泛函分析试卷(优选.)

合集下载

泛函分析考试题型及答案

泛函分析考试题型及答案

泛函分析考试题型及答案一、选择题(每题2分,共20分)1. 设函数空间E为所有连续函数的集合,定义泛函F(u)=∫₀¹u(x)dx,则F(u)是线性的。

A. 正确B. 错误答案:A2. 每一个线性泛函都可以表示为一个内积。

A. 正确B. 错误答案:B3. 泛函分析中的“泛函”一词指的是函数的函数。

A. 正确B. 错误答案:A4. 弱收敛和强收敛是等价的。

A. 正确B. 错误答案:B5. 紧算子总是有界算子。

A. 正确B. 错误答案:A6. 每一个闭算子都是有界的。

A. 正确B. 错误答案:B7. 每一个有界线性算子都是紧算子。

A. 正确B. 错误答案:B8. 每一个线性泛函都可以用Riesz表示定理表示。

A. 正确B. 错误答案:A9. 每一个线性算子都可以分解为一个紧算子和一个有界算子的和。

A. 正确B. 错误答案:B10. 每一个线性算子都可以分解为一个有界算子和一个紧算子的和。

A. 正确B. 错误答案:A二、填空题(每题3分,共15分)1. 设X是赋范线性空间,如果对于X中的每一个序列{x_n},都有‖x_n‖→0当且仅当x_n→0,则称X是______空间。

答案:完备2. 设T是线性算子,如果T(X)是X的闭子空间,则称T是______算子。

答案:闭3. 设E是Hilbert空间,如果对于每一个x∈E,都有∥Tx∥≥∥x∥,则称T是______算子。

答案:正4. 设E是Banach空间,如果对于每一个序列{x_n}⊂E,都有∑‖x_n‖<∞当且仅当∑x_n收敛,则称E是______空间。

答案:自反5. 设E是线性空间,如果对于每一个序列{x_n}⊂E,都有∑x_n收敛当且仅当∑‖x_n‖<∞,则称E是______空间。

答案:序列完备三、简答题(每题10分,共30分)1. 简述Hahn-Banach定理的内容。

答案:Hahn-Banach定理指出,如果X是一个赋范线性空间,p是X 的一个线性子空间,f是p上的一个线性泛函,并且存在一个常数M使得对于所有x∈p,有|f(x)|≤M‖x‖,则存在X上的一个线性泛函F,使得F|p=f,并且对于所有x∈X,有|F(x)|≤M‖x‖。

泛函分析(含答案)

泛函分析(含答案)

山东师范大学试题(时间:120分钟 共100分)课程编号: 4081331 课程名称:数学分析方法 适用年级: 2004学制: 四 适用专业:数学与应用数学 试题类别: 补考考生注意事项1、全题三个大题,22个小题。

判断正确(√)与错误(×)(本题10个小题,每题3分,共30分):1、 ( )距离空间X 中的序列{}n x 收敛于X x ∈*的充要条件是{}n x 的任意子列收敛于*x ;t P311 22、 ( )任一离散空间必是完备的;t 311 93、 ( )全有界集不一定可分;f 312 214、 ( )相对紧集的闭包是紧集; t 313 345、 ( )完备距离空间的闭子空间可能是完备的;f 313 296、 ()X 是完备距离空间,闭X F F T ⊂→:,如果存在[)1,0∈α,使()()F y x y x Ty Tx ∈∀<,,,,ρρ,则 F x ∈∃*!使得**x Tx =;f 280 Th17、 ( )有界数列空间m 不是可分的;t 292 7.6.5 8、 ( )函相对紧集未必是有界的;f 294 系19、 ( )紧有界线性算子T 连续⇔T 有界; t318 Th210、 ( )在空间[)[]3,21,0 =X ,()y x y x -=,ρ中,[)1,0=F 是相对紧集。

f ⎭⎬⎫⎩⎨⎧-n 11不收敛(本题共五个小题,每小题14分,共70分):1、证明:连续函数空间[]b a C ,在范数()x f f bx a ≤≤=max 下构成一Banach 空间。

证1 显然[]b a C ,为一线性空间;2 ()()()00max 0;0max ≡⇔=⇔=≥=≤≤≤≤x f x f f x f f bx a bx a ;()()f x f x f f bx a bx a αααα===≤≤≤≤max max()()()()g f x g x f x g x f g f bx a bx a bx a +=+≤+=+≤≤≤≤≤≤max max max因而[]b a C ,为一赋范线性空间3 下证[]b a C ,的完备性设{}n f 是[]b a C ,的一基本列,及0>∀ε,0>∃N ,使得N n m >,时,有()ερ<-=n m n m f f f f ,。

泛函分析期末试题及答案

泛函分析期末试题及答案

泛函分析期末试题及答案一、选择题1. 下列哪个不是泛函分析的主要研究对象?A. 函数空间B. 向量空间C. 线性映射D. 点集答案:D2. 泛函是指将一个向量空间的元素映射到一个标量的函数。

以下哪个选项是泛函的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶空间答案:C3. 在泛函分析中,范数是一种度量向量空间中向量大小的方法。

以下哪个选项是范数的定义?A. 函数空间B. 向量空间C. 线性映射D. 函数空间的对偶范数答案:B4. 下列哪个不是泛函分析中的基本定理?A. 嵌入定理B. 开铃定理C. Hahn-Banach定理D. Banach-Steinhaus定理答案:B5. 泛函分析中的内积是指满足一定条件的映射。

以下哪个选项是内积的定义?A. 函数空间B. 向量空间C. 线性映射D. 内积空间答案:D二、填空题1. 完成下列范数的定义:范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。

2. 填写完整的Hahn-Banach定理的表述:设X是一个实或复数的线性空间,Y是X的一个线性子空间,f是定义在Y上的线性泛函,对于所有的y∈Y,有f(y) ≤ p(y),其中p是X上的一个次线性泛函,且满足p(y) ≤ p(x)对所有的x∈X成立,则存在一个定义在整个X上的线性泛函F,满足F(x) ≤ p(x)对所有的x∈X成立,并且在Y上,F和f的限制是相等的。

三、计算题1. 对于给定的函数空间C[0,1],计算函数f(x) = x^2在C[0,1]上的范数。

解答:根据范数的定义,范数是一个实值函数,对于一个向量空间中的向量x,满足以下三个性质:(1) 正定性:||x|| ≥ 0,且当且仅当x=0时,||x|| = 0;(2) 齐次性:对于任意实数a,||ax|| = |a| · ||x||;(3) 三角不等式:对于任意两个向量x和y,||x+y|| ≤ ||x|| + ||y||。

(完整word版)泛函分析试卷

(完整word版)泛函分析试卷

泛函分析期末考试试卷(总分100分) 一、选择题(每个3分,共15分)1、设X 是赋范线性空间,X y x ∈,,T 是X 到X 中的压缩映射,则下列哪个式子成立( ).A .10<<-≤-αα, y x Ty Tx B.1≥-≤-αα, y x Ty Tx C.10<<-≥-αα, y x Ty Tx D.1≥-≥-αα, y x Ty Tx 2、设X 是线性空间,X y x ∈,,实数x 称为x 的范数,下列哪个条件不是应满足的条件:( ).A. 0等价于0且,0==≥x x xB.()数复为任意实,αααx x =C. y x y x +≤+D. y x xy +≤ 3、下列关于度量空间中的点列的说法哪个是错误的( ). A .收敛点列的极限是唯一的 B. 基本点列是收敛点列 C .基本点列是有界点列 D.收敛点列是有界点列 4、巴拿赫空间X 的子集空间Y 为完备的充要条件是( ). A .集X 是开的 B.集Y 是开的 C.集X 是闭的 D.集Y 是闭的5、设(1)p l p <<+∞的共轭空间为q l ,则有11p q+的值为( ).A. 1-B.12 C. 1 D. 12- 二、填空题(每个3分,共15分)1、度量空间中的每一个收敛点列都是( )。

2、任何赋范线性空间的共轭空间是( )。

3、1l 的共轭空间是( )。

4、设X按内积空间<x,y>成为内积空间,则对于X中任意向量x,y 成立不等式()当且仅当x与y线性相关时不等式等号成立。

5、设T为复希尔伯特空间X上有界线性算子,则T为自伴算子的充要条件是()。

三、判断题(每个3分,共15分)1、设X是线性赋范空间,X中的单位球是列紧集,则X必为有限维。

( )2、距离空间中的列紧集都是可分的。

( )3、若范数满足平行四边形法则,范数可以诱导内积。

( )4、任何一个Hilbert空间都有正交基。

泛函分析试题及答案

泛函分析试题及答案

泛函分析试题及答案一、选择题1. 在泛函分析中,以下哪个概念描述了一个函数对于输入变量的敏感程度?A. 泛函B. 导数C. 凸函数D. 可测函数答案:B. 导数2. 设X和Y是两个Banach空间,f:X→Y是一个线性算子。

以下哪个条件可以保证f是有界线性算子?A. f是可逆的B. f是连续的C. f是紧致的D. f是自共轭的答案:B. f是连续的3. 在泛函分析中,以下哪个概念描述了一个函数在每个点上的局部模式与全局模式之间的一致性?A. 可微性B. 凸性C. 全纯性D. 一致连续性答案:B. 凸性4. 设X和Y是两个赋范空间,f:X→Y是一个线性算子。

以下哪个条件可以保证f是有界线性算子?A. f是单射且存在常数C>0,使得对于所有x∈X都有||f(x)|| ≤C||x||B. 对于每个有界集A ⊂ X,f(A)是有界集C. f是连续的D. f是满射答案:A. f是单射且存在常数C>0,使得对于所有x∈X都有||f(x)|| ≤ C||x||二、填空题1. 在Hilbert空间中,内积运算满足线性性和_____________性。

答案:共轭对称性2. 设X是一个有界完备度量空间,那么X是一个____________空间。

答案:Banach空间3. 在泛函分析中,将一个函数的导数定义为其_____________。

答案:弱导数4. 设X是一个线性空间,D是X上的一个有界线性算子。

如果对于所有x和y都有⟨Dx, y⟩ = ⟨x, Dy⟩,那么D被称为______________。

答案:自伴算子三、解答题1. 请简要说明什么是范数,并给出一些范数的例子。

范数是定义在一个线性空间上的一种函数,用于衡量该空间中的向量的大小。

它满足以下三个性质:- 非负性:对于任意向量x,其范数必须大于等于0,即||x|| ≥ 0,并且当且仅当x为零向量时,范数等于0。

- 齐次性:对于任意向量x和任意实数α,有||αx|| = |α| ||x||,其中|α|表示α的绝对值。

泛函分析试卷

泛函分析试卷

泛函分析期末考试试卷(总分100分) 一、选择题(每个3分,共15分)1、设X 是赋范线性空间,X y x ∈,,T 是X 到X 中的压缩映射,则下列哪个式子成立( ).A .10<<-≤-αα, y x Ty Tx B.1≥-≤-αα, y x Ty Tx C.10<<-≥-αα, y x Ty Tx D.1≥-≥-αα, y x Ty Tx 2、设X 是线性空间,X y x ∈,,实数x 称为x 的范数,下列哪个条件不是应满足的条件:( ).A. 0等价于0且,0==≥x x xB.()数复为任意实,αααx x =C. y x y x +≤+D. y x xy +≤ 3、下列关于度量空间中的点列的说法哪个是错误的( ). A .收敛点列的极限是唯一的 B. 基本点列是收敛点列 C .基本点列是有界点列 D.收敛点列是有界点列4、巴拿赫空间X 的子集空间Y 为完备的充要条件是( ). A .集X 是开的 B.集Y 是开的 C.集X 是闭的 D.集Y 是闭的5、设(1)p l p <<+∞的共轭空间为q l ,则有11p q+的值为( ).A. 1-B.12 C. 1 D. 12- 二、填空题(每个3分,共15分)1、度量空间中的每一个收敛点列都是( )。

2、任何赋范线性空间的共轭空间是( )。

3、1l 的共轭空间是( )。

4、设X按内积空间<x,y>成为内积空间,则对于X中任意向量x,y 成立不等式()当且仅当x与y线性相关时不等式等号成立。

5、设T为复希尔伯特空间X上有界线性算子,则T为自伴算子的充要条件是()。

三、判断题(每个3分,共15分)1、设X是线性赋范空间,X中的单位球是列紧集,则X必为有限维。

( )2、距离空间中的列紧集都是可分的。

( )3、若范数满足平行四边形法则,范数可以诱导内积。

( )4、任何一个Hilbert空间都有正交基。

《泛函分析》课程考试试题

《泛函分析》课程考试试题

《泛函分析》课程考试试题学年第 学期 班级时量:100分钟 总分100分考试形式 开卷 一、判断题(以下各题中,正确的打错误打X,每题5分,共30分).如果离散度量空间1可数,那么X 是可分空间.()1 .赋范线性空间不是度量空间.().设X 是复内积空间,x, yeX,那么||x+y 『=||x 『+|| y 『的充要条件是()82 .设/〃(p 〉0)表示满足Z ㈤"< 8的实(或复)数列X = M 的全体,对/〃中点X = ■} k=T 5,设7为赋范线性空间X 的子空间0(7)到赋范线性空间y 中的线性算子,那么T = sup Tx .料国.设{&}是Hilbert 空间X 中可数规范正交系,那么对每个XE X,成立8G£卜,哂=卜『/=1二、证明题(此题共6个小题,请任选5个小题作答,每题14分,共70分)6 .设T 是度量空间X 到X 中的压缩映射,那么对任意正整数— 7〃也是压缩映射.7 .设X 是完备度量空间,A 是X 到X 中映射,假设且那么映射A 有唯一不动点. 8 .设sup|«,J <oo,在尸中定义线性算子y = Tx, q=a£, i = l,2,…,其中 n>\x =,・・・,〃,・・・),y = (〃],%,・・・,〃〃,・・・),那么T 是有界线性算子,且||T|| = supMn>\.设X 是实可分的Hilbert 空间,证明乃中存在一个可数的完全规范正交系{〃}.9 .设X 是赋范线性空间,与,九2,毛是1中3个线性无关向量,是一组数,假设对 任意数彳"2,%3,有那么在X 上存在满足以下条件(1)、(2)的线性泛函(1)/(工,)=4,u = l, 2,3⑵II 小L〃心叩d(A«心,)-°“),d(x, y) 〃心叩d(A«心,)-°“),d(x, y) (77 f oo) 定义人定义人 XI 成为完备的赋范线性空间.k=10.设((以=1,2,・•,是Banach空间X到赋范线性空间丫中有界线性算子,假设对每个XE X,{7>}都收敛,令笈=1的7>,证明T是X到丫中有界线性算子.。

《 泛函分析》期末试题

《 泛函分析》期末试题
6 (20 分) 设1 p , xn (xni ) l p (n 1), 并且范数有界, 则当 i 1, xni xi (n ) 时, 存在{ xn }的凸组合的序列{ yn }依范数收敛于 x (xi ) .
存在 xn X , xn 0 使得 Txn . 3 (15 分) 设 X 是 Banach 空间, An , A B( X ), 则 An x Ax, x X 当且仅当{ An }
有界并且存在子集合 G 使得 spanG X ,在 G 上 An x Ax. 4 (15 分) 对于内积空间 H 中的规范正交集{e1, , en}和 H 中的 x ,证明函数
n
f (1, , n ) x iei 当且仅当 i (x, ei ) ( i 1, , n) 时达到 i1
极小值。

5 (15 分) 设 H 是 Hilbet 空间,{en , n 1}是其中的规范正交系。证明级数 nen 按 n1 H 的范数收敛等价于弱收敛。
《 泛函分析》期末试题
1(20 分) 证明非ቤተ መጻሕፍቲ ባይዱ性积分方程
b
x(t) a K (t, s, x(s))ds y(t), t [a,b]
在 足够小时有唯一连续解。这里 y(t) C[a,b], K : [a,b][a,b] R R
连续并且满足
K(t, s,1) K(t, s, 2 ) L1 2 , t, s [a,b]. 2 (15 分) 设 X ,Y 是线性赋范空间,T : X Y 是线性算子, 则T 不是有界的当且仅当
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。

泛函分析期末考试试卷(总分100分) 一、选择题(每个3分,共15分)1、设X 是赋范线性空间,X y x ∈,,T 是X 到X 中的压缩映射,则下列哪个式子成立( ). A .10<<-≤-αα, y x Ty Tx B.1≥-≤-αα, y x Ty TxC.10<<-≥-αα, y x Ty TxD.1≥-≥-αα,y x Ty Tx 2、设X 是线性空间,X y x ∈,,实数x 称为x 的范数,下列哪个条件不是应满足的条件:( ). A. 0等价于0且,0==≥x x xB.()数复为任意实,αααx x =C. y x y x +≤+D. y x xy +≤ 3、下列关于度量空间中的点列的说法哪个是错误的( ). A .收敛点列的极限是唯一的 B. 基本点列是收敛点列 C .基本点列是有界点列 D.收敛点列是有界点列 4、巴拿赫空间X 的子集空间Y 为完备的充要条件是( ). A .集X 是开的 B.集Y 是开的C.集X是闭的D.集Y是闭的5、设(1)pl p<<+∞的共轭空间为q l,则有11p q+的值为().A. 1-B.12C. 1D.12-二、填空题(每个3分,共15分)1、度量空间中的每一个收敛点列都是()。

2、任何赋范线性空间的共轭空间是()。

3、1l的共轭空间是()。

4、设X按内积空间<x,y>成为内积空间,则对于X中任意向量x,y 成立不等式()当且仅当x与y线性相关时不等式等号成立。

5、设T为复希尔伯特空间X上有界线性算子,则T为自伴算子的充要条件是()。

三、判断题(每个3分,共15分)1、设X是线性赋范空间,X中的单位球是列紧集,则X必为有限维。

( )2、距离空间中的列紧集都是可分的。

( )3、若范数满足平行四边形法则,范数可以诱导内积。

( )4、任何一个Hilbert空间都有正交基。

( )5、设X是线性赋范空间,T是X X的有界线性算子,若T既是单射又是满射,则T 有逆算子。

( ) 四、计算题(10分)叙述1l 空间的定义,并求1l 上连续线性泛函全体所成的空间?。

五、证明题(第一个5分,其余10分一个,共45分)1、若T 为Banach 空间X 上的无界闭算子,证明T 的定义域至多只能在X 中稠密。

2、设[0,1]C 表示闭区间[0,1]上连续函数全体,对任何,[0,1]x y C ∈,令10(,)|()()|,d x y x t y t dt =-⎰证明(,)x d 成为度量空间。

3、证明n R 按范数||||max ||i ix ξ=组成的赋范线性空间X 与n R 按范数1||||||ni i x ξ==∑组成的赋范线性空间Y 共轭。

4、设X 是可分Banach 空间,M 是X '中的有界集,证明M 中每个点列含有一个弱*收敛子列。

5、设H 是内积空间,M 为H 的子集,证明M 在H 中的正交补是H 中的闭线性子空间。

泛函分析期末考试试卷答案一、选择题1、A2、D3、B4、D5、D二、填空题1、柯西点列2、巴拿赫空间3、∞l 4、|<x,y>|≦||x||||y|| 5、对于一切x ∈X,<TX,X>是实数 三、判断题1、对2、对3、错4、错5、错 四、计算题答: 1121(,,),,(1,2)i i i l x R i ξξξξ∞=⎧⎫==<∞∈=∞⎨⎬⎩⎭∑ 对于任意12(,,,)n x ξξξ=,12(,,)n y ηηη=,定义运算1122(,)n n x y ξηξηξη+=+++,12(,)n ax a a a ξξξ=1l 按上述加法与数乘运算成为线性空间11i i x ξ∞==∑1l 按上述定义的范数构为Banach 空间令(0,01,0),1,2n ne n ==,121(,,0,0,),nn n n i i i x x e ξξξξ===∑则121(,)nnx l ξξξ∀=∈能被表示为lim n n x x →∞=,对任意给定()'1f l∈,令(),1,2n n f e n η==则11()(lim )lim ()lim ()nn n n i i i i n n n i i f x f x f x f e ξξη→∞→∞→∞======∑∑.又因为1i e =对于i ∀有1()i i i f e f e f η=≤=。

由此可得sup i if η≤即12(,)nl ηηη∞∈反之,对12(,)nb l ηηη∞∀=∈,作1l 上泛函()f x 如下:1121(),(,)ni i ni f x x l ξηξξξ==∀=∈∑,显然f 是1l 上线性泛函,又因为1111()sup .sup ,i i i i i i i iii i i f x x ξηξηηξη∞∞∞====≤≤=∑∑∑因此,1'(),f l ∈并且有sup .i if b η∞≤=综上1'().l l ∞=五、证明题(共50分)1、 证:反证法。

若T 为定义在整个空间X 上的闭算子,由于X 为闭集,而X 为Banach 空间,由闭图像定理可知,T 为X 到X 的有界闭算子,这与T 为无界闭算子矛盾,原命题成立。

2、证:由定义,对于,[0,1],x y C ∀∈显然(,)0,d x y ≥且如果()(),[0,1],x t y t t =∈显然(,)0,d x y =反之如果(,)0,d x y =因为|()()|0,x t y t -≥所以()(),..[0,1],x t y t a e =于由于(),()x t y t 为连续函数,若0[0,1],t ∃∈使得00()(),x t y t ≠则存在0,δ>使得在00(,)[0,1]t t δδ-+⊂区间上,均有()(),x t y t ≠这与()(),..x t y t a e =相矛盾,所以()(),[0,1].x t y t t ≡∈此外,对于,,[0,1],x y z C ∀∈111(,)|()()||()()||()()|(,)(,)d x z x t z t dt x t y t dt y t z t dt d x y d y z =-≤-+-≤+⎰⎰⎰即三点不等式成立。

因此(,)x d 成为度量空间。

3、证:定义X ’到Y 的映射T ,任意'1,((),,()),n f X Tf f e f e ∈=其中(0,,0,1,0,0),1,2,,i e i n == 对任意1ni i i x e ξ==∑,11()()()max nniiiii i f x f e f e ξξ===≤∑∑=Tf x ,于是f Tf ≤。

反之,对任意()1,,,n y Y ηη=∈定义'f X ∈:对任意1n i i i x e ξ==∑,1(),ni i i f x ξη==∑则Tf y =。

因此T 是从X ’到Y 上的映射。

若(0,,0)y =,则显然0f =,则0Tf f == 若1(,,)(0,,0),n y ηη=≠令1(sign )ni i i x e η==∑,则1x =。

因此()f f x ≥=1.nii y Tf η===∑从而.Tf f =于是T 是从X ’到Y 的同构映射,在同构的意义下X ’=Y 。

4、证: 设{},n f M ⊂存在0,,1,2,.n K f K n >≤=设{}n x 是X 的可数稠密子集.考察有界数列{}11().n n f x ∞=由Weierstrass 定理,存在收敛子列{}{}1,11()().n n f x f x ⊂同理{}1,21().n n f x ∞=也有收敛子列{}2,2()n f x .一般地,若已有子列{},1()k n k n f x ∞=收敛,考察{},11().k n k n f x ∞+=.由于数列的有界性可找到收敛子列{}1,11()k n k n f x ∞++=我们用对角线法则,取泛函列{}{},11k kn n k f f ∞∞==⊂,{},k k f 在稠密子集{}n x 上点点收敛.事实上,由定义,对任意i ,{},1()i n i n f x ∞=是收敛的,而{},k kk if ∞=是{},1i nn f ∞=的子列,因此{},1()k k i k f x ∞=也是收敛的, {},k k f 在{}n x 上点点收敛,即 {},k k f 弱*收敛。

5、证:对于,,,,a R x y M z M ⊥∀∈∀∈∀∈则,,,0,x y z x z y z +=+=,,0,ax z a x z == 因此M ⊥为H 的线性子空间。

另外,对于任意M ⊥中的聚点x ,即存在由M ⊥中互异的点组成的点列{},n x 使得lim .n n x x →∞=由内积的连续性,可知,lim ,lim ,0,n n n n x z x z x z →∞→∞===即x M ⊥∈,因此M ⊥为H 的闭线性子空间。

.试卷评价:题型丰富,难易结合最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改赠人玫瑰,手留余香。

相关文档
最新文档