泛函分析考试题

合集下载

北邮研究生泛函分析 - 加强版 - 最终稿--2016修改

北邮研究生泛函分析 - 加强版 - 最终稿--2016修改

泛函分析基础(2015年加强版) ,设(,d x]0,1为闭区间]0,1上赋予度量]为定义在3的哪些子集构成3的线性子空间【[0,2],Cπ【为赋范空间,,,n nx Xαα∈[0,1]上的∞和1不为等价范数∞中除有限个坐标之外均为.p【19】.X '∈【190E 是X 的真闭子空间.y X ∈【23固定,考虑3的线性子空间}33:0x =为赋范空间,M 为X 的线性子空间】 为赋范空间*,.f X ∈【31】Banach 空间Y 为赋范空间为一系列有界线性算子【1,【34】】存在唯一的[0,1],x C ∈,<∞-∞<},n e 为和{:n f n ≥的子空间,,M N ⊥是线性子空间并对于∞中只有有限多个零项的序列构成的子空间,,n x 是赋范空间(,)B xε≠∈使得M,=根据下确界的重要条件,得0inf{d. (略)n n a t .对于n n na t -+2n n b t nb t -++)()g t -<是一个有理数,且().t{()|s f t s 中任何两个不同元素之间的距离均为且有不可数多个.,则这些不相交的小球每一个必含有,,n n x y ∃∈).→+∞②2中元素e 1,0,1,0,.n⎫-⎪⎭{|n e n =≥,0,).下面证明M 是有界闭集但不是紧集.2(,0)1,n d e =<故M 是有界集有2(,)n m d e e ⎛= 2时,则必有0,0,N ∃>当.M .,)d 是完备的的闭子集定义映射,T Tx =,)|Tx Ty Tx =3的哪些子集构成3的线性子空间3).2,x =且3x 11x =+的0≥且2x ≤},1,2.i =)1,0,y M ∈,,1,2,3i =2,1,M α=}:,[,].n n i a t a t a b +∈∈容易验证在通常多项式的加法和与实数的乘法运算下有()(p t p t α且易验证加法与数乘满足线性空间的八个条件},n t 线性无关},n t 是X 的不是Y 的线性子空间∈K ,有()p t α为赋范空间,,n n x y ,y α→→∞和1不为等价范数110|()|max t x t dt ∈=≤⎰⎰使得()[0,1],x t C ∀∈[0,1],C 使得nx ∞>∞中除有限个坐标之外均为不为Banach ∞的线性子空间.1111,,,,,0,0,.23n⎫⎪⎭则()n x ∈})n 是一个Cauchy 列.,n >则()()1110,,0,,,,,0,,12n m x x n n m⎛⎫-= ⎪++⎝⎭10(,).1n m n =→→+∞+故{}()n x 是Cauchy 111,,,,12n n n ⎫⎪++⎭,则()()11sup 0(1n n k k k x x x x n n ≥-=-=→+),n →+∞但x M ∉,故M 不完备.}}:lim 0n n x ∞→∞∈=,由例1.3.6知0C)10,,,,,n n x x C +∈存在),,,0,0,,n x M ∈()11sup sup n k k k k k n x x x ≥≥+-=→时).中稠密.故0C 是M 的完备化空间上定义线性泛函(=(),[1,1].f x x t dt x C ∈-) sup ()sup 212n n f x n ∈∈=- ⎪⎝⎭()x t ⇔在(1,0)-上符号相同且},n e 为,1,i j n ≤≤唯一确定,,n α∈K ,n β∈K 1111n n n nx e e y e e αααββ=++=++,11,,,nni ii i i j i i ij i j ee e βαβαβγ===∑∑∑00,x ⇔=),,n α∈K 12212222120,n n n n n nn n γγαγγγα⎛⎫ ⎪ ⎪⎪ ⎪≥ ⎪⎪ ⎪ ⎪⎪⎪ ⎪⎭⎝⎭⎝⎭①满足①式,则由11nni i ij i j αβγ==∑∑所定义的映射是一个内积Hilbert 空间为H 的闭线性子空间.求证:M 为H[1,1]odd C -[1,1],even C ∈-Hilbert 空间{sup,x y =,,n k 有0,=即j e ),j j x e e e 固定,考虑3的线性子空间}33:0Z x =上的线性泛函2311(,)f x x x a x =到3上的所有保范延拓的有界线性泛函.3中定义范数1x x =首先证{12max ,f a a =因为对12(,,0)x x Z ∀∈∈又若取(sgn x =3,定义F ,Z 有()F x }时,有F故,此时F 是f 到3上的保范延拓.32★4-4.设X 为赋范空间,M 为X 的线性子空间,0.x X ∈ 求证0x M ∈当且仅当任取,0,Mf X f'∈=都有0()0.f x ="":⇒若0,x M ∈则{},n x M ∃⊂且0().n x x n →→∞ 因,f X '∈且0,Mf=则()()0()lim lim 0.n n n n f x f x x →∞→∞===""⇐:反证法.若0,x M ∉因为M 是闭集,故()0,0.x M d ρ=> 则根据定理4.1.7,则,f X '∃∈使得01,0,()0Mf ff x d ===>,与条件矛盾. 34●4-17.设X 为Banach 空间,Y 为赋范空间,(,)n T B X Y ∈为一系列有界线性算子,设任取{},n x X T x ∈都是Y 中的Cauchy 列,求证:存在常数0,C ≥使得任取1,.n n T C ≥≤35 ●4-18.在上题中又设Y 为Banach 空间,求证:存在(,),T B X Y ∈使得任取,,n x X T x Tx ∈→且1sup .n n T T ≥≤因为{}n T x 是Y 中的Cauchy 列,则{}n T x 是有界集,即,x X ∀∈有sup .n n T x ∈<+∞因为X 是Banach 空间,故由一致有界原则有sup ,n n T ∈<+∞即0,c ∃>使得对,n ∀有.n T c ≤若Y 完备,则,Tx Y ∃∈使得n T x Tx →(参考定理2.4.5的证明), 且lim lim sup ,n n n n n n Tx T x T x T x →∞→∞∈==≤⋅故sup .n n T T ∈≤36★4-20.设X 为赋范空间,,,n n x x X x ∈⇀.x 求证:{:1}.n x span x n ∈≥ 若n x ⇀x ,则,f X '∀∈有()().n f x f x →若{}:1,n x span x n ∉≥则{}(),:10.n d x span x n d ≥=> 根据定理4.1.7知,存在{}:1,1,0,n span x n f X f f≥'∈==且()0f x d =>与()()n f x f x →相矛盾.1,级数1n ≥∑.∞)1,,,n x ∈定义1()nn i i i f x y x ==∑是定义在1上的线性泛函且1max n f ≤=1,级数1n n n y x +∞=∑收敛,故lim n →∞1,都有sup (n n f x ∈根据一致有界原则,得sup ,n n f ∈<+∞即1sup max sup .i n i nn y y ≤≤∈∈=<+∞∞中只有有限多个零项的序列构成的子空间)()1,,,,,,,n n x y y y →=式中k y =并计算;T 逆算子定理矛盾?21∞有Tx (1,1,,1,)x =(全为1),111,,,,,2Tx n ⎛⎫= ⎪⎝⎭且1,1,x Tx == 1sup 1,x Tx Tx >=≥=故 1.T =()()1121212:,,,,,2,,,,,,k k k k T y y y y x y y ky ky ky -++=→= 111,1,,1,,,,k k y k k ⎛⎫ ⎪= ⎪⎝⎭项故,k y X ∈且()11,2,,,1,1,,k T y k X -=∈ 11,(),k k k y x T y k k -===→+∞→+∞故1T -无界.这与开映射定理不矛盾,因为X 不完备.取1010,0,,0,,,n n x X n -⎛⎫ ⎪=∈ ⎪⎝⎭个因为110,(,),n m x n m n m =-→→∞所以但是当n →∞时,有(0,0,,0,),n x X →∉故。

泛函分析考试题集与答案

泛函分析考试题集与答案
以及若
d1(x,y) min( d(x,y),1) 0或d2(x,y)
均有d(x,y)0成立,于是x y成立
2)d(y,x) d(x,y),
因此d1(y,x) min(d(y,x),1) min( d(x,y),1) d1(x, y)和d2(y,x)d(y,x) d(x, y)d2(x,y)
21 d(y,x) 1 d(x, y)2
若R是赋范空间,d(x,0) ||x|| |x|p,所以x,k R,必须有:||kx|||k|||x||成立,即|kx|p|k ||x|p,p1, 当p1时,若R是度量空间,p1时,若R是赋范空间。
2.若( X , d)是度量空间,则d1min( d ,1),d2d也是使X成为度量空间。
1 21 d
映射
T:
c*0l1,
f
(f(e1), f(e2), ,
f (en),
) (1,2, ,n, )
使得
x
(x1, x2, ,xn,
) c0,
有f ( x)xi i成立
i1
则T线性保距同构映射,因此c*0l1
9.设H是Hilbert空间,xn是H中正交集,则以下三条等价;
1)xn收敛,2)y H,(xn,y)收敛,3)||xn||2收敛
1取S1O(0, ) X,则T在S1上无界,因此x1S1,
使得||Tx1||1成立。
1
取S2O(0,2) X,则T在S2上无界,因此x2S2,
22
使得||Tx2||2成立。
类似地过程一直进行,直到
1
取SnO(0,n) X,则T在Sn上无界,因此xnSn,2n
使得||Txn||n成立。
因此,xnX,使得xn0,但||Txn||

实变函数与泛函分析考试内容及答案

实变函数与泛函分析考试内容及答案

14、建立下面集合之间的具体双射 1)(-1,1)与[-1,1] 2)实数轴和全体无理数3)R 3中除去一点的单位球面与全平面R 24)平面中的开圆盘{(x,y ):x 2+y 2<1}与闭圆盘{(x,y ):x 2+y 2≤1}解:(1)、从(-1,1)与[-1,1]分别取出两个数集A={r 1,r 2,r 3,……,r n }与B={-1,1,r 1,r 2,……,r n-2}则A 、B 之间可定义以下双射:Ф(r 1)=-1, Ф(r 2)=1, Ф(r n )=r n (n>2)然后定义Ф:(-1,1)︱A →[-1,1]︱B x →x 得Ф(-1,1)→[-1,1]是所求双射(2)、从R 与R\Q 中分别取出两个可数集A=Q ∪B 与B=2,则A 与B 之间可定义如下双射:Ф2然后定义:Ф:R|A →(R\Q)|B x →x得:Ф:R →R\Q 是实数轴与全体无理数之间的双射。

(3)、假设单位球面上除去P 点按以下步骤建立双射: i)球心为O P 点关于O 点对称的点为球内的点Q 以Q 为切点作一个切面R 2以O 为原点作一直角坐标系ii )过切点Q 连接PQ iii )连接P 点与球面上异于P 点的任一点M 并延长,点肯定交R 2与一点记为M ’ 这就建立了R 3中除去一点的单位球面与全平面R 2之间的双射。

(4)、首先两个同心圆周之上的点之间可建立一一对应:做圆周集合子列 A n ={(x,y):x 2+y 2=12n } n ∈N 则 令E 1=n-2∞A n ⊂{(x,y):x 2+y 2<1}E 2=n-1∞ A n ⊂{(x,y):x 2+y 2≤1}且 E 1~E 2 又{(x,y):x 2+y 2<1}| E 1={(x,y):x 2+y 2≤1}|E 2 ,令B 1=(x,y):x 2+y 2<1}B 2={(x,y):x 2+y 2≤1}则 B 2=(B 1|E 1) E 2 令 Ф((x,y))= (x 1,y 1)若(x,,y )∈B 1|E 1或(x 2,y 2)若(x,y )∈E 2 由此得:Ф是B 1到B 2的双射。

泛函分析答案(张恭庆)

泛函分析答案(张恭庆)

k1
. 于是
x M , 设 a 为空间 X 的一个固定元. 我们有
x, a
x, xk
xk, a
1
max
1kn
xk, a ,
即 M 是有界的.
下面说明 ek k 1 有界但不完全有界. 首先, 对
k , 2 ek,
1 , 其中
0, 0, , 0, .
由此可见 ek k 1 有界. 再注意到
ei ej 0, 0, , 1, 0,
1.3.1 在度量空间中求证;为了子集 A 是列紧的,其充分
且必要条件是对
0 存在 A 的列紧的 网.
证明 必要性显然,只证充分性.
0, 设 N 是 A
的列紧的 2 网;
N0 是 N 的有限 2 网, 则有
x A,
N, x,
2
N, x
,
,x
2
x, x
x,
,x
2
2
.
N0 是 A 的有限 网.
1.3.2 给定距离空间 X, ,设 M
2 a
n
fn
2 b
ba
.
1.4.6 设 X 1, X 2 是两个线性赋范空间,定义
X
X1 X2
x1, x2 | x1
X1, x2
X2 称
为 X1 与 X2 的 Decard笛卡尔空间. 规定线性运算如下:
x1, x2
y1, y2
x1
y1, x2
y2
5
,
K, x1, y1
X1, x2, y2
X 2 ,并赋以范数
0
inf f tn
0,
n1
0
0, 1 .
1.3.3 在度量空间中求证:完全有界的集合是有界的, 并且通 过考虑

泛函分析考试题型及答案

泛函分析考试题型及答案

泛函分析考试题型及答案一、选择题(每题2分,共20分)1. 设函数空间E为所有连续函数的集合,定义泛函F(u)=∫₀¹u(x)dx,则F(u)是线性的。

A. 正确B. 错误答案:A2. 每一个线性泛函都可以表示为一个内积。

A. 正确B. 错误答案:B3. 泛函分析中的“泛函”一词指的是函数的函数。

A. 正确B. 错误答案:A4. 弱收敛和强收敛是等价的。

A. 正确B. 错误答案:B5. 紧算子总是有界算子。

A. 正确B. 错误答案:A6. 每一个闭算子都是有界的。

A. 正确B. 错误答案:B7. 每一个有界线性算子都是紧算子。

A. 正确B. 错误答案:B8. 每一个线性泛函都可以用Riesz表示定理表示。

A. 正确B. 错误答案:A9. 每一个线性算子都可以分解为一个紧算子和一个有界算子的和。

A. 正确B. 错误答案:B10. 每一个线性算子都可以分解为一个有界算子和一个紧算子的和。

A. 正确B. 错误答案:A二、填空题(每题3分,共15分)1. 设X是赋范线性空间,如果对于X中的每一个序列{x_n},都有‖x_n‖→0当且仅当x_n→0,则称X是______空间。

答案:完备2. 设T是线性算子,如果T(X)是X的闭子空间,则称T是______算子。

答案:闭3. 设E是Hilbert空间,如果对于每一个x∈E,都有∥Tx∥≥∥x∥,则称T是______算子。

答案:正4. 设E是Banach空间,如果对于每一个序列{x_n}⊂E,都有∑‖x_n‖<∞当且仅当∑x_n收敛,则称E是______空间。

答案:自反5. 设E是线性空间,如果对于每一个序列{x_n}⊂E,都有∑x_n收敛当且仅当∑‖x_n‖<∞,则称E是______空间。

答案:序列完备三、简答题(每题10分,共30分)1. 简述Hahn-Banach定理的内容。

答案:Hahn-Banach定理指出,如果X是一个赋范线性空间,p是X 的一个线性子空间,f是p上的一个线性泛函,并且存在一个常数M使得对于所有x∈p,有|f(x)|≤M‖x‖,则存在X上的一个线性泛函F,使得F|p=f,并且对于所有x∈X,有|F(x)|≤M‖x‖。

2015南京大学考博真题泛函分析

2015南京大学考博真题泛函分析


f ( x ) g ( x )dx M


g ( x ) dx q ,
q

1
1 1 1 ,证明 f Lp () 并且 ‖f‖ M. Lp ( ) p q
第1页
试题编号
共 2 页
5. (15 分)设 X 为紧的度量空间,证明在 X 上存在 Borel 测度 使得对 X 上的任何非负连 续函数 f ,并且 f 0 ,有
Ax, x x ,
其中 , 表示 H 中的内积,证明对任何 y H ,方程
2
Ax y
有唯一的解. 4. (15 分)设 为 n 中的有界开集, f 为 上的 Lebesgue 可测函数,并且存在 M 0 , 使得对 上的任何有界连续函数 g ,有

其中 1 q ,

X
f d 0 .
6. (15 分)设 (, , ) 为正测度空间,如果存在一列可测子集 {En } 使得当 n m 时,
En Em ,并且 0 ( En ) ,证明 Banach 空间 L1 (, ) 不是自反的.
第2页
p

证明:⑴ f Lp (, ) ; ⑵ lim
p
x | f n ( x )| M
f n ( x ) dx .
p
n

f n ( x ) f ( x ) d 0 .
3. (20 分)设 H 为 Hilbert 空间, A : H H 为有界线性算子,并且存在 0 使得对任 何 x H ,有

2. (20 分)设 (, ) 为正测度空间, () ,再设 { f n } L (, ), 1 p ,满 足如下条件: (i)存在 上的可测函数 f 使得 { f n } 在 上几乎处处收敛于 f ; (ii)对任意 0 ,存在 M 0 ,使得对任何 n 有

2007年10月自考试题实变函数与泛函分析初步试卷

2007年10月自考试题实变函数与泛函分析初步试卷

做试题,没答案?上自考365,网校名师为你详细解答!浙江省2007年10月高等教育自学考试实变函数与泛函分析初步试题课程代码:10023一、单项选择题(本大题共3小题,每小题4分,共12分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.已知Z 和Q 分别为整数集和有理数集,记A=[0,1]-Q ,则( ) A Z Q =>A B. Z Q ==A C. Z Q >>A D. Z Q =<A2.若A=[0,1]-{31,21,1,…},B=[2,3]∩Q ,C=[5,6]-Q ,则A ∪B ∪C 的测度为( ) A.1B.2C.3D.无意义 3.设f(x)=⎪⎪⎩⎪⎪⎨⎧∈--∈ 其他,1]3,1[,1]1,0[,22x x Q x x ∩Q ,则⎰],[80f(x)dx=( )A.0B.1C.2D.8二、判断题(本大题共6小题,每小题2分,共12分)4.集列的上限集与下限集一定不相等.( )5.开集一定是博雷尔(Borel )集.( )6.设E ⊂R 1,E 是E 的闭包,mE=0,则m(E )=0.( )7.设f(x)在[0,1]的一个稠密集上处处不连续,则f(x)一定不是Riemann 可积函数.( )8.定义在零测集上的函数一定是可测函数.( )9.定义在区间上的单调函数的导数几乎处处存在.( )三、填空题(本大题共10小题,每小题4分,共40分)请在每小题的空格中填上正确答案。

错填、不填均无分。

10.设A 2n-1=(0,sin n 1),A 2n =(n1,n),则集列{A n }的上限集为___________. 11.球面S 2={(x,y,z)|x 2+y 2+z 2=1}的基数为___________.12.设F={(x,y)|x 2+y 2≤1},E=F ∪⎭⎬⎫⎩⎨⎧∈=)1,0(,1sin |),(x x y y x ,则E 的开核E =___________.13.记E 为康托集和有理数集的并集,则mE=___________. 14.设函数f(x)在[0,1]上单调,E 是f(x)的连续点全体,则mE=___________.15.f(x)是可测集E 上的简单函数是指___________.16.函数f(x)在区间[a,b ]上的黎曼可积的充要条件是___________.17.f(x)与g(x)在E 上几乎处处相等是指___________.18.举一个函数列{f n (x)}的例子,使得{f n (x)}在[0,∞)上处处收敛于0,但{f n (x)}在[0,∞)上不依测度收敛于0,例如f n (x)=___________.19.区间[a,b ]上的函数F(x)是f(x)的一个不定积分是指________________________________________________________.四、完成下列各题(本大题共4小题,每小题9分,共36分)20.设f(x)是(-∞,+∞)上的实值连续函数,证明对于任意常数a,E={x|f(x)>a}是开集,而F={x|f(x)≥a}总是闭集.21.设E 是[0,1]中的不可测集,令f(x)⎩⎨⎧∉-∈,,,E x x E x x ,问f(x)和|f(x)|在[0,1]上是否可测?为什么?22.设f(x)在E 上可积分,记e n =E [|f|≥n ],证明0lim =∙∞→n n me n . 23.问函数f(x)=⎪⎩⎪⎨⎧=∈0,0]1,0(,1sin 2x x x x 在[0,1]上是不是有界变差函数?为什么?。

(完整word版)北京理工大学数学专业泛函分析期末试题(MTH17060)

(完整word版)北京理工大学数学专业泛函分析期末试题(MTH17060)

北京理工大学2012-2013学年第一学期2010级泛函分析试题(A 卷)一、(10分)设T 是赋范线性空间X 到自身的线性映射。

证明以下三条等价: (1)T 连续; (2)T 在零点连续; (3)T 有界。

二、(10分)设H 是Hilbert 空间。

证明: (1)若n x x →,则对于任意固定的y H ∈,()(),,n x y x y →; (2)若n x x →,n y y →,则()(),,n n x y x y →。

三、(10分)设H 是Hilbert 空间,()A B H ∈且存在0m >使得()2,,x H Ax x m x ∀∈≥,证明:存在()1A B H -∈。

四、(10分)设H 是Hilbert 空间,M 是H 的线性子空间。

证明:M 在H 中稠密的充分必要条件是{}M θ⊥=。

注:M 仅为H 的子集时充分性不成立,试举反例 五、(15分)设[]0,1C 为区间[]0,1上连续函数的全体,对于[]0,1f C ∈, 令[]()0,1max x f f x ∈=。

证明:(1)[]0,1C 是完备的赋范线性空间,即Banach 空间;(2)对于[]0,1t ∈,令()()t F f f t =,则t F 是[]0,1C 上线性有界泛函,求t F 。

六、(15分)设[]2,0,1,1,2,k f f L k ∈=L ,且[],..0,1k f f a e →。

证明:lim k k f f →∞=当且仅当lim 0k k f f →∞-=,其中()[][]12220,1,0,1f f x dx f L ⎛⎫ ⎪=∈ ⎪⎝⎭⎰。

七、(15分)设12,f f 是Hilbert 空间H 上的线性无关的线性有界泛函,12ker ker M f f =I。

证明:(1)M 是闭的线性子空间;(2)存在12,y y H ∈使得对于x H ∈,有01122x x y y λλ=++,其中0x 为x 在M 上的正交投影,12,λλ∈£。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

判断题:
(1) 设X 是线性赋范空间,X 中的单位球是列紧集,则X 必为有限维。

√ (2) 距离空间中的列紧集都是可分的。


(3) 若范数满足平行四边形法则,范数可以诱导内积。

× (4) 任何一个Hilbert 空间都有正交基。

×
(5) 设X 是线性赋范空间,T 是X →X 的有界线性算子,若T 既是单射又是
满射,则T 有逆算子。

× (6) 设X 是线性赋范空间,若X 与X *同构,则X 必是完备的。

√ (7) 设X 是Hilbert 空间,T 是线性算子,满足()(),,,,Tx y x Ty x y X =∈,则
()T L X ∈。


(8) 设M X ⊆是线性赋范闭子空间,若0x M ∉,则一定存在f X *∈,使
()
000,,1M
f
f x x f ===。

×
(9) 设X 是Banach 空间,T 是X 上线性算子,如果()D T 是X 中的闭集且
在X 中稠密,则T 有界。


(10) 设{}n a l ∞⊆,定义2l 上的算子T 为{}(){}n n n T a ξξ=,则(){}p n T a σ=。


1.设X 是有限维赋范空间,试证:X 上任意两个范数都是等价范数。

证明:令()()1212
,,,X X X X =∙=∙
,显然必存在有一个范数较强,不
妨假设存在一个M>0,使得21x M x ≤。

取单位算子()12,I L X X ∈,这时有21Ix M x ≤,故I 是有界线性算子,显然I 是单射,满射,由逆算子定理可知,I 存在逆算子1I -,且有界,因而1121
I x I x --≤,所以12,∙∙等价。

2.设X 是有限维赋范空间,试证:X 中弱收敛等价于按范数收敛。

证明:显然,在X 中按范数收敛的序列一定是弱收敛。

另一方面,取{}01,n n x X x X ∞
=⊆∈,使得0w n x x −−→,即对于任意的T X *∈使
得0lim n n Tx Tx →∞
=。

假若{}n Tx X ⊆,不按X 的范数收敛,即存在{}n Tx X ⊆中
的一个子列{}
k n Tx 使得,存在00ε>,有00k n Tx Tx ε-≥。

然而,在有限维空间X 中,由于{}1n n x ∞
=弱收敛,进而{}1n n x ∞
=有界,所以有n n Tx T x ≤<+∞,
即{}n Tx X ⊆为列紧集,故存在y X ∈,使得0lim lim k n n n k y Tx Tx Tx →∞
→∞
===,这与
00y Tx ε-≥矛盾,所以假若{}n Tx X ⊆按X 的范数收敛。

综述X 中弱收敛等价于按范数收敛。

3.定义2l 上的算子S 为()()1212,,,,0,,,,,n n S x x x x x x = ,试证S 有左逆但无右逆。

证明:定义2l 上的算子H 为()()1223,,,,,,,,n n H x x x x x x = ,显然
有()()()121212,,,,0,,,,,,,,,n n n HS x x x H x x x x x x == ,所以H 为S 的左逆算子。

另一方面,假设S 存在右逆算子T ,使得ST=I (其中I 为单位算子)。


2x l ∈使得(){}12,,,,01;1,2,n i x x x x x i === 或 ,显然1x <,这时
sup I ST STx ST x ST I ==≤<=,矛盾。

所以S 没有右逆算子。

4.设X ,Y 是Banach 空间, :T X Y →是有界线性算子,满足()()1R T Y =;(2)存在0m >,使得对任意x X ∈有Tx x ≥,试证;T 有有界逆1T -,且
11
T m
-≤。

证明:由条件1可以知道T 为满射。

令{}ker 0T x Tx ==则有0Tx m x =≥,这时x=0,所以kerT={0},从而T 为单射。

由逆映射定理可以T 存在逆映射1T -,易求11T m
-≤。

5.设X 是线性赋范空间,{}1n n x ∞
=是X 中线性无关的序列,试证:存在{}n f X *⊆,使得1n f =且()
10n k n k f x n k =⎧=⎨≠⎩。

证明:令()()1211,,,,,,,i i i n i i i X L x x x x x d x X ρ-+== 。

显然i X X ⊆,由
Hanna-Banach 定理可知:存在i f X *∈,使得()()1,0,i i i i i i f f X f x d ===。

取i
i i f f d =
,得1n f =且()10n k n k f x n k
=⎧=⎨≠⎩。

6.设()0,t a b ∈,定义[]()1,C a b 上的泛函为()()0F f f t '=,
()
()(){},max ,x a b f f x f x ∈'=。

试证[]()1
,F C a b *
⎡⎤∈⎣⎦。

证明:任取[]()1,;,,R f g C a b αβ∈∈,有
()()()()()()()000F f g f g t f t g t F f F g αβαβαβαβ'''+=+=+=+
且()0F f t f '=≤,所以[]()1
,F C a b *
⎡⎤∈⎣⎦。

7.若X 是自反空间,弱收敛与弱*收敛等价。

证明:显然在X 中,弱收敛强于弱*收敛。

假设序列{}1,n n f X f X ∞
**=⊆∈,
有w
n f f *
−−→。

这时,对于任意的x X ∈,由于X 是自反空间,存在x x X ****=∈,使得()()()lim lim n n n n x f f x f x **→∞→∞
==,即w n f f −−→。

从而弱*收
敛强于弱收敛。

综上所述,弱收敛与弱*收敛等价。

相关文档
最新文档