A x0xH
所以A0.(5分)
4.证明无穷维赋范线性空间X的共轭空间X '也是无穷空间.
证设{ x1, x2,}是X中线性无关向量,
由Hnha-Banach定理
存在f1X ', f1(x1)0,
存在f2X ', f2(x2)0, f2(x1)0
存在f3X ', f3(x3)0, f3(x1)f3(x2)0
所以(T), (5分)
对[0, 1],定义线性算子T : XX,对xC [0, 1]
(T x) (t) x (t)t[0, 1]
由|| T x ||maxt[ 0, 1]| x (t) |
maxt[ 0, 1]| x (t) |
|| x ||
所以T有界.且
T (AI)(AI) TI
所以(A),
所以(A)[0, 1]. (5分)
令SB1A1B (XX),则
S TB1A1ABI, A B B1A1I (2分)
所以ST1,所以T是正则算子. (1分)
二.以下各题每题15分,共75分
1.设X是度量空间, {xn}是X中Cauchy列,证明若存在{xn}的收敛子列{xn k},则{xn}收敛.
证设xX, xn kx (k)
对任何> 0,存在K, k > K时,
泛函分析考试题型及答案

泛函分析考试题型及答案一、选择题(每题2分,共20分)1. 设函数空间E为所有连续函数的集合,定义泛函F(u)=∫₀¹u(x)dx,则F(u)是线性的。
A. 正确B. 错误答案:A2. 每一个线性泛函都可以表示为一个内积。
A. 正确B. 错误答案:B3. 泛函分析中的“泛函”一词指的是函数的函数。
A. 正确B. 错误答案:A4. 弱收敛和强收敛是等价的。
A. 正确B. 错误答案:B5. 紧算子总是有界算子。
A. 正确B. 错误答案:A6. 每一个闭算子都是有界的。
A. 正确B. 错误答案:B7. 每一个有界线性算子都是紧算子。
A. 正确B. 错误答案:B8. 每一个线性泛函都可以用Riesz表示定理表示。
A. 正确B. 错误答案:A9. 每一个线性算子都可以分解为一个紧算子和一个有界算子的和。
A. 正确B. 错误答案:B10. 每一个线性算子都可以分解为一个有界算子和一个紧算子的和。
A. 正确B. 错误答案:A二、填空题(每题3分,共15分)1. 设X是赋范线性空间,如果对于X中的每一个序列{x_n},都有‖x_n‖→0当且仅当x_n→0,则称X是______空间。
答案:完备2. 设T是线性算子,如果T(X)是X的闭子空间,则称T是______算子。
答案:闭3. 设E是Hilbert空间,如果对于每一个x∈E,都有∥Tx∥≥∥x∥,则称T是______算子。
答案:正4. 设E是Banach空间,如果对于每一个序列{x_n}⊂E,都有∑‖x_n‖<∞当且仅当∑x_n收敛,则称E是______空间。
答案:自反5. 设E是线性空间,如果对于每一个序列{x_n}⊂E,都有∑x_n收敛当且仅当∑‖x_n‖<∞,则称E是______空间。
答案:序列完备三、简答题(每题10分,共30分)1. 简述Hahn-Banach定理的内容。
答案:Hahn-Banach定理指出,如果X是一个赋范线性空间,p是X 的一个线性子空间,f是p上的一个线性泛函,并且存在一个常数M使得对于所有x∈p,有|f(x)|≤M‖x‖,则存在X上的一个线性泛函F,使得F|p=f,并且对于所有x∈X,有|F(x)|≤M‖x‖。
泛函分析期末试题及答案

泛函分析期末试题及答案一、选择题1. 下列哪个不是泛函分析的主要研究对象?A. 函数空间B. 向量空间C. 线性映射D. 点集答案:D2. 泛函是指将一个向量空间的元素映射到一个标量的函数。
以下哪个选项是泛函的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶空间答案:C3. 在泛函分析中,范数是一种度量向量空间中向量大小的方法。
以下哪个选项是范数的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶范数答案:B4. 下列哪个不是泛函分析中的基本定理?A. 嵌入定理B. 开铃定理C. Hahn-Banach定理D. Banach-Steinhaus定理答案:B5. 泛函分析中的内积是指满足一定条件的映射。
以下哪个选项是内积的定义?A. 函数空间B. 向量空间C. 线性映射D. 内积空间答案:D二、填空题1. 完成下列范数的定义:范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。
2. 填写完整的Hahn-Banach定理的表述:设X是一个实或复数的线性空间,Y是X的一个线性子空间,f是定义在Y上的线性泛函,对于所有的y∈Y,有f(y) ≤ p(y),其中p是X上的一个次线性泛函,且满足p(y) ≤ p(x)对所有的x∈X成立,则存在一个定义在整个X上的线性泛函F,满足F(x) ≤ p(x)对所有的x∈X成立,并且在Y上,F和f的限制是相等的。
三、计算题1. 对于给定的函数空间C[0,1],计算函数f(x) = x^2在C[0,1]上的范数。
解答:根据范数的定义,范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。
应用泛函分析习题1

n k =1
27. 设 e1 , e2 ," en 是 n 维线性空间 R 的一个基, ∀ x = 现 在 , 对 于 给 定 的 a=
n
∑ ξk ek ∈ R n ,规定 x 的范数 || x ||= ∑ ξk 。
k =1
n
∑a e
k =1
n
k k
∈ R n ( ak ∈ R ) , 在 R n 定 义 泛 函
{
}
1 , ∀x ∈ S 求证: x
Tx − Ty < x − y ,对任意的 x, y ∈ S ,但 T 在 S 上没有不动点。
12. 试在 l 空间中给出一个无限维线性子空间 M ,但 M ≠ l . 13. 设 M 与 N 是 线 性 空 间 X 中 两 个 线 性 子 空 间 , x, y ∈ X 。 证 明 :
令 d ∞ ( x, y ) = max | ξi − ηi | 。证明 ( X , d ∞ ) 为一个完备的度量空间。 请给 X × Y 定义两 3. 设 X , Y 为两个度量空间,X × Y = {( x, y ) | x ∈ X , y ∈ Y } 为 X , Y 的 Dicard 积。 种不同的度量。 4. 试证明映射
{
}
∑ ( x, e )( y, e ), ∀x, y ∈ H 。
k =1 k k
∞
。求证:集 26. 设 S = ek ∈ H k ∈ N 是 内 积 空 间 H 中 的 正 交 规 范 系 集 , m 为 正 整 数 ,
Bm = ek ∈ S x < m ( x, ek )
{
{
}
2
2
} 中至多含有 m −1 个元素。
n =−∞
(完整word版)理工大泛函分析复习题

一、(10分)设(,)d x y 为空间X 上的距离。
证明(,)(,)1(,)d x y d x y d x y =+ 也是X 上的距离。
1、 求证 为 空间。
(其中 为 空间, 为 空间)2、 S 是由一切序列 组成的集合, 在S 中定义距离为3、 , 求证S 是一个完备的距离空间。
4、 Hilbert 空间X 中的正交投影算子为线性有界算子。
5、 附加题开映射定理( ) 设 都是 空间, 若 是一个满射, 则 是开映射。
Hahn —Banach 延拓定理( ) 设 是 空间, 是 的线性子空间, 是定义在 上的有界线性泛函, 则在 上必有有界线性泛函 满足:()()()()()()()000012f x f x x X f f =∀∈=延拓条件;保范条件,其中00f 表示0f 在0X 上的范数。
闭图像定理( ) 设 都是 空间, 若 是 的闭线性算子, 并且 是闭的, 则 是连续的。
共鸣定理( ) 设 是 空间, 是 空间, 如果, 那么存在常数 , 使得()A M A W ≤∀∈。
五、(10分)在 上定义内积:(1)如果21(),6f x x x =-+求||||f ; (2)证明任一函数()g x a bx =+都正交于21()6f x x x =-+。
六、(10分)设 为Hilbert 空间 的闭子空间, 证明对每个 必存在唯一的 有0inf y Mx x x y ∈-=- 七、(15分)设 , 求证: 。
八、(15分)简答题1.试说明 与 中函数的差异;一、2.泛函分析也称无穷维分析, 为什么要研究无穷维分析, 试举例说明;3.Hilbert 空间是最接近有限维Euclid 空间的空间,请做简要说明。
二、在 上定义内积 ,若记 为 中奇函数全体, 为 中偶函数全体, 求证: 且。
三、设 为内积空间 中的一个稠密子集, 且 , 证明 。
在 中赋予距离 问 是完备空间吗? 为什么?设 若 是从 的算子, 计算 若 是从 的算子再求 。
泛函分析答案

泛函分析题1_3列紧集p191.3.1 在完备的度量空间中,求证:为了子集A是列紧的,其充分必要条件是对∀ε > 0,存在A的列紧的ε网.证明:(1) 若子集A是列紧的,由Hausdorff定理,∀ε > 0,存在A的有限ε网N.而有限集是列紧的,故存在A的列紧的ε网N.(2) 若∀ε > 0,存在A的列紧的ε/2网B.因B列紧,由Hausdorff定理,存在B的有限ε/2网C.因C ⊆B ⊆A,故C为A的有限ε网.因空间是完备的,再用Hausdorff定理,知A是列紧的.1.3.2 在度量空间中,求证:紧集上的连续函数必是有界的,并且能达到它的上、下确界.证明:设(X, ρ)是度量空间,D是紧子集,f : D→ 是连续函数.(1) 若f无上界,则∀n∈ +,存在x n∈D,使得f (x n) > 1/n.因D是紧集,故D是自列紧的.所以{x n}存在收敛子列x n(k) →x0∈D (k→∞).由f的连续性,f (x n(k))→f (x0) (k→∞).但由f (x n) > 1/n知f (x n)→ +∞(n→∞),所以f (x n(k))→ +∞ (k→∞),矛盾.故f有上界.同理,故f有下界.(2) 设M = sup x∈D f(x),则∀n∈ +,存在y n∈D,使得f (y n) > M- 1/n.{y n}存在子列y n(k) →y0∈D (k→∞).因此f ( y0 ) ≥M.而根据M的定义,又有f ( y0 ) ≤M.所以f ( y0 ) = M.因此f能达到它的上确界.同理,f能达到它的下确界.1.3.3 在度量空间中,求证:完全有界的集合是有界的,并通过考虑l 2的子集E = {e k }k≥ 1,其中e k = { 0, 0, ..., 1, 0, ... } (只是第k个坐标为1,其余都是0 ),来说明一个集合可以是有界的但不完全有界的.证明:(1) 若A是度量空间(X, ρ)中的完全有界集.则存在A的有限1-网N = { x0, x1, x2, ..., x n }.令R = ∑1 ≤j≤nρ(x0, x j) + 1.则∀x∈A,存在某个j使得0 ≤j≤n,且ρ(x, x j) < 1.因此,ρ(x, x0) ≤ρ(x, x j) + ρ(x j, x0) ≤ 1 + ∑1 ≤j≤nρ(x0, x j) = R.所以A是度量空间(X, ρ)中的有界集.(2) 注意到ρ(e k , e j) = 21/2 ( ∀k ≠ j ),故E中任意点列都不是Cauchy列.所以,E中任意点列都没有收敛子列(否则,该收敛子列就是Cauchy列,矛盾).因此,E不是列紧集.由l 2是完备的,以及Hausdorff定理,知E不是全有界集.但E显然是有界集.1.3.4 设(X, ρ)是度量空间,F1, F2是它的两个紧子集,求证:∃x i ∈F i( i = 1, 2),使得ρ(F1, F2) = ρ(x1, x2).其中ρ(F1, F2) = inf {ρ(x, y) | x∈F1, y∈F2 }证明:由ρ(F1, F2)的定义,∀n∈ +,∃x i(n)∈F i( i = 1, 2),使得ρ(x1(n), x2(n)) < ρ(F1, F2) + 1/n.因F1, F2紧,故不妨假设{x1(n)}, {x2(n)}都是收敛列.设它们的极限分别为x1, x2,则ρ(x1, x2) ≤ρ(F1, F2).因此ρ(F1, F2) = ρ(x1, x2).1.3.5 设M是C[a, b]中的有界集,求证集合{F(x) =⎰[a, x]f(t) dt | f∈M }是列紧集.证明:设A = {F(x) =⎰[a, x]f(t) dt | f∈M }.由M有界,故存在K > 0,使得∀f∈M,ρ( f, 0) ≤K.先证明A是一致有界的和等度连续的.∀F∈A,存在f∈M,使得F(x) =⎰[a, x]f(t) dt.由于ρ(F, 0) = max x∈[a, b] | F(x) | = max x∈[a, b] | ⎰[a, x]f(t) dt |≤ max x∈[a, b] | f(t) | · (b -a ) = ρ( f, 0) · (b -a ) ≤K (b -a ).故A是一致有界的.∀ε > 0,∀s, t∈[a, b],当| s-t| < ε/K时,∀F∈A,存在f∈M,使得F(x) =⎰[a, x]f(u) du.| F(s) -F(t) | = | ⎰[s, t]f(u) du | ≤ max u∈[a, b] | f(u) | · | s -t |= ρ( f, 0) · | s -t | ≤K · (ε/K) = ε.故A是等度连续的.由Arzela-Ascoli定理,A是列紧集.1.3.6 设E = {sin nt}n≥ 1,求证:E在C[0, π]中不是列紧的.证明:显然E是一致有界的.根据Arzela-Ascoli定理,我们只要证明E不是等度连续的即可.我们的想法是找一个E中的点列f n,以及[0, π]中的两个点列s n和t n,使得| s n -t n | → 0,但| f n(s n)-f n(t n)|不收敛于0.事实上,这是可以做到的,只要令f n (u) = sin (2n u),s n = (π/2)(1 + 1/(2n)),t n = (π/2)(1 - 1/(2n)).则s n + t n = π;s n -t n = π/(2n)→ 0(n→∞).因此,| f n(s n)-f n(t n)| = 2 | sin (2n s n) - sin (2n t n) |= 2 | sin (n (s n -t n)) cos (n (s n + t n)) |= 2 | sin (π/2) cos (n π) | = 2.所以,E不是等度连续的.进而,E在C[0, π]中不是列紧的.1.3.7 求证S空间的子集A是列紧的充要条件是:∀n∈ +,∃C n> 0,使得∀x = (ξ1, ξ2, ..., ξn, ...)∈A,都有| ξn | ≤C n( n = 1, 2, ...).证明:(⇐) 设x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... )是A中的点列.存在{x k}的子列{x1, k}使得其第1个坐标ξ1(1, k)收敛;存在{x1, k}的子列{x2, k}使得其第2个坐标ξ2(2, k)收敛;如此下去,得到一个{x k}的子列的序列,第( j +1)个子列是第j个子列的子列,且第j个子列的第j个坐标是收敛的.选取对角线构成的点列{x j, j},则{x j, j}是{x k}的子列,且每个坐标都收敛.根据习题1.2.1的证明可知,S空间的点列收敛的充要条件是坐标收敛.故{x j, j}是收敛点列.所以,A是列紧的.(⇒) 我们只要证明,∀n∈ +,A中的点的第n个坐标所构成的集合是有界集.若不然,设A中的点的第N个坐标所构成的集合是无界的.则存在A中的点列x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... ),使得| ξN(k) | > k.显然,{ ξN(k) }无收敛子列,故{ x k }也无收敛子列,这与A列紧相矛盾.这样就完成了必要性的证明.1.3.8 设(X, ρ)是度量空间,M是X中的列紧集,映射f : X →M满足ρ( f (x1), f (x2)) < ρ( x1, x2 )(∀x1, x2∈M, x1≠x2).求证:f在X中存在唯一的不动点.证明:(1) 首先证明cl(M)是紧集.为此只要证明cl(M)列紧即可.设{ x n }是cl(M)中的点列,则存在M中的点列{ y n }使得ρ( x n, y n) < 1/n.因M列紧,故{ y n }有收敛子列{ y n(k)},设y n(k) →u∈cl(M).显然{ x n(k)}也是收敛的,并且也收敛于u∈cl(M).所以cl(M)是自列紧的,因而是紧集.(2) 令g(x) = ρ( x, f (x)),则g是X上的连续函数.事实上,由ρ( f (x1), f (x2)) < ρ( x1, x2 )可知f : X →M是连续的,因而g也连续.由习题1.3.2知存在x0∈cl(M),使得g(x0) = inf {ρ( x, f (x)) | x∈cl(M) }.(3) 若g(x0) > 0,则ρ( x0, f (x0)) > 0,即x0≠f (x0).故ρ( x0, f (x0)) = g(x0) ≤g( f (x0)) = ρ( f (x0), f ( f (x0))) < ρ( x0, f (x0)),矛盾.所以,必有g(x0) = 0,即ρ( x0, f (x0)) = 0,因此x0就是f的不动点.1.3.9 设(M, ρ)是一个紧距离空间,又E⊆C(M),E中的函数一致有界并且满足下列的Hölder条件:| x(t1) -x(t2) | ≤Cρ(t1, t2)α(∀x∈E,∀t1, t2∈M ),其中0 < α≤ 1,C > 0.求证:E在C(M)中是列紧集.证明:由Hölder条件易知E是等度连续的.又E中的函数一致有界,由Arzela-Ascoli定理知E是C(M)中的列紧集.[第3节完] 泛函分析题1_4线性赋范空间p391.4.1 在2维空间 2中,对每一点z = (x, y),令|| z ||1 = | x | + | y |;|| z ||2 = ( x 2 + y 2 )1/2;|| z ||3 = max(| x |, | y |);|| z ||4 = ( x 4 + y 4 )1/4;(1) 求证|| · ||i( i = 1, 2, 3, 4 )都是 2的范数.(2) 画出( 2, || · ||i )( i = 1, 2, 3, 4 )各空间中单位球面图形.(3) 在 2中取定三点O = (0, 0),A = (1, 0),B= (0, 1).试在上述四种不同的范数下求出∆OAB三边的长度.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.设z = (x, y), w = (u, v)∈ 2,s = z + w= (x + u, y + v ),|| z||1 + || w||1 = (| x | + | y |) + (| u | + | v |) = (| x | + | u |) + (| y | + | v |)≥ | x + u | + | y + v | = || z+ w||1.( || z||2 + || w||2 )2 = ( ( x 2 + y 2 )1/2 + ( u 2 + v 2 )1/2 )2= ( x 2 + y 2 ) + ( u 2 + v 2 ) + 2(( x 2 + y 2 )( u 2 + v 2 ))1/2≥ ( x 2 + u 2 ) + ( y 2 + v 2 ) + 2( x u+ y v )= ( x + u )2 + ( y + v)2 = ( || z+ w||2 )2.故|| z||2 + || w||2 ≥ || z+ w||2.|| z||3 + || w||3 = max(| x |, | y |) + max(| u |, | v |)≥ max(| x | + | u |, | y | + | v |) ≥ max(| x + u |, | y + v |) = || z+ w||3.|| ·||4我没辙了,没找到简单的办法验证,权且用我们以前学的Minkowski不等式(离散的情况,用Hölder不等式的离散情况来证明),可直接得到.(2) 不画图了,大家自己画吧.(3) OA = (1, 0),OB = (0, 1),AB = (- 1, 1),直接计算它们的范数:|| OA||1 = 1,|| OB||1 = 1,|| AB||1 = 2;|| OA||2 = 1,|| OB||2 = 1,|| AB||2 = 21/2;|| OA||3 = 1,|| OB||3 = 1,|| AB||3 = 1;|| OA||4 = 1,|| OB||4 = 1,|| AB||4 = 21/4.1.4.2 设c[0, 1]表示(0, 1]上连续且有界的函数x(t)全体.∀x∈c[0, 1],令|| x || = sup{| x(t) | | 0 < t≤ 1}.求证:(1) || ·||是c[0, 1]空间上的范数.(2) l∞与c[0, 1]的一个子空间是等距同构的.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.|| x || = sup{| x(t) | | 0 < t≤ 1}.|| x || + || y || = sup{| x(t) | | 0 < t≤ 1} + sup{| y(t) | | 0 < t≤ 1}≥ sup{| x(t) + y(t) | 0 < t≤ 1} = || x + y ||.所以|| ·||是c[0, 1]空间上的范数.(2) 任意取定(0, 1]中的一个单调递减列{a k },满足(i) a1 = 1;(ii) lim k→∞a k = 0.显然,在每个[a k + 1, a k]上为线性函数的f∈c[0, 1]是存在的.设X = { f∈c[0, 1] | f在每个[a k + 1, a k]上为线性函数}.容易验证X是c[0, 1]的子空间.定义ϕ : X →l∞,f #ϕ ( f ) = ( f (a1), f (a2), ...).则ϕ : X →l∞是线性双射,且|| ϕ ( f ) ||∞= sup k ≥ 1 | f (a k) | = sup0 < t≤ 1 { | f (t ) | } = || f ||.所以,ϕ : X →l∞是等距同构.因此,l∞与c[0, 1]的一个子空间是等距同构的.1.4.3 在C1[a, b]中,令|| f ||1 = (⎰[a, b] ( | f(x) |2 + | f’(x) |2) dx )1/2 (∀f∈C1[a, b]).(1) 求证:|| · ||1是C1[a, b]上的范数.(2) 问(C1[a, b], || · ||1)是否完备?证明:(1) 正定性和齐次性都是明显的,和前面的习题一样,只验证三角不等式.我们先来证明一个比较一般的结果:若线性空间X上的非负实值函数p, q都满足三角不等式:p(x) + p(y) ≥p(x +y),q(x) + q(y) ≥q(x +y),∀x, y∈X;则函数h = ( p2 + q2 )1/2也满足三角不等式.事实上,∀x, y∈X,由Minkowski不等式,我们有h(x) + h(y) = ( p(x)2 + q(x)2 )1/2 + ( p(y)2 + q(y)2 )1/2≥ (( p(x)+ p(y))2 + ( q(x) + q(y))2 )1/2 ≥ ( p(x + y)2 + q(x + y)2 )1/2 = h(x + y).回到本题:若令p( f ) = (⎰[a, b] | f(x) |2dx )1/2,q( f ) = (⎰[a, b] | f’(x) |2dx )1/2,则( p( f ) + p( g ))2 = ((⎰[a, b] | f(x) |2dx )1/2 + (⎰[a, b] | g(x) |2dx )1/2)2= ⎰[a, b] | f(x) |2dx + 2(⎰[a, b] | f(x) |2dx )1/2 · (⎰[a, b] | g(x)|2dx )1/2 + ⎰[a, b] | g(x) |2dx≥⎰[a, b] | f(x)|2dx + 2 ⎰[a, b] | f(x) | · | g(x)| dx + ⎰[a, b] | g(x)|2dx= ⎰[a, b] ( | f(x) | + | g(x)| )2dx ≥⎰[a, b] ( | f(x) + g(x)| )2dx = ( p( f + g ))2.所以有p( f ) + p( g ) ≥p( f + g ).特别地,p( f’ ) + p( g’ ) ≥p( f’ + g’ ),即q( f ) + q( g ) ≥q( f + g ).因此,线性空间C1[a, b]上的非负实值函数p, q都满足三角不等式.根据开始证明的结论,|| · ||1也满足三角不等式.所以,|| · ||1是C1[a, b]上的范数.(2) 在C1[- 1, 1]中,令f n(x) = (x2 + 1/n2 )1/2 ( ∀x∈[- 1, 1] ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ∀x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ∀x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).故在L2[- 1, 1]中,f n(x) → | x |,f’n(x) → 2sign( x ).因此,它们都是L2[- 1, 1]中的基本列,故⎰[- 1, 1] | f n(x) -f m(x) |2 dx → 0(m, n→∞);⎰[- 1, 1] | f’n(x) -f m’(x) |2 dx → 0(m, n→∞).故|| f n-f m ||1 = (⎰[- 1, 1] ( | f n(x) -f m(x) |2 + | f’n(x) -f m’(x) |2 ) dx )1/2→ 0 (m, n→∞).即{ f n }是C1[- 1, 1]中的基本列.下面我们证明{ f n }不是C1[- 1, 1]中的收敛列.若不然,设{ f n }在C1[- 1, 1]中的收敛于f∈C1[- 1, 1].因|| f n-f ||1 = (⎰[- 1, 1] ( | f n(x) -f(x) |2 + | f’n(x) -f’(x) |2 ) dx )1/2≥ (⎰[- 1, 1] | f n(x) -f(x) |2dx )1/2,故在L2[- 1, 1]中,f n(x) →f.而在前面已说明L2[- 1, 1]中,f n(x) → | x |;由L2[- 1, 1]中极限的唯一性以及f的连续性,知f(x) = | x |.这样就得到f∉C1[- 1, 1],矛盾.所以,{ f n }不是C1[- 1, 1]中的收敛列.这说明C1[- 1, 1]不是完备的.对一般的C1[a, b],只要令f n(x) = (x - (a + b )/2)2 + 1/n2 )1/2( ∀x∈[a, b] )就可以做同样的讨论,就可以证明C1[a, b]不是完备空间.1.4.4 在C[0, 1]中,对每个f∈C[0, 1],令|| f ||1 = (⎰[0, 1] | f(x) |2dx )1/2,|| f ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2.求证:|| · ||1和|| · ||2是C[0, 1]中的两个等价范数.证明:(1) 在习题1.4.3的证明中已经包含了|| · ||1是C[0, 1]中的范数的证明.下面我们证明|| · ||2是C[0, 1]中的范数,我们仍然只要验证三角不等式.|| f ||2 + || g ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 + (⎰[0, 1] ( 1 + x) | g(x) |2dx )1/2= || (1 + x)1/2f(x) ||1 + || (1 + x)1/2g(x) ||1≥ || (1 + x)1/2f(x) + (1 + x)1/2g(x) ||1= || (1 + x)1/2 ( f(x) + g(x) ) ||1≥ (⎰[0, 1] (1 + x) | f(x) + g(x) |2dx )1/2= || f + g ||2.所以,|| · ||2也是C[0, 1]中的范数.(2) 我们来证明两个范数的等价性.∀f∈C[0, 1]|| f ||1 = (⎰[0, 1] | f(x) |2dx )1/2 ≤ (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 = || f ||2,|| f ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 ≤ 2 (⎰[0, 1] | f(x) |2dx )1/2 = 2 || f ||1.因此两个范数等价.1.4.5 设BC[0, ∞)表示[0, ∞)上连续且有界的函数f(x)全体,对每个f ∈BC[0, ∞)及a > 0,定义|| f ||a = (⎰[0, ∞) e-ax | f(x) |2dx )1/2.(1) 求证|| ·||a是BC[0, ∞)上的范数.(2) 若a, b > 0,a≠b,求证|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.证明:(1) 依然只验证三角不等式.|| f ||a + || g ||a = (⎰[0, ∞) e-ax | f(x) |2dx )1/2 + (⎰[0, ∞) e-ax | g(x) |2dx )1/2= || e-ax/2f(x)||L2 + || e-ax/2g(x)||L2≤ || e-ax/2f(x)+ e-ax/2g(x)||L2= || e-ax/2 ( f(x)+ g(x))||L2= (⎰[0, ∞) e-ax | f(x)+ g(x) |2dx )1/2= || f + g ||a,所以|| ·||a是BC[0, ∞)上的范数.(2) 设f n(x)为[n, +∞)上的特征函数.则f n∈BC[0, ∞),且|| f n||a = (⎰[0, ∞) e-ax | f n(x) |2dx )1/2 = (⎰[n, ∞) e-ax dx )1/2 = ((1/a)e-an)1/2.同理,|| f n||b = ((1/b)e-bn)1/2.故若a < b,则|| f n||a/|| f n||b = (b/a)1/2e-(b -a)n/2→ +∞ (n→+∞).因此|| ·||a与|| ·||b作为BC[0, ∞)上的范数是不等价的.1.4.6 设X1, X2是两个B*空间,x1∈X1和x2∈X2的序对(x1, x2)全体构成空间X = X1⨯X2,并赋予范数|| x || = max{ || x1 ||1, || x2 ||2 },其中x = (x1, x2),x1∈X1,x2∈X2,|| · ||1和|| ·||2分别是X1和X2的范数.求证:如果X1, X2是B空间,那么X也是B空间.证明:(1) 先验证|| · ||的三角不等式.设x = (x1, x2), y = (y1, y2)∈X1⨯X2,则|| x + y || = || (x1 + y1, x2 + y2) || = max{ || x1 + y1 ||1, || x2 + y2 ||2 }≤ max{ || x1 ||1 + || y1 ||1, || x2 ||2 + || y2 ||2 }≤ max{ || x1 ||1, || x2 ||2 } + max{ || y1 ||1, || y2 ||2 }= || (x1, x2) || + || (y1, y2) ||= || x || + || y ||,而|| · ||的正定性和齐次性是显然的,所以,|| · ||是X1⨯X2的范数.(2) 设X1, X2是B空间,我们来证明X也是B空间.设x(n) = (x1(n), x2(n))是X = X1⨯X2中的基本列,则|| x(n) -x(m) || = max{ || x1(n) -x1(m) ||1, || x2(n) -x2(m)||2 } ≥ || x1(n) -x1(m) ||1,故{x1(n)}是X1中的基本列,同理,{x2(n)}是X2中的基本列.因X1, X2是B空间,故{x1(n)}和{x2(n)}分别是X1, X2中的收敛列.设x1(n) →x1∈X1,x2(n) →x2∈X2,令x = (x1, x2).则|| x(n) -x || = max{ || x1(n) -x1 ||1, || x2(n) -x2 ||2 }≤ || x1(n) -x1 ||1 + || x2(n) -x2 ||2→ 0 (n→∞).所以,|| x(n) -x ||→ 0 (n→∞).即{ x(n) }为X = X1⨯X2中的收敛列.所以X = X1⨯X2也是B空间.1.4.7 设X是B*空间.求证:X是B空间,必须且只须对∀{x n}⊆X,∑n≥ 1 || x n || < +∞⇒∑n≥ 1x n 收敛.证明:(⇒) ∀{x n}⊆X,记S n = ∑1 ≤j≤n x j,B n = ∑1 ≤j≤n || x n ||,则|| S n + p-S n || = || ∑1 ≤j≤n + p x j -∑1 ≤j≤n x j ||= || ∑n +1 ≤j≤n + p x j ||≤∑n +1 ≤j≤n + p || x j ||= B n + p-B n → 0,(n→∞).故{ S n }为X中的Cauchy列.由X完备,故{ S n }为X中的收敛列,即∑n≥ 1x n 收敛.(⇐) 反证法.若(X, ρ)不完备,设(Y, d )为(X, ρ)的一个完备化.不妨设(X, ρ)是(Y, d )的子空间,则存在y∈Y \ X.因cl( X ) = Y,故∀n∈ +,存在x n∈X,使得d(x n, y) < 1/2n.则ρ(x n, x m) = d(x n, x m) ≤d(x n, y) + d(x m, y) ≤ 1/2n+ 1/2m → 0,因此{x n}是X中的Cauchy列,但不是收敛列.令z n = x n+1-x n,S n = ∑1 ≤j≤n z j;则z n, S n∈X.因|| z n || = || x n+1-x n || = ρ(x n+1, x n) ≤d(x n+1, y) + d(x n+1, y) ≤ 1/2n+1+ 1/2n < 1/2n - 1,故∑n≥ 1 || z n || < +∞.而S n = ∑1 ≤j≤n z j = ∑1 ≤j≤n ( x j+1-x j ) = x n+1-x1;故∑n≥ 1z n 在中不收敛.矛盾.1.4.8 记[a, b]上次数不超过n的多项式全体为 n.求证:∀f(x)∈C[a, b],存在P0(x)∈ n,使得max a ≤x≤b| f(x) –P0(x) | = min{ max a ≤x≤b| f(x) –P(x) | | P∈ n }.证明:注意到 n是B*空间C[a, b]中的n+1维子空间.{1, x, x2, ..., x n}是 n中的一个向量组,把它看成C[a, b]中的一个有限向量组.根据定理p35, 1.4.23,对任意∀f(x)∈C[a, b],存在最佳逼近系数{λ0, λ1, ..., λn},使得|| f(x) –∑0 ≤j≤n λj x j || = min{ || f(x) –∑0 ≤j≤n a j x j || | (a0, a1, ..., a n)∈ n+1}.令P0(x) = ∑0 ≤j≤n λj x j 就得到要证明的结论.1.4.9 在 2中,对∀x = (x1, x2)∈ 2,定义范数|| x || = max(| x1 |, | x2 |),并设|| x0–λ e1 ||.e1 = (1, 0),x0 = (0, 1).求a∈ 适合|| x0–a e1 || = minλ∈并问这样的a是否唯一?请对结果作出几何解释.解:g(λ) = || x0–λ e1 || = || (0, 1) –λ(1, 0)|| = || (–λ, 1)|| = max(| λ |, 1) ≥ 1,故g(λ) 当| λ| ≤ 1时取得最小值1.所以a = 0满足要求.显然满足要求的a不是唯一的.从几何上看就是某线段上的点到某定点的距离都是1.1.4.10 求证范数的严格凸性等价于下列条件:|| x + y || = || x || + || y || ( ∀x≠θ, y≠θ) ⇒x = c y ( c > 0).证明:(⇒) 设范数是严格凸的,若x, y ≠θ满足|| x + y || = || x || + || y ||,事实上,我们总有|| (x/|| x ||) || = || (y/|| y ||) || = 1.因x, y ≠θ,故|| x || + || y || > 0,所以|| x + y || ≠ 0.于是|| x ||/|| x + y || + || y ||/|| x + y || = 1.假若x/|| x || ≠y/|| y ||,由严格凸性,得到|| (|| x ||/|| x + y ||)(x/|| x ||) + (|| y ||/|| x + y ||)(y/|| y ||) || < 1,即|| (( x + y )/|| x + y ||) || < 1,矛盾.因此必然有x/|| x || = y/|| y ||,即x = (|| x ||/|| y ||) y.(⇐) 设∀x, y ≠θ,|| x + y || = || x || + || y ||蕴涵x = c y ( c > 0).下面证明范数是严格凸的.设x≠y,且|| x || = || y || = 1,又设α, β∈(0, 1),且α + β= 1.我们知道|| α x + β y || ≤ || α x || + || β y || = α || x || + β|| y || = α + β= 1.假若|| α x + β y || = 1,根据我们的条件,就得到α x = c (β y),其中c > 0.那么,就有|| α x || = || c (β y) ||,而|| x || = || y || = 1,所以α= c β;故x = y,这就与x≠y相矛盾.所以必然有|| α x + β y || < 1,即范数是严格凸的.1.4.11 设X是线性赋范空间,函数ϕ : X → 1称为凸的,如果不等式ϕ( λ x + (1 -λ) y ) ≤λϕ( x ) + (1 -λ)ϕ( y ) ( ∀ 0 ≤λ≤ 1)成立.求证凸函数的局部极小值必然是全空间的最小值.证明:设x0是凸函数ϕ的一个局部极小点.如果存在x∈X,使得ϕ( x ) < ϕ( x0),则∀ t ∈(0, 1),ϕ( t x + (1 -t ) x0) ≤t ϕ( x ) + (1 -t )ϕ( x0) < t ϕ( x0) + (1 -t )ϕ( x0) = ϕ( x0).而对x0的任意邻域U,都存在t ∈(0, 1),使得t x + (1 -t ) x0∈U.这就与x0是局部极小点相矛盾.因此∀x∈X,都有ϕ( x0) ≤ϕ( x ),即x0是ϕ的最小点.1.4.12 设(X, || · ||)是一线性赋范空间,M是X的有限维子空间,{e1, e2, ..., e n}是M的一组基,给定g∈X,引进函数F : n → 1.对∀c = (c1, c2, ..., c n)∈ n,规定F(c) = F(c1, c2, ..., c n) = || ∑1 ≤i≤n c i e i-g ||.(1) 求证F是一个凸函数;(2) 若F的最小值点是c = (c1, c2, ..., c n),求证f = ∑1 ≤i≤n c i e i给出g在M中的最佳逼近元.证明:(1) 设c = (c1, c2, ..., c n), d = (d1, d2, ..., d n)∈ n, λ∈[0, 1],则F(λ c + ( 1 -λ) d ) = || ∑1 ≤i≤n ( λ c i + ( 1 -λ) d i ) e i-g ||= || λ∑1 ≤i≤n c i e i + ( 1 -λ) ∑1 ≤i≤n d i e i- (λ g+ ( 1 -λ)g )||= || λ(∑1 ≤i≤n c i e i -g) + ( 1 -λ) ( ∑1 ≤i≤n d i e i-g )||≤λ|| ∑1 ≤i≤n c i e i -g || + ( 1 -λ) || ∑1 ≤i≤n d i e i-g ||= λ F(c)+ ( 1 -λ)F(d),故F是一个凸函数.(2) 因为{e1, e2, ..., e n}是M的一组基,故M中的每个元h都可表示为h = ∑1 ≤i≤n d i e i,其中d = (d1, d2, ..., d n)∈ n.因为F(c) ≤F(d),故|| f-g || = F(c) ≤F(d) = || h-g ||.那么f就是g在M中的最佳逼近元.1.4.13 设X是B*空间,X0是X的线性子空间,假定∃c∈(0, 1)使得∀y∈X,有inf { || y–x || | x ∈X0 } ≤c || y ||.求证:X0在X中稠密.证明:设y∈X,∀ε > 0,∃x1∈X0,s.t. || y–x1 || < c || y || + ε /4.∃x2∈X0,s.t. || (y–x1) –x2 || < c || y–x1 || + ε /8.∃x3∈X0,s.t. || (y–x1 –x2 ) –x3 || < c || y–x1 –x2 || + ε /16.如此下去,可得到一个X0中的点列{ x n },满足|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2(∀n∈ +).那么,我们可以用数学归纳法证明|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).当n = 1时,|| y–x1 || < c || y || + ε /4.结论成立.当n = 2时,|| (y–x1) –x2 || < c || y–x1 || + ε /8< c (c || y || + ε /4) + ε /8 < c 2 || y || + ε (1/4 + 1/8),结论成立.当n≥ 3时,若|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1)成立,则|| y–∑1 ≤j≤n +1x j|| < c || y–∑1 ≤j≤n x j|| + ε /2n + 2< c (c n || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n 1/2j + 1)) + ε /2n + 2< c n+1 || y || + ε (∑1 ≤j≤n+ 11/2j + 1)),因此结论也成立.由数学归纳法原理,∀n∈ +,|| y–∑1 ≤j≤n x j|| < c n || y || + ε (∑1 ≤j≤n 1/2j + 1).因为c∈(0, 1),故存在N∈ +,使得c N || y || < ε /2.令x = ∑1 ≤j≤N x j,则x∈X0.且|| y–x || < ε /2 + ε (∑1 ≤j≤N 1/2j + 1) < ε.所以,X0在X中稠密.[张峰同学的证明] 反证法.若不然,则cl(X0)是X的真闭线性子空间.用Riesz引理,存在y∈X,使得|| y || = 1,且inf { || y–x || | x ∈ cl(X0)} > c.故对此y∈X,有inf { || y–x || | x ∈X0 } > c || y ||,矛盾.1.4.14 设C0表示以0为极限的实数全体,并在C0中赋以范数|| x || = max n≥1| ξn |,( ∀x = (ξ1, ξ2, ..., ξn, ...)∈C0 ).又设M = {x = (ξ1, ξ2, ..., ξn, ...)∈C0 | ∑n ≥1 ξn/2n = 0}.(1) 求证:M是C0的闭线性子空间.(2) 设x0= (2, 0, 0, ...),求证:inf z ∈M || x0–z || = 1,但∀y∈M,有|| x0–y || > 1.证明:(1) 显然M ≠∅,容易直接验证M是C0的线性子空间.若x k = (ξ1(k), ξ2(k), ..., ξn(k), ...)为M中的点列,且x k→x = (ξ1, ξ2, ..., ξn, ...)∈C0.则∀ε > 0,存在N∈ +,使得∀k > N,|| x k -x || < ε.此时,∀n∈ +,有|ξn -ξn(k)| ≤ max n≥1| ξn -ξn(k) | = || x k -x || < ε.| ∑n ≥1 ξn/2n | = | ∑n ≥1 ξn/2n-∑n ≥1 ξn(k)/2n | = | ∑n ≥1 (ξn -ξn(k))/2n |≤∑n ≥1 |ξn -ξn(k)|/2n≤∑n ≥1 ε/2n = ε.所以,∑n ≥1 ξn/2n = 0,即x = (ξ1, ξ2, ..., ξn, ...)∈M.所以M是C0的闭线性子空间.(2) x0= (2, 0, 0, ...),∀z = (ξ1, ξ2, ..., ξn, ...)∈M,|| x0–z || = max{| 2 -ξ1 |, | ξ2 |, | ξ3 |, ... }.如果| 2 -ξ1 | > 1,则|| x0–z || > 1.如果| 2 -ξ1 | ≤ 1,则| ξ1 | ≥ 1,我们断言{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.否则,假若它们都不超1,因为ξn → 0 (n→∞),故它们不能全为1.由∑n ≥1 ξn/2n = 0知| ξ1 |/2 = | ∑n ≥2 ξn/2n | ≤∑n ≥2 | ξn | /2n < ∑n ≥2 1/2n = 1/2,这样得到| ξ1 | < 1,矛盾.故{| ξ2 |, | ξ3 |, ... }中至少有一个大于1者.因此也有|| x0–z || > 1.综上所述,但∀y∈M,有|| x0–y || > 1.由此,立即知道inf z ∈M || x0–z || ≥ 1.下面证明inf z ∈M || x0–z || ≤ 1.∀n∈ +,令z n= (1 - 1/2n, -1, -1, ..., -1, 0, 0, ...).( z n从第2个坐标开始有连续的n个-1,后面全部是0 ),则(1 - 1/2n)/2 - 1/4 - 1/8 - ... - 1/2n + 1 = 0,因此z n∈M.此时,|| x0–z n || = max{| 1 + 1/2n|, | 1/4|, | 1/8|, ... } = 1 + 1/2n.故inf z ∈M || x0–z || ≥ inf n || x0–z n || = inf n (1 + 1/2n ) = 1.所以,inf z ∈M || x0–z || = 1.1.4.15 设X是B*空间,M是X的有限维真子空间,求证:∃y∈X,|| y|| = 1,使得|| y–x || ≥ 1 ( ∀x ∈M ).证明:取定z∈X \ M,令Y = span{z} + M.记S = { y∈Y | || y || = 1 }.则M是Y的真闭子空间,而S是Y中的单位球面.由Riesz引理,∀n∈ +,存在y n∈S,使得d( y n, M ) ≥ 1 - 1/n.因为Y也是有限维的,故其中的单位球面为自列紧集.存在{y n}的收敛子列.不妨设y n(k) →y∈S.则d( y n(k), M ) ≥ 1 - 1/n(k),故有d( y, M ) ≥ 1.即|| y–x || ≥ 1 ( ∀x ∈M ).1.4.16 若f是定义在区间[0, 1]上的复值函数,定义ωδ( f ) = sup{| f (x) – f (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}.如果0< α≤ 1对应的Lipschitz空间Lipα,由满足|| f || = | f(0) | + supδ > 0{δ–αωδ( f )} < +∞的一切f组成,并且以|| f ||为模.又设lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0}.求证Lipα是B空间,而且lipα是Lipα的闭子空间.证明:(1) 显然,C1[0, 1]⊆Lipα,因此Lipα不空.对区间[0, 1]上的复值函数f, g,∀λ∈ ,我们有ωδ( f + g ) = sup{| f (x) + g (x) – f (y) – g (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}≤ sup{| f (x) – f (y) | + | g (x) – g (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}≤ωδ( f ) + ωδ( g ).ωδ( λ f ) = sup{|λ f (x) –λ f (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}= | λ| sup{| f (x) – f (y) | | ∀x, y∈[0, 1], | x–y | ≤δ}= | λ| ·ωδ( f ).若f, g∈Lipα,λ∈ ,则|| f + g || = | f(0) + g(0) | + supδ > 0{δ–αωδ( f + g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–α(ωδ( f ) + ωδ( g )) }= | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) + δ–αωδ( g ) }≤ | f(0) | + | g(0) | + supδ > 0{δ–αωδ( f ) }+ supδ > 0{ δ–αωδ( g ) }= || f || + || g || < +∞.|| λ f || = | λ f(0) | + supδ > 0{δ–αωδ( λ f )}= | λ| · | f(0) | + | λ| · supδ > 0{δ–αωδ( f )}= | λ| · || f || < +∞.因此,f + g, λ f∈Lipα,且上述两个不等式表明|| · ||有齐次性和三角不等式.显然,|| f || ≥ 0.当|| f || = 0时,| f(0) | + supδ > 0{δ–αωδ( f )} = 0,意味着f(0) = 0,且ωδ( f ) = 0(∀δ> 0).而ωδ( f ) = 0(∀δ> 0)则意味着f为常值.所以,f = 0.即|| · ||有正定性.综上所述,Lipα是B*空间.(2) 我们首先证明集合Lipα⊆C[0, 1].∀f∈Lipα,∀x, y∈[0, 1],x ≠y,记δ = | x -y |.则| f (x) – f (y) | ≤ωδ( f ).而δ–αωδ( f ) ≤ supδ > 0{δ–αωδ( f n-f m) } ≤ || f ||,所以,| f (x) – f (y) | ≤ || f || δα= || f || · | x -y |α,故f∈C[0, 1].我们再证明,∀f∈Lipα,|| f ||C≤ || f ||,其中|| ·||C是C[0, 1]范数.事实上,∀x∈[0, 1],| f (x) | ≤ | f (0) | + | f (x) – f (0) |,故|| f ||C = max x∈[0, 1] | f (x) | ≤ | f (0) | + max x∈[0, 1] | f (x) – f (0) |≤ | f (0) | + sup x∈(0, 1] | f (x) – f (0) |/| x |α≤ | f (0) | + sup x∈(0, 1] { δ–αωδ( f ) } ≤ || f ||.这说明,如果{ f n }是Lipα中的基本列,则它也必是C[0, 1]中的基本列.而C[0, 1]是完备的,故存在f∈C[0, 1],使得{ f n }一致收敛于f.而{ f n }作为Lipα中的基本列,有|| f n-f m || = | f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } → 0 (n, m→∞),因此∀ε > 0,∃N∈ +,使得∀n, m > N,有| f n(0) -f m(0) | + supδ > 0{δ–αωδ( f n-f m) } < ε.因此supδ > 0{δ–αωδ( f n-f m) } < ε.故∀δ > 0,ωδ( f n-f m) < εδα.即∀x, y∈[0, 1],| x -y | ≤δ,都有| ( f n(x) -f m(x)) - ( f n(y) -f m(y)) | < εδα.令m→∞,得到| ( f n(x) -f(x)) - ( f n(y) -f(y)) | ≤εδα.因此,sup {| ( f n(x) -f(x)) - ( f n(y) -f(y)) | | x, y∈[0, 1],| x -y | ≤δ}≤εδα.即∀δ > 0,ωδ( f n-f ) ≤εδα.故supδ > 0{δ–αωδ( f n-f ) } ≤ε.同样地,对不等式| f n(0) -f m(0) | < ε令m→∞,就得到| f n(0) -f(0) | ≤ε.所以,| f n(0) -f(0) | + supδ > 0{δ–αωδ( f n-f ) } ≤ 2ε.这说明f n-f∈Lipα.而f n∈Lipα,故f = ( f -f n ) + f n∈Lipα.而前面的式子也表明|| f -f n || ≤ 2ε.因此|| f n-f || → 0 (n→∞),即{ f n }为Lipα中的收敛列.所以,Lipα是Banach空间.(3) 记lipα = { f∈Lipα| lim δ→ 0 δ–αωδ( f ) = 0 }.∀f, g∈lipα,∀λ∈ ,我们有δ–αωδ( f + g ) ≤δ–α(ωδ( f ) + ωδ( g ) ) = δ–αωδ( f ) + δ–αωδ( g ) → 0 (δ→ 0).δ–αωδ( λ f ) = | λ| ·δ–αωδ( f ) → 0 (δ→ 0).故f + g, λ f∈lipα,因此,lipα是Lipα的线性子空间.设{ f n }是lipα中的序列,且f n→f∈Lipα(n→∞).则{ f n }一致收敛于f.∀ε > 0,存在N∈ +,使得|| f N →f || < ε /2.故有supδ > 0{δ–αωδ( f N-f ) } < ε /2.因为lim δ→ 0 δ–αωδ( f N) = 0,所以,∃∆ > 0,使得∀δ∈(0, ∆),有δ–αωδ( f N) < ε /2.此时我们有δ–αωδ( f ) ≤δ–α(ωδ( f N) + ωδ( f -f N))= δ–αωδ( f N) + δ–αωδ( f -f N)< ε /2 + supδ > 0{δ–αωδ( f N-f ) } < ε.所以,lim δ→ 0 δ–αωδ( f ) = 0,即f∈lipα.所以lipα是Lipα的闭子空间.1.4.17 (商空间) 设X是线性赋范空间,X0是X的闭线性子空间,将X中的向量分类,凡是适合x’ -x’’∈X0的两个向量x’, x’’归于同一类,称其为等价类,把一个等价类看成一个新的向量,这种向量的全体组成的集合为X/X0表示,并称其为商空间.下列是关于商空间的命题.(1) 设[ y ]∈X/X0,x∈X,求证:x∈[ y ]的充分必要条件是[ y ] = x + X0.证明:设x’, x’’∈X,若它们归于同一类,则记为x’ ~x’’.我们用[ x ]表示x所在的等价类(大家注意,题目形式已经作了相应的修改).(⇒) 若x∈[ y ],则x~y.∀u ∈[ y ],u~y,故u~x,即u –x∈X0.因此u ∈x + X0.所以[ y ] ⊆x + X0.反过来,∀u ∈x + X0,则u~x,故u~y.因此u ∈[ y ].所以x + X0 ⊆ [ y ].所以[ y ] = x + X0.(⇐) 若[ y ] = x + X0,则y –x∈X0,即y~x.从而x∈[ y ].(2) 在X/X0中定义加法与数乘如下:[ x ] + [ y ] = x + y + X0(∀[ x ], [ y ] ∈X/X0 )λ[ x ] = λ x + X0(∀[ x ]∈X/X0 , ∀λ∈ )其中x和y分别表示属于等价类[ x ]和[ y ]的任一元素.又规定范数|| [ x ] ||0 = inf z∈[ x ] || z || ( ∀[ x ]∈X/X0 )求证:(X/X0, || · ||0)是一个B*空间.证明:第(1)部分说明了[ x ] = x + X0.容易看出加法与乘法的定义是合理的.进一步可以证明X/X0 构成数域 上的线性空间,且其零元为[ θ] = X0.下面证明|| · ||0是X/X0 上的范数.显然,∀[ x ]∈X/X0,|| [ x ] ||0≥ 0.若[ x ] = [ θ] = X0,则|| [ x ] ||0 = 0.若|| [ x ] ||0 = 0,则inf z∈[ x ] || z || = 0.存在z n∈[ x ]使得|| z n || → 0,即z n→θ (n→∞).那么,x-z n∈X0,x-z n→x (n→∞),而X0是闭集,故x∈X0.所以x~θ,即[ x ] = X0.因此|| · ||0有正定性.∀[ x ]∈X/X0,∀λ∈ ,|| λ[ x ]||0 = || [ λ x ] ||0 = inf y∈[ x ] || λ y || = inf y∈[ x ] | λ| · || y ||= | λ| · inf y∈[ x ] || y || = | λ| · ||[ x ]||0.因此|| · ||0有齐次性.∀[ x ], [ y ]∈X/X0,|| [ x ] + [ y ] ||0 = inf z∈[ x ] + [ y ] || z || = inf u∈[ x ], v∈[ y ] || u + v ||≤ inf u∈[ x ], v∈[ y ] { || u || + || v || } ≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} }≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} } = inf u∈[ x ] { || u || + inf v∈[ y ] || v || }= inf u∈[ x ] || u || + inf v∈[ y ] || v || = || [ x ] ||0 + || [ y ] ||0.因此|| · ||0的三角不等式成立.所以,(X/X0, || · ||0)是一个B*空间.(3) 设[ x ]∈X/X0, 求证对∀y∈[ x ]有inf { || y -z || | z∈X0 } = || [ x ] ||0.证明:|| [ x ] ||0 = inf u∈[ x ] || u || = inf u∈[ y ] || u || = inf { || u || | u∈y + X0 }= inf { || y + v || | v∈X0 } = inf { || y -z || | z∈X0 }.(4) 定义映射ϕ : X →X/X0为ϕ (x) = [ x ] = x + X0(∀x∈X ).求证ϕ是线性连续映射.证明:∀x, y∈X,∀α, β∈ ,ϕ( α x + β y ) = [α x + β y ] = [α x ] + [ β y ] = α [ x ] + β[ y ] = αϕ (x) + βϕ (y).|| ϕ (x) -ϕ (y) ||0 = || [ x ] - [ y ] ||0 = || [ x-y ] ||0 = inf z∈[ x-y ] || z || ≤ || x-y ||.所以,ϕ是线性连续映射.(5) ∀[ x ]∈X/X0,求证∃y∈X,使得ϕ (y) = [ x ],且|| y || ≤ 2|| [ x ] ||0.证明:因为|| [ x ] ||0 = inf z∈[ x ] || z ||,若|| [ x ] ||0 = 0,则由|| · ||0的正定性,知[ x ] = X0,取y = θ即满足要求.若|| [ x ] ||0≠ 0,则inf z∈[ x ] || z || = || [ x ] ||0 < 2 || [ x ] ||0,存在∃y∈[ x ],使得|| y || ≤ 2|| [ x ] ||0.此时显然有ϕ (y) = [ x ] = [ y ].(6) 设(X, || · ||)完备,求证(X/X0, || · ||0)也是完备的.证明:设{ [ x ]n }是X/X0中的基本列.为证明它是收敛列,只需证明它存在收敛子列.由基本列性质,可选出子列{ [ x ]n(k)}使得|| [ x ]n(k) - [ x ]n(k+1) ||0 ≤ 1/2k.故∑k ≥ 1 || [ x ]n(k) - [ x ]n(k+1) ||0 收敛.根据(5),∀k∈ +,∃y k∈[ x ]n(k+1) - [ x ]n(k),使得|| y k || ≤ 2|| [ x ]n(k+1) - [ x ]n(k) ||0.那么,∑k ≥ 1|| y k ||收敛.由X的完备性,s k = ∑ 1 ≤j ≤k y j是X中的收敛列.设其极限为s.由(5)中ϕ的连续性,在X/X0中,ϕ(s k) →ϕ(s) ( k→∞ ).而ϕ(s k) = ϕ( ∑ 1 ≤j ≤k y j ) = ∑ 1 ≤j ≤k ϕ( y j )= ∑ 1 ≤j ≤k ( [ x ]n(j+1) - [ x ]n(j)) = [ x ]n(k+1) - [ x ]n(1).故{[ x ]n(k+1) - [ x ]n(1)}收敛,因而{[ x ]n(k)}是收敛列.因此X/X0中的基本列{ [ x ]n }存在收敛子列{[ x ]n(k)},所以,{ [ x ]n }是X/X0中的收敛列.因此,(X/X0, || · ||0)是完备的.(7) 设X = C[0, 1],X0 = { f∈X | f (0) = 0 },求证:X/X0 ≅ ,其中记号“≅”表示等距同构.证明:显然,X0是C[0, 1]中的线性子空间.记X0所确定的等价关系为~,则f~g ⇔ f (0) = g (0).定义Φ : X/X0 → ,Φ([ f ]) = f (0).显然定义是合理的.∀f, g∈X,∀α, β∈ ,Φ(α[ f ] + β[ g ]) = Φ([αf + β g ]) = (αf + β g )(0)= αf (0)+ β g (0) = αΦ([ f ])+ βΦ([ g ]).因此Φ是线性映射.因Φ(X0) = 0,故Φ是单射.而∀c∈ ,若记所对应的常值函数为h c∈C[0, 1],则Φ( [ h c] ) = c.故Φ是满射.综上所述,Φ : X/X0 → 是线性同构.∀f∈X,|| [ f ]||0 = inf g∈[ f ] { || g || } ≥ inf g∈[ f ] { | g (0) | }= inf g∈[ f ] { | f (0) | } = | f (0) | = | Φ([ f ]) |.另一方面,因为常值函数h f (0)∈[ f ],故|| [ f ]||0 = inf g∈[ f ] { || g || } ≤ || h f (0) || = | f (0) | = | Φ([ f ]) |.所以,∀f∈X,都有|| [ f ]||0 = | Φ([ f ]) |,因此Φ : X/X0 → 是等距同构.[第4节完] 泛函分析题1_5凸集与不动点p521.5.1 设X是B*空间,E是以θ为内点的真凸子集,P是由E产生的Minkowski 泛函,求证:(1) x∈int(E) ⇔P(x) < 1;(2) cl(int(E)) = cl(E).证明:(1) (⇒) 若x∈int(E),存在δ > 0,使得Bδ(x) ⊆E.注意到x + x/n→x ( n→∞ ),故存在N ∈ +,使得x + x/N ∈Bδ(x) ⊆E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(⇐) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ⊆E.令η = δ(a - 1)/a,∀z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ⊆E.故z = ((a - 1)w + y )/a ∈E,因此,Bη(x) ⊆E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ⊆ cl(E).下面证明相反的包含关系.若x∈cl(E),则∀ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈ +,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ⊆ cl(int(E))所以cl(int(E)) = cl(E).1.5.2 求证在B空间中,列紧集的凸包是列紧集.证明:设A是B空间X中的列紧集,∀ε > 0,存在A的有限ε /3网B.设B = {b1, b2, ..., b n},M = max j{ || b j || },取δ > 0,使得n δ M < ε /3.设[0, 1]分划D为0 = t0 < t1 < t2 < ... < t m = 1,使得max 1 ≤j ≤m {| t j–t j–1|} < δ.设∀x∈co(A),设x= λ1 a1 + λ2 a2+ ... + λ k a k,其中a j∈A,λ j > 0,∑ j λ j = 1.对每个j ≤k,存在b i( j )∈B使得|| a j-b i( j ) || < ε /3;令y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k),则|| x - y || = || λ1 (a1 -b i(1)) + λ2 (a2 -b i(2))+ ... + λ k (a k-b i(k))||,≤λ1 · || a1 -b i(1) || + λ2 · || a2 -b i(2) || + ... + λ k · || a k-b i(k) ||≤ ( λ1 + λ2 + ... + λ k ) · (ε /2) = ε /3.将y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k)中的那些含有相同b j的项合并起来,于是,y可表示为y= μ1 b1 + μ2 b2+ ... + μ n b n,其中μj ≥ 0,且∑ j μj = 1.对每个l ≤n,存在t s( l )∈D,使得|| μl-t s( l ) || < δ;令z= t s(1) b1 + t s(2) b2+ ... + t s(n) b n,则|| y - z || = || (μ1 -t s(1))b1 + (μ2 -t s(2))b2+ ... + (μn -t s(n))b n ||≤∑ l | μl-t s( l ) | · max j{ || b j || } ≤n δ M < ε /3;令C = {t s(1) b1 + t s(2) b2+ ... + t s(n) b n | t s(i)∈D,1 ≤i≤n},则C是有限集,且C是co(A)的有限ε网.因空间是完备的,故co(A)是列紧集.1.5.3 设C是B*空间X中的一个紧凸集,映射T : C →C连续,求证T在C上有一个不动点.证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) ⊆C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点] 1.5.4 设C是B空间X中的一个有界闭凸集,映射T i : C→X (i = 1, 2)适合(1) ∀x, y∈C ⇒T1x + T2y∈C;(2) T1是一个压缩映射,T2是一个紧映射.。
(完整word版)泛函分析试卷

泛函分析期末考试试卷(总分100分) 一、选择题(每个3分,共15分)1、设X 是赋范线性空间,X y x ∈,,T 是X 到X 中的压缩映射,则下列哪个式子成立( ).A .10<<-≤-αα, y x Ty Tx B.1≥-≤-αα, y x Ty Tx C.10<<-≥-αα, y x Ty Tx D.1≥-≥-αα, y x Ty Tx 2、设X 是线性空间,X y x ∈,,实数x 称为x 的范数,下列哪个条件不是应满足的条件:( ).A. 0等价于0且,0==≥x x xB.()数复为任意实,αααx x =C. y x y x +≤+D. y x xy +≤ 3、下列关于度量空间中的点列的说法哪个是错误的( ). A .收敛点列的极限是唯一的 B. 基本点列是收敛点列 C .基本点列是有界点列 D.收敛点列是有界点列 4、巴拿赫空间X 的子集空间Y 为完备的充要条件是( ). A .集X 是开的 B.集Y 是开的 C.集X 是闭的 D.集Y 是闭的5、设(1)p l p <<+∞的共轭空间为q l ,则有11p q+的值为( ).A. 1-B.12 C. 1 D. 12- 二、填空题(每个3分,共15分)1、度量空间中的每一个收敛点列都是( )。
2、任何赋范线性空间的共轭空间是( )。
3、1l 的共轭空间是( )。
4、设X按内积空间<x,y>成为内积空间,则对于X中任意向量x,y 成立不等式()当且仅当x与y线性相关时不等式等号成立。
5、设T为复希尔伯特空间X上有界线性算子,则T为自伴算子的充要条件是()。
三、判断题(每个3分,共15分)1、设X是线性赋范空间,X中的单位球是列紧集,则X必为有限维。
( )2、距离空间中的列紧集都是可分的。
( )3、若范数满足平行四边形法则,范数可以诱导内积。
( )4、任何一个Hilbert空间都有正交基。
泛函分析考试试卷自制试卷

泛函分析考试试卷一、选择题。
1、下列说法不正确的是()A、 n维欧式空间R n 是可分空间B、全体有理数集为R n 的可数稠密子集C、 l∞是不可分空间D、若X为不可数集则离散度量空间X是可分的答案:D2、设T是度量空间(X,d)到度量空间(Y,d~)的映射,那么T在x0ЄX连续的充要条件是()A、当x n→x0(n→∞)时,必有Tx n→Tx0(n→∞)B、当x n→x0(n→∞)时,必有Tx0→Tx n(n→∞)C、当x0→x n(n→∞)时,必有Tx n→Tx0(n→∞)D、当x n→x0(n→0)时,必有Tx n→Tx0(n→0)答案:D3、在度量空间中有()A、柯西点列一定收敛,但是每一个收敛点列不一定是柯西点列B、柯西点列一定收敛,而且每一个收敛点列是柯西点列C、柯西点列不一定收敛,但是每一个收敛点列都是柯西点列D、柯西点列不一定收敛,但是每一个收敛点列不一定是柯西点列答案:C4、关于巴拿赫空间叙述不正确的是()A、完备的赋范线性空间称为巴拿赫空间B、L p[a,b](p≥1)是巴拿赫空间C、空间l p是巴拿赫空间D、赋范线性空间的共轭空间不是巴拿赫空间答案:D5、下列对共轭算子性质描述错误的是()A、(A+B)*=A*+B*;B、(A*)*=A**C、当X=Y时,(AB)*=B*A*D、(aA)*=a A*答案:B二、填空题1、度量空间X到Y中的映射T是X上的连续映射的充要条件为Y中的任意开集M为。
答案:原像T-1M是X中的开集2、设T是赋范线性空间X到赋范线性空间Y中的线性算子,则T为有界算子的充要条件是T 是X上的。
答案:连续算子。
3、若T为复内积空间X上有界线性算子,那么T=0的充要条件是对一切xЄX有。
答案:(Tx,x)=04、有界线性算子T的共轭算子T×也是有界线性算子,并且T T。
答案:=5、设{f n}是巴拿赫空间X上的一列泛函,如果{f n}在X的每点x处有界,那么{f n} 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泛函分析试题一
一、叙述问答题(第1小题18分,第小题20分,共38分) 1 叙述赋范线性空间的定义并回答下列问题.
设)||||,(11⋅E 和)||||,(22⋅E 是赋范线性空间, E 是1E 和2E 的直接和. 对任意E x ∈,定义 2211||||||||||||x x x +=, 其中),(21x x x =,11E x ∈, 22E x ∈. 验证||)||,(⋅E 为一个赋范线性空间.
2 叙述共鸣定理并回答下列问题.
设}{n T ),2,1( =n 是从Banach 空间E 到Banach 空间1E 上的有界线性算子列, 如果对E x ∈∀, }{x T n 是1E 中的基本点列. 问: 是否存在),(1E E T β∈, 使得}{n T 按强算子拓扑收敛于T ? 如果存在, 给出证明, 如果不存在, 试举出反例.
二、证明题 (第1小题10分,第2小题15分,第3小题17分,共42分)
1. 设)(x f 是从距离空间X 到距离空间1X 中的连续映射,A 在X 中稠密,证明)(A f 在1X 中稠密.
2. 设),(ρX 为完备距离空间, A 是从X 到X 中的映射. 记
),(),(sup 111
x x x A x A n n x x n ρρα≠=, 若级数+∞<∑+∞
=n n α1, 则A 在X 中存在唯一不动点.
3. 设H 是内积空间, H N M ⊂,, L 是M 和N 张成的线性子空间, 证明: ⊥⊥⊥=N M L .
三、应用题 (20分)
设),(t s K 在b s a b t a ≤≤≤≤,上连续, 试证明由ds t x s t K t Tx b
a )(),())((⎰=定义的
算子T是]
C上的紧算子.
a
[b
,。