泛函分析试题
泛函分析基础试卷参考答案

又对en{0,, 0, 1, 0,, }X, || en||1,
|| T ||sup|| x ||1|| T x |||| T en|||| {0,, 0, an, 0,} || = | an|(5分)
所以|| T ||supn| an|M.
所以|| T ||M.(3分)
所以2A x, y0x, yH
所以A x0xH
所以A0.(5分)
4.证明无穷维赋范线性空间X的共轭空间X '也是无穷空间.
证设{ x1, x2,}是X中线性无关向量,
由Hnha-Banach定理
存在f1X ', f1(x1)0,
存在f2X ', f2(x2)0, f2(x1)0
存在f3X ', f3(x3)0, f3(x1)f3(x2)0
所以(T), (5分)
对[0, 1],定义线性算子T : XX,对xC [0, 1]
(T x) (t) x (t)t[0, 1]
由|| T x ||maxt[ 0, 1]| x (t) |
maxt[ 0, 1]| x (t) |
|| x ||
所以T有界.且
T (AI)(AI) TI
所以(A),
所以(A)[0, 1]. (5分)
令SB1A1B (XX),则
S TB1A1ABI, A B B1A1I (2分)
所以ST1,所以T是正则算子. (1分)
二.以下各题每题15分,共75分
1.设X是度量空间, {xn}是X中Cauchy列,证明若存在{xn}的收敛子列{xn k},则{xn}收敛.
证设xX, xn kx (k)
对任何> 0,存在K, k > K时,
泛函分析考试题型及答案

泛函分析考试题型及答案一、选择题(每题2分,共20分)1. 设函数空间E为所有连续函数的集合,定义泛函F(u)=∫₀¹u(x)dx,则F(u)是线性的。
A. 正确B. 错误答案:A2. 每一个线性泛函都可以表示为一个内积。
A. 正确B. 错误答案:B3. 泛函分析中的“泛函”一词指的是函数的函数。
A. 正确B. 错误答案:A4. 弱收敛和强收敛是等价的。
A. 正确B. 错误答案:B5. 紧算子总是有界算子。
A. 正确B. 错误答案:A6. 每一个闭算子都是有界的。
A. 正确B. 错误答案:B7. 每一个有界线性算子都是紧算子。
A. 正确B. 错误答案:B8. 每一个线性泛函都可以用Riesz表示定理表示。
A. 正确B. 错误答案:A9. 每一个线性算子都可以分解为一个紧算子和一个有界算子的和。
A. 正确B. 错误答案:B10. 每一个线性算子都可以分解为一个有界算子和一个紧算子的和。
A. 正确B. 错误答案:A二、填空题(每题3分,共15分)1. 设X是赋范线性空间,如果对于X中的每一个序列{x_n},都有‖x_n‖→0当且仅当x_n→0,则称X是______空间。
答案:完备2. 设T是线性算子,如果T(X)是X的闭子空间,则称T是______算子。
答案:闭3. 设E是Hilbert空间,如果对于每一个x∈E,都有∥Tx∥≥∥x∥,则称T是______算子。
答案:正4. 设E是Banach空间,如果对于每一个序列{x_n}⊂E,都有∑‖x_n‖<∞当且仅当∑x_n收敛,则称E是______空间。
答案:自反5. 设E是线性空间,如果对于每一个序列{x_n}⊂E,都有∑x_n收敛当且仅当∑‖x_n‖<∞,则称E是______空间。
答案:序列完备三、简答题(每题10分,共30分)1. 简述Hahn-Banach定理的内容。
答案:Hahn-Banach定理指出,如果X是一个赋范线性空间,p是X 的一个线性子空间,f是p上的一个线性泛函,并且存在一个常数M使得对于所有x∈p,有|f(x)|≤M‖x‖,则存在X上的一个线性泛函F,使得F|p=f,并且对于所有x∈X,有|F(x)|≤M‖x‖。
泛函分析期末试题及答案

泛函分析期末试题及答案一、选择题1. 下列哪个不是泛函分析的主要研究对象?A. 函数空间B. 向量空间C. 线性映射D. 点集答案:D2. 泛函是指将一个向量空间的元素映射到一个标量的函数。
以下哪个选项是泛函的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶空间答案:C3. 在泛函分析中,范数是一种度量向量空间中向量大小的方法。
以下哪个选项是范数的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶范数答案:B4. 下列哪个不是泛函分析中的基本定理?A. 嵌入定理B. 开铃定理C. Hahn-Banach定理D. Banach-Steinhaus定理答案:B5. 泛函分析中的内积是指满足一定条件的映射。
以下哪个选项是内积的定义?A. 函数空间B. 向量空间C. 线性映射D. 内积空间答案:D二、填空题1. 完成下列范数的定义:范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。
2. 填写完整的Hahn-Banach定理的表述:设X是一个实或复数的线性空间,Y是X的一个线性子空间,f是定义在Y上的线性泛函,对于所有的y∈Y,有f(y) ≤ p(y),其中p是X上的一个次线性泛函,且满足p(y) ≤ p(x)对所有的x∈X成立,则存在一个定义在整个X上的线性泛函F,满足F(x) ≤ p(x)对所有的x∈X成立,并且在Y上,F和f的限制是相等的。
三、计算题1. 对于给定的函数空间C[0,1],计算函数f(x) = x^2在C[0,1]上的范数。
解答:根据范数的定义,范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。
(完整word版)理工大泛函分析复习题

一、(10分)设(,)d x y 为空间X 上的距离。
证明(,)(,)1(,)d x y d x y d x y =+ 也是X 上的距离。
1、 求证 为 空间。
(其中 为 空间, 为 空间)2、 S 是由一切序列 组成的集合, 在S 中定义距离为3、 , 求证S 是一个完备的距离空间。
4、 Hilbert 空间X 中的正交投影算子为线性有界算子。
5、 附加题开映射定理( ) 设 都是 空间, 若 是一个满射, 则 是开映射。
Hahn —Banach 延拓定理( ) 设 是 空间, 是 的线性子空间, 是定义在 上的有界线性泛函, 则在 上必有有界线性泛函 满足:()()()()()()()000012f x f x x X f f =∀∈=延拓条件;保范条件,其中00f 表示0f 在0X 上的范数。
闭图像定理( ) 设 都是 空间, 若 是 的闭线性算子, 并且 是闭的, 则 是连续的。
共鸣定理( ) 设 是 空间, 是 空间, 如果, 那么存在常数 , 使得()A M A W ≤∀∈。
五、(10分)在 上定义内积:(1)如果21(),6f x x x =-+求||||f ; (2)证明任一函数()g x a bx =+都正交于21()6f x x x =-+。
六、(10分)设 为Hilbert 空间 的闭子空间, 证明对每个 必存在唯一的 有0inf y Mx x x y ∈-=- 七、(15分)设 , 求证: 。
八、(15分)简答题1.试说明 与 中函数的差异;一、2.泛函分析也称无穷维分析, 为什么要研究无穷维分析, 试举例说明;3.Hilbert 空间是最接近有限维Euclid 空间的空间,请做简要说明。
二、在 上定义内积 ,若记 为 中奇函数全体, 为 中偶函数全体, 求证: 且。
三、设 为内积空间 中的一个稠密子集, 且 , 证明 。
在 中赋予距离 问 是完备空间吗? 为什么?设 若 是从 的算子, 计算 若 是从 的算子再求 。
(完整word版)泛函分析试卷

泛函分析期末考试试卷(总分100分) 一、选择题(每个3分,共15分)1、设X 是赋范线性空间,X y x ∈,,T 是X 到X 中的压缩映射,则下列哪个式子成立( ).A .10<<-≤-αα, y x Ty Tx B.1≥-≤-αα, y x Ty Tx C.10<<-≥-αα, y x Ty Tx D.1≥-≥-αα, y x Ty Tx 2、设X 是线性空间,X y x ∈,,实数x 称为x 的范数,下列哪个条件不是应满足的条件:( ).A. 0等价于0且,0==≥x x xB.()数复为任意实,αααx x =C. y x y x +≤+D. y x xy +≤ 3、下列关于度量空间中的点列的说法哪个是错误的( ). A .收敛点列的极限是唯一的 B. 基本点列是收敛点列 C .基本点列是有界点列 D.收敛点列是有界点列 4、巴拿赫空间X 的子集空间Y 为完备的充要条件是( ). A .集X 是开的 B.集Y 是开的 C.集X 是闭的 D.集Y 是闭的5、设(1)p l p <<+∞的共轭空间为q l ,则有11p q+的值为( ).A. 1-B.12 C. 1 D. 12- 二、填空题(每个3分,共15分)1、度量空间中的每一个收敛点列都是( )。
2、任何赋范线性空间的共轭空间是( )。
3、1l 的共轭空间是( )。
4、设X按内积空间<x,y>成为内积空间,则对于X中任意向量x,y 成立不等式()当且仅当x与y线性相关时不等式等号成立。
5、设T为复希尔伯特空间X上有界线性算子,则T为自伴算子的充要条件是()。
三、判断题(每个3分,共15分)1、设X是线性赋范空间,X中的单位球是列紧集,则X必为有限维。
( )2、距离空间中的列紧集都是可分的。
( )3、若范数满足平行四边形法则,范数可以诱导内积。
( )4、任何一个Hilbert空间都有正交基。
泛函分析试题及答案

泛函分析试题及答案一、选择题1. 在泛函分析中,以下哪个概念描述了一个函数对于输入变量的敏感程度?A. 泛函B. 导数C. 凸函数D. 可测函数答案:B. 导数2. 设X和Y是两个Banach空间,f:X→Y是一个线性算子。
以下哪个条件可以保证f是有界线性算子?A. f是可逆的B. f是连续的C. f是紧致的D. f是自共轭的答案:B. f是连续的3. 在泛函分析中,以下哪个概念描述了一个函数在每个点上的局部模式与全局模式之间的一致性?A. 可微性B. 凸性C. 全纯性D. 一致连续性答案:B. 凸性4. 设X和Y是两个赋范空间,f:X→Y是一个线性算子。
以下哪个条件可以保证f是有界线性算子?A. f是单射且存在常数C>0,使得对于所有x∈X都有||f(x)|| ≤C||x||B. 对于每个有界集A ⊂ X,f(A)是有界集C. f是连续的D. f是满射答案:A. f是单射且存在常数C>0,使得对于所有x∈X都有||f(x)|| ≤ C||x||二、填空题1. 在Hilbert空间中,内积运算满足线性性和_____________性。
答案:共轭对称性2. 设X是一个有界完备度量空间,那么X是一个____________空间。
答案:Banach空间3. 在泛函分析中,将一个函数的导数定义为其_____________。
答案:弱导数4. 设X是一个线性空间,D是X上的一个有界线性算子。
如果对于所有x和y都有⟨Dx, y⟩ = ⟨x, Dy⟩,那么D被称为______________。
答案:自伴算子三、解答题1. 请简要说明什么是范数,并给出一些范数的例子。
范数是定义在一个线性空间上的一种函数,用于衡量该空间中的向量的大小。
它满足以下三个性质:- 非负性:对于任意向量x,其范数必须大于等于0,即||x|| ≥ 0,并且当且仅当x为零向量时,范数等于0。
- 齐次性:对于任意向量x和任意实数α,有||αx|| = |α| ||x||,其中|α|表示α的绝对值。
泛函分析试卷与答案

泛函分析试卷与答案【篇一:泛函分析习题参考答案】证明:显然为空间x上的距离,试证:~d(y,x)也是xd(y,x)?1?d(y,x)上的距离。
~~d(x,y)?0,并且d(x,y)?0d(x,y)0xy。
~~d(y,x)d(x,y)d(y,x)d(x,y);1?d(y,x)1?d(x,y)t1?1?1?t1?t的单调增加性及再者,最后,由d(x,y)?d(x,z)?d(z,y),可得~d(x,y)d(x,z)?d(z,y)d(x,z)d(z,y)d(x,y)1?d(x,y)1?d(x,z)?d(z,y)1?d(x,z)?d(z,y)1?d(x,z)?d(z,y)~~d(x,z)d(z,y)d(x,z)?d(z,y)。
1?d(x,z)1?d(z,y)、设二p?1,xn?(?1(n),?,?i(n),?)?lp,n?1,2,?,x?(?1,?,?i,?)?lp,则n??时,p??d(xn,x)i(n)??i??0的充要条件为(1)n??时,?i(n)??i,i?1,2,?;(2)0,i1存在n?0,使得i?n?1i(n)p对任何自然数n成立。
(n)(n)必要性证明:由d(x,x)?ni??i??0可知,?i??i,i?1,2,?。
i1p由x?(?1,?,?i,?)?l。
p可知,,存在n1?0,使得i?n1?1p?(n)ii?(p?i?1pi(p2,并且n?n1时,2p由此可得,i?n1?1i(n)ppppi(n)??ii????p对n?n1成立。
i?n1?1i?n1?1p对于n?1,2,?n1,存在n2?0,i?n2?1i(n)pp。
取n?max?n1,n2?,则i?n?1(n)pip对任何自然数n成立。
0,存在k?0,使得充分性证明:由条件可知,i?k?1时,k(n)pi(2ip对任何自然数n成立,并且i?k?1pi(p2。
由(n)i??i可知,存在n?0,使得n?n i?1(n)ipp,并且d(xn,x)pi?1(n)i??ipi?1k(n)i??i?pi?k?1pi(n)ipi(n)??ii?1kp(n)ppp?(i)?(i)p2?p。
泛函分析试卷

泛函分析期末考试试卷(总分100分) 一、选择题(每个3分,共15分)1、设X 是赋范线性空间,X y x ∈,,T 是X 到X 中的压缩映射,则下列哪个式子成立( ).A .10<<-≤-αα, y x Ty Tx B.1≥-≤-αα, y x Ty Tx C.10<<-≥-αα, y x Ty Tx D.1≥-≥-αα, y x Ty Tx 2、设X 是线性空间,X y x ∈,,实数x 称为x 的范数,下列哪个条件不是应满足的条件:( ).A. 0等价于0且,0==≥x x xB.()数复为任意实,αααx x =C. y x y x +≤+D. y x xy +≤ 3、下列关于度量空间中的点列的说法哪个是错误的( ). A .收敛点列的极限是唯一的 B. 基本点列是收敛点列 C .基本点列是有界点列 D.收敛点列是有界点列4、巴拿赫空间X 的子集空间Y 为完备的充要条件是( ). A .集X 是开的 B.集Y 是开的 C.集X 是闭的 D.集Y 是闭的5、设(1)p l p <<+∞的共轭空间为q l ,则有11p q+的值为( ).A. 1-B.12 C. 1 D. 12- 二、填空题(每个3分,共15分)1、度量空间中的每一个收敛点列都是( )。
2、任何赋范线性空间的共轭空间是( )。
3、1l 的共轭空间是( )。
4、设X按内积空间<x,y>成为内积空间,则对于X中任意向量x,y 成立不等式()当且仅当x与y线性相关时不等式等号成立。
5、设T为复希尔伯特空间X上有界线性算子,则T为自伴算子的充要条件是()。
三、判断题(每个3分,共15分)1、设X是线性赋范空间,X中的单位球是列紧集,则X必为有限维。
( )2、距离空间中的列紧集都是可分的。
( )3、若范数满足平行四边形法则,范数可以诱导内积。
( )4、任何一个Hilbert空间都有正交基。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 对于积分方程
()()()
1
t s x t e x t ds y t λ--=⎰为一给定的函数,λ为
常数,1λ<,求证存在唯一解()[]0,1x t ∈。
2.
设s 为一切实(或复)数列组成的集合,在s 中定义距离为
()11,21+k k
k
k k k
x y ξηρξη=-=-∑,其中,
()()
11,,,=,,n n x y ξξηη=⋅⋅⋅⋅⋅⋅。
求证s 为
一完备的距离空间。
3.
在完备的度量空间(),x ρ中给定点列{}n x ,如果任意的0ε>,
存在基本列{}n y ,使(),0n n x y ρ<。
求证{}n x 收敛。
4. 证明内积空间()(),,x 是严格凸的*
B 空间
5.
为了()F C M ⊂使一个列紧集,必须且仅需F 是一致有界的
且等度连续的函数族。
6. 设
()
,A x y ϕ∈,求证(1).
1
sup x A AX
≤=,(2
)
1
sup x A AX
<=。
7.
设X 是一个Hilbert 空间,(),a x y 是X 上的共轭双线性函数,
并存在0M
>,使得(
),a x y M x y
≤,则存在唯一的()A x ϕ∈,
使得
()()
,,a x y x Ay =且
()(),0,0
,sup
x y X X
x y a x y A x y
∈⨯≠≠=。
8. 求证()2f L ∀∈Ω,方程()
0u f u ∂Ω⎧-∆=Ω⎪⎨
=⎪⎩在内若解存在唯一。
9.
设X 是复线性空间,P 是X 上的半模,()00,0x X x ρ∀∈≠。
求
证存在X 上的线性泛函f 满足()()01.1f x =,()()()
()02.x f x x ρρ≤。
10. 叙述开映象定理并给出证明。
11. 叙述共鸣定理并给出证明。