七年级数学上册有理数减法
七年级数学有理数的减法

1 三、11.(1)-6 4
(2)10.7
拓展提高练习(练习册P19-20)
4.若a﹥0,且∣ a ∣ ﹥ ∣ b ∣,则a-b是(A )
A .正数
C .正数或负数
B. 负数
D. 0
8.两数之和是11,其中,一个加数是-5,则另一个
16 加数是____.
9.
的倒数的相反数是____. 13
3 2 5 8 ∣ 3∣ 减1的差的相反数的是_____, 5 5 8
减数变为它的相反数
( +15 ) – ( - 5 ) = (+15 ) + ( +5 )
减号变为加号 两个变化: (1)减号变为加号 (2)减数变为它的相反数
有理数的减法法则:
减去一个数,等于加上这个数的相 反数.
减数变为它的相反数
a– –b = a + ( – b )
减号变为加号
两个变化: (1)减号变为加号 (2)减数变为它的相反数
严,就是在这么喜庆的时刻也没有任何改变。此刻,他正面无表情地望着眼前的这壹切,既没有喜悦,也没有忧伤,只是不经意间偶尔微蹙壹 下眉梢。来得早的宾客已经等了快壹个时辰了,即使来得晚的,也已经有些微微心急。就在众人翘首以盼,苦苦等待之际,典仪官的壹声“吉 时到”,整个王府立即掀起了壹片欢呼声。仆从们早就各就各位,严阵以待,宾客们蜂拥而至,将新郎团团围住,并簇拥着朝王府大门口走。 门口已经聚集了几十口子人,新郎壹行抵达府门之际,眼看着新娘子的花轿也稳稳当当地停在了王府的大门口!由于今日娶的是侧福晋,因此 婚礼仪式比之大婚轻减了许多,但是新郎官在府门口迎亲的程序仍然必不可少。待八抬大轿抬过了炭火盆、抬过了马鞍子,稳稳当当地落地后, 只见新郎弯弓搭箭,“嗖、嗖、嗖”,手起箭落,三支利箭准确无误地射向轿门。“驱邪避秽保平安!”随着嬷嬷的壹声吉利话出口,众人纷 份发出了赞叹声:“好身手!”“王爷果真了得!”“恭喜四哥!”众人的齐口夸赞并没有给新郎带来任何情绪上的变化,他仍然是壹言未发, 面无表情,放下弓箭之后,转身就朝宴席上走去,留下壹众人等面面相觑,不如如何是好。按照迎亲的惯例,宾客们应该随新郎壹并来到宴席 上,可是?按照迎亲的惯例,原本新郎应该与新娘子共同进府,并送至洞房,留下新娘在洞房等候,新郎来到宴席招呼宾客才是。迎亲迎亲, 这亲还没有迎进府,新郎怎么自己就先走了?百思不得其解的众人们很是难办,犹豫半天也不知道是跟上新郎呢,还是跟着新娘去洞房。就在 这思忖之间,无意之中人们分成了两部分:壹部分人急急慌慌、无可奈何地随着新郎来到了宴席上;另壹部分人则磨磨蹭蹭、故意拖延,只求 壹睹新娘的风采。射过三箭之后,按照常规,该是新娘子下轿的时候了。在嬷嬷的搀扶下,新娘子壹身桃红色凤冠霞披,头蒙喜帕、手捧苹果, 缓缓走下轿来。虽然蒙着红盖头,任谁也不可能真正壹睹新娘的真容,但那纤瘦的身材,端庄的体态,稳健的步伐,令余下在场的每壹个人都 禁不住暗暗发出壹声惊叹:果然是名不虚传!窈窕淑女,君子好逑!于是人们也就更加好奇:这喜帕下的容貌该是何等的娇美模样?喜宴上居 主位的,不是新郎本人,而是二阿哥胤礽,当朝太子殿下!与往日不同的是,由于是四阿哥的喜宴,因此四阿哥--雍亲王位居太子右手,三 阿哥--诚亲王改居太子左手,其它众兄弟们长幼有序分坐余位。虽然刚刚有壹些小小的波折,但是大喜的日子,大家都不想让四哥(弟)为 难,特别是在十三阿哥嘻嘻哈哈的壹番招呼下,众人也都暂时忘记了刚刚的小插曲,热热闹闹地投入到了喜宴之中。因为是四哥的喜宴,各位 兄弟们难得有机会可
七年级上册数学第2课时 有理数的加减混合运算

答:第一天最高价与最低价的差为0.5元,第 二天最高价与最低价的差为0.3元,第三天最高价 与最低价的差为0.13元;差的平均值是0.31元.
解: 1 4 3 0.5 = 4 0.5 1 3 = 4.5 4
= 0.5.
解: 2.4 3.5 4.6 3.5 = 2.4 4.6 3.5 3.5
= 7 7
=0.
(3)(7) (5) (4) (10);
解: (7) (5) (4) (10);
解:原式=(-1+2)+(-3+4)+…+(- 2015+2016)-2017
=1+1+…+1-2017 =1008-2017 =-1009.
拓展延伸 3.一种股票第一天的最高价比开盘价高0.3元,
最低价比开盘价低0.2元;第二天的最高价比开盘价 高0.2元,最低价比开盘价低0.1元;第三天的最高价 等于开盘价,最低价比开盘价低0.13元,计算每天 的最高价与最低价的差,以及这些差的平均值.
• 学习重、难点: 重点:加减法统一成加法. 难点:有理数加法的省略写法和读法.
推进新课
知识点 探究有理数的加减混合运算
例5 计算:(-20)+ (+3) - (-5) - (+7). 分析: 这个算式中有加法,也有减法.可以根据 有理数减法法则,把它改写为
(-20)+ (+3) + (+5) + (-7).
a=2,b=6;a=0,b=6;a=2,b=-6; a=-2,b=-6.
你能发现点 A, B 之间的距离与数 a,b 之间的关系吗?
2.1.2 有理数的减法(第2课时 有理数加减混合运算)(课件)七年级数学上册(人教版2024)

1 5 2 1
(2)- + + - ;
4 6 3 2
(4)4.7-(-8.9)-7.5+(-6);
7
1
1
1
(5)(-4 )-(-5 )+(-4 )-(+3 );
8
2
4
8
2
1
5
1
(6)(- )+|0-5 |+|-4 |+(-9 ).
3
6
6
3
3
解:(1)原式 = 3.1.(2)原式 = . (3)原式 = 8.
写为:
可以读作
(-20) + (+3) -(-5) -(+7)
“负20、正3、正5、负7的和” =-20+3 +5-7
=-20-7+3 +5
或读作
=-27+8
“负20加3加5减7”.
=-19
概念归纳
有理数的加减混合运算可以统一为 加法
即a+b-c= a+b+(-c) .
运算,
1.加减混合运算的一般步骤:
哪一种书写更
简洁?运算理
方便呢?
=1.3+1.1-1.4
=2.4-1.4
=1
有理数加
减混合运算如
何进行呢?
例1. 计算:(-20)+(+3)-(+5)-(+7)
运用减法
法则,将减法
转化为加法
解: (-20)+(+3)-(-5)-(+7)
=( 20) ( 3) ( 5) ( 7)
=[(-20)+(-7)]+[(+5)+(+3)]
②策略:同号的加数一起加,同分母(易通分)的加数一起加,和
第一章《有理数》1有理数的加减法课件七年级数学人教版上册

观察,你又有什么发现? (+3)+(+5)=+8
(4) 如果a<0,b>0, |a|<|b|,那么a+b____0; 观察,你又有什么发现?
-4 -3 -2 -1 0 1 2 3 4 5 一个数同零相加,仍得这个数。 14﹣9+8﹣7+13﹣6=13千米; 2、小兰第一次前进了5米,接着按同一方向
B. b+c<0 D.-a+b+c<0
4.若│x│= 3,│y│= 2,且x>y,则x+y的值为( D )
A.1 B.-5
C.-5或-1 D.5或1
4.灌云高速公路养护小组,乘车沿南北向公路巡视维 护,如果约定向北为正,向南为负,当天的行驶记录 如下(单位:千米)
+15,﹣6,+8,﹣14,﹣4,+10,﹣4,﹣7,+6,+14
如果小球先向右移动3米,再向左移动5米,那么
两次运动后总的运动结果是什么?
+3 -5
-4 -3 -2 -1 0 1 2 3 4 5
-2 两次运动后小球从起点向左运动了2米,
写成算式就是: (+3)+(-5)=-2
议一议
加数 加数 和
(+5)+(-3)= +2 (+3) + ( - 5 ) = -2
2、能够准确计算,并灵活应用。 (-3)+(-5)=-8
故养护过程中,最远处离出发点有18千米, 一个数同零相加,仍得这个数。 (3) 如果a>0,b<0,|a|>|b|,那么a+b____0; 15﹣6=9,9+8=17,17﹣14=3,3﹣4=﹣1,﹣1+10=9,9﹣5=5,5﹣7=﹣2,﹣2+6=4,4+14=18, 2、能够准确计算,并灵活应用。
人教七年级数学上册-有理数的减法(附习题)

拓展延伸 3.一种股票第一天的最高价比开盘价高0.3元,
最低价比开盘价低0.2元;第二天的最高价比开盘价 高0.2元,最低价比开盘价低0.1元;第三天的最高 价等于开盘价,最低价比开盘价低0.13元,计算每 天的最高价与最低价的差,以及这些差的平均值.
解:第一天:0.3-(-0.2)=0.5元 第二天:0.2-(-0.1)=0.3元 第三天:0-(-0.13)=0.13元 平均值:(0.5+0.3+0.13)÷3=0.31元
例4 计算:
(1)(-3)-(-5); (3) 7.2-(-4.8);
(2)0-7;
(4) (-3 1 )-5 1 . 24
(1)(-3)-(-5); 解:=(-3)+5
=2
(2)0-7; 解:= 0+(-7)
=-7
(3) 7.2-(-4.8); 解:= 7.2+4.8 =12
(4) (-3 1 )-5 1 . 24
1.3.2 有理数的减法
第1课时 有理数的减法
新课导入
北京某天气温是-3ºC~3ºC,这天的温差 是多少摄氏度呢?
3-(-3)
温差是指最高气温 减最低气温.
• 学习目标: 1. 知道有理数的减法法则. 2. 能熟练地运用有理数的减法法则进行有理数 的减法运算. 3. 通过加与减两种运算的对立统一关系,建立 “转化”的数学思想.
解: (-3 1 ) (-5 1)
2
4
-8 3 4
练习:教材第23页 1.计算:
(1) 6-9;-3
(2) (+4)-(-7);11
(3)(-5)-(-8);3 (4) 0 -(-5);5
(5)(-2.5)-5.9 ; (6) 1.9 -(-0.6).2.5 -8.4
人教版 七年级(上)数学 第一章 有理数 有理数的加减 (含解析)

第 2 讲有理数的加减知识定位讲解用时:3分钟A、适用范围:人教版初一,基础一般;B、知识点概述:本讲义主要用于人教版初一新课,本节课我们要学习有理数的加法,有理数的减法;核心部分是有理数加减法的混合运算。
知识梳理讲解用时:20分钟有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.3.运算律:有理数加法运算律加法交换律文字语言两个数相加,交换加数的位置,和不变符号语言a+b=b+a加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)要点诠释:交换加数的位置时,不要忘记符号.课堂精讲精练【例题1】我国是最早认识负数,并进行相关运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负术”的方法,图1表示的是计算3+(﹣4)的过程.按照这种方法,图2表示的过程应是在计算()A.(﹣5)+(﹣2)B.(﹣5)+2 C.5+(﹣2)D.5+2【答案】C【解析】解:由图1知:白色表示正数,黑色表示负数,所以图2表示的过程应是在计算5+(﹣2),故选:C.讲解用时:3分钟解题思路:由图1可以看出白色表示正数,黑色表示负数,观察图2即可列式.教学建议:引导学生读懂题目信息是解题的关键.1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:.要点诠释:将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.()a b a b-=+-有理数的减法难度: 3 适应场景:当堂练习例题来源:无【练习1.1】在下列执行异号两数相加的步骤中,错误的是()①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④【答案】D【解析】解:执行异号两数相加的步骤:①求两个有理数的绝对值,正确;②比较两个有理数绝对值的大小,正确;③将绝对值较大数的符号作为结果的符号,正确;④将两个有理数绝对值的和作为结果的绝对值,错误.故选:D.讲解用时:2分钟解题思路:根据有理数加法法则:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,进而判断即可.教学建议:强调有理数加减法的运算法则难度: 3 适应场景:当堂例题例题来源:无【例题2】如图,乐乐将﹣3,﹣2,﹣1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a、b、c分别标上其中的一个数,则a﹣b+c的值为()A.﹣1B.0C.1D.3【答案】C【解析】解:∵5+1﹣3=3,每行、每列、每条对角线上的三个数之和相等,∴a+5+0=33+1+b=3c﹣3+4=3,∴a=﹣2,b=﹣1,c=2,∴a﹣b+c=﹣2+1+2=1,故选:C.讲解用时:3分钟解题思路:根据三个数的和为依次列式计算即可求解.教学建议:根据表格,先求出三个数的和是解题的关键.难度: 3 适应场景:当堂例题例题来源:无【练习2.1】下列说法:①所有有理数都能用数轴上的点表示;②符号不同的两个数互为相反数;③有理数包括整数和分数;④两数相加,和一定大于任意一个加数.()A.3个B.2个C.1个D.0个【答案】B【解析】解:①所有有理数都能用数轴上的点表示,正确;②符号不同的两个数互为相反数,相加为零此时互为相反数,故此选项错误;③有理数包括整数和分数,正确;④两数相加,和一定大于任意一个加数,两负数相加则不同,故此选项错误,故选:B.讲解用时:2分钟解题思路:直接利用互为相反数以及有理数的定义和有理数加减运算法则分别判断得出答案.教学建议:此题主要考查了有理数的加法运算以及相反数的定义等知识,正确掌握运算法则是解题关键.难度: 3 适应场景:当堂练习例题来源:无【例题3】计算:(﹣3)+(+15.5)+(﹣6)+(﹣5)【答案】0【解析】解:原式=(﹣3﹣6)+(15.5﹣5)=﹣10+10=0.讲解用时:3分钟解题思路:原式结合后,相加即可求出值.教学建议:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.难度: 3 适应场景:当堂练习例题来源:无【练习3.1】已知a为正数,b为负数,且|a|=4,|b|=6,求a+b的值.【答案】﹣2【解析】解:因为a为正数,|a|=4,所以a=4,因为b为负数,|b|=6,所以b=﹣6,所以a+b=4+(﹣6)=﹣2.讲解用时:3分钟解题思路:先依据绝对值的性质求得a、b的值,最后依据加法法则进行计算即可.教学建议:巩固有理数的加法、绝对值的性质,熟练掌握相关法则是解题的关键.难度: 3 适应场景:当堂例题例题来源:无【例题4】下表列出了国外几个城市与北京的时差(带正号的数表示同一时刻比北京的时间早的时数).现在的北京时间是上午8:00.(1)求现在纽约时间是多少?(2)斌斌现在想给远在巴黎的姑妈打电话,你认为合适吗?时差/时纽约﹣13巴黎﹣7东京+1芝加哥﹣14【答案】(1)现在纽约时间是晚上7点;(2)不合适.【解析】解:(1)现在纽约时间是晚上7点;(2)现在巴黎时间是凌晨1点,不合适.讲解用时:3分钟解题思路:(1)根据时差求出纽约时间即可;(2)计算出巴黎的时间,即可做出判断.教学建议:熟练掌握运算法则是解本题的关键.难度: 3 适应场景:当堂例题例题来源:无【练习4.1】在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.【答案】(1)(2)x+y=13【解析】解:(1)2+3+4=9,9﹣6﹣4=﹣1,9﹣6﹣2=1,9﹣2﹣7=0,9﹣4﹣0=5,如图所示:(2)﹣3+1﹣4=﹣6,﹣6+1﹣(﹣3)=﹣2,﹣2+1+4=3,如图所示:x=3﹣4﹣(﹣6)=5,y=3﹣1﹣(﹣6)=8,x+y=5+8=13.讲解用时:4分钟解题思路:(1)根据三个数的和为2+3+4=9,依次列式计算即可求解;(2)先求出下面中间的数,进一步得到右上面的数,从而得到x、y的值,相加可求x+y的值.教学建议:根据表格,先求出三个数的和是解题的关键,也是本题的突破口.难度: 3 适应场景:当堂练习例题来源:无【例题5】列式计算:(1)已知甲、乙两数之和为﹣2020,其中甲数是﹣7,求乙数;(2)已知x是5的相反数,y比x小﹣7,求x与﹣y的差.【答案】(1)﹣2013;(2)﹣3【解析】解:(1)根据题意知乙数为﹣2020﹣(﹣7)=﹣2020+7=﹣2013;(2)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.讲解用时:3分钟解题思路:(1)根据题意知乙数为﹣2020﹣(﹣7),计算可得;(2)由题意得x=﹣5,y=x﹣(﹣7)=﹣5+7=2,再代入x﹣(﹣y)计算可得.教学建议:本题主要考查有理数的加法,解题的关键是根据题意列出算式并熟练掌握有理数的加减运算法则.难度: 3 适应场景:当堂例题例题来源:无【练习5.1】已知有理数a,b,c在数轴上的位置如图所示,且|a|=1,|b|=2,|c|=4.求3b+2a ﹣c的值.【答案】8.【解析】解:∵a、c在原点的左侧,b在原点的右侧,∴b>0,c<0,a<0,∵|a|=1,|b|=2,|c|=4,∴a=﹣1,b=2,c=﹣4,∴3b+2a﹣c=6﹣2+4=8.讲解用时:3分钟解题思路:根据a 、b 、c 在数轴上的位置可知b >0,c <0,a <0,再根据|a|=1,|b|=2,|c|=4可求出a 、b 、c 的值,代入3b+2a ﹣c 进行计算即可. 教学建议:这题考查的是数轴的特点及绝对值的性质,属较简单题目. 难度: 3 适应场景:当堂练习 例题来源:无【例题6】某单位一周中收支情况如下:524.5+元,274.3-元,490+元,100-元,29.7+元,123.6-元,232.1-元.问该单位这一周,总共收入多少元?总共支出多少元?收支相抵后,余额是多少元?【答案】共收入1044.2元,共支出730元,收支相抵后,余额为314.2元.【解析】()524.5++()490+()+29.7=1044.2+解:共收入为:元,()274.3+-()100-()+123.6-()+232.1730-=- 共支出为:元()2.3147302.1044=-+ 收支相抵为:元.讲解用时:3分钟解题思路:利用收入与支出的概念和有理数的混合运算即可解决教学建议:引导学生理解有理数的加法的实际应用.难度: 3 适应场景:当堂例题 例题来源:无【练习6.1】(1)()()()()()1789614------+--;(2)21513263⎛⎫⎛⎫⎛⎫⎛⎫--+---- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (3)()()1112 6.5 6.3625⎛⎫⎡⎤---+--- ⎪⎢⎥⎝⎭⎣⎦. 【答案】(1)8;(2)0;(3) 6.1-.【解析】()()()()()178961417896148------+--=-++-+=(1);215121151155503263332632666⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--+----=-+-+=--+=-+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭(2); ()111112 6.5 6.3612 6.412 6.4 6.12522⎛⎫⎡⎤⎛⎫⎛⎫=---+-=---=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎝⎭原式(3).讲解用时:4分钟 解题思路:利用有理数减法的运算法则即可解决,括号前面是负号时,去括号要注意变号.教学建议:注意跟学生强调变号问题难度: 3 适应场景:当堂练习 例题来源:无【例题7】 如果2113x ⎛⎫+-= ⎪⎝⎭,那么x 等于______. 【答案】322=x 或223x =-. 【解析】2113x ⎛⎫+-= ⎪⎝⎭解:因为,2211233x ⎛⎫=--= ⎪⎝⎭所以, 322=x 223x =-所以或.讲解用时:3分钟解题思路:利用绝对值的代数意义和有理数的加减法运算法则即可求出结果 教学建议:熟练掌握绝对值的代数意义是解本题的关键.难度: 3 适应场景:当堂例题 例题来源:无【练习7.1】若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a+b ,cd ,m 的值;(2)求m+cd+的值.【答案】(1)a+b=0,cd=1,m=±2.(2)3或﹣1.【解析】解:(1)∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2, ∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+=2+1+0=3; 当m=﹣2时,m+cd+=﹣2+1+0=﹣1. 讲解用时:4分钟解题思路:(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.教学建议:解决本题的关键是熟记倒数、相反数、绝对值的意义.难度: 3 适应场景:当堂练习 例题来源:无课后作业【作业1】如果规定运算()()23a b a b ⊗=---,求73124⎛⎫⊗- ⎪⎝⎭的值. 【答案】1253- 【解析】7373795=2331241246412⎡⎤⎛⎫⎛⎫⎛⎫⊗--⨯--⨯-=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 讲解用时:4分钟难度: 2 适应场景:练习题 例题来源:无【作业2】计算:123456789101112201720182019+--++--++--+++-.【答案】0.【解析】123456789101112201720182019+--++--++--+++-()()()()504123456789101112201720182019=+--++--++--+++-对括号 45042016=-⨯+20162016=-+0=.讲解用时:4分钟难度: 4 适应场景:练习题 例题来源:无【作业3】 计算:21150543236-+---. 【答案】31. 【解析】211521154543236322=-+--=-+--原式2111543223=-+-= 讲解用时:5分钟难度: 3 适应场景:练习题 例题来源:无。
七年级数学上学期有理数的减法及混合运算讲义

有理数的减法&加减混合运算练习【复习目标】1.能进行包括小数或分数的有理数的减法运算;2.能进行包括小数或分数的有理数的加减混合运算; 【知识回顾】【知识点击】有理数的减法有理数减法法则:减去一个数,等于加上这个数的相反数.符号表示"a −b =a +(−b)." 观察这个表达式,a 减去一个数变成了a 加上一个数,即减法运算变成了加法运算;减数b 它的相反数(−b);而被减数b 没有发生变化.简单总结为:两变一不变.【例1】计算:(1)18-(-3); (2)(-3)-18; (3)(-18)-(-3); (4)(-3)-(-18) ;(5) 0-7.(6) -1-2; (7) 3-(-3); (8) (-3.71)-(-1.45); (9) 6.18-(-2.93).【例2】计算:(1) (-3)-[6-(-2)]; (2) 15-(6-9); (3) |-3.5|-|-2.5|-(-2).(4) (3-10)-2; (5) 3-(10-2); (6) (2-7)-(3-9); (7) )321()61()21()31(+------【例3】10箱苹果中,每箱以20千克为标准,超过20千克为正数,不足20千克为负数,记录如下:+2,0,-1,+1,-2,-1.5,-0.5,+0.25,0,-0.25. (1)最重的和最轻的差多少千克? (2)10箱总重量是多少千克?【例4】下面是一个方阵图,每行的3个数、每列的3个数、斜对角的3个数相加的和均相等。
根据图中给出的数,对照原来的方阵图,你能完成右边的方阵图吗?加减混合运算【例5】 (1) (-20)+(+3)-(+5)-(-7) (2) (-11)-7+(-9)-(-6)【例6】(1) (14)(4)(2)(26)(3)++-+-+++- (2) -40-28-(-19)+(-24)-(-32)(3) 2115351434612⎛⎫⎛⎫---++- ⎪ ⎪⎝⎭⎝⎭(4)【基础限时训练】 1.填空题(1)温度3°C 比-9°C 高 ; (2)温度-6°C 比-2°C 低 ; (3)海拔-200米比-300米高 ;(4)海拔600米比-100米高 。
七年级上册数学有理数的加减混合运算

第一部分:引言在学习数学的过程中,有理数的加减混合运算是一个非常重要的内容。
它不仅需要我们掌握基本的加减运算规则,还需要我们能够灵活运用这些规则解决实际问题。
本文将从简单到复杂,由浅入深地探讨七年级上册数学有理数的加减混合运算,希望能够帮助你更好地理解和掌握这一知识点。
第二部分:基本概念让我们回顾一下有理数的加法和减法。
在有理数的加法中,同号为正,异号为负,我们只需要将它们的绝对值相加,并保持原来的符号不变。
而在有理数的减法中,我们可以将减法转化为加法,即将减数取相反数,再与被减数相加。
这些基本的加减法规则在混合运算中仍然适用。
第三部分:混合运算举例接下来,让我们通过一些例子来深入理解有理数的加减混合运算。
假设我们有一个混合运算的式子:2+(-5)-(-3)+7。
我们要将减法转化为加法,即将减数取相反数,得到2+(-5)+3+7。
我们按照顺序进行加法运算,得到7。
通过这个例子,我们可以看到,混合运算中的关键是要按照规定的顺序进行加减法,并且要注意负号的使用。
第四部分:实际问题解决除了简单的混合运算例子外,有理数的加减混合运算还可以帮助我们解决一些实际的问题。
在计算温度变化、海拔高度等问题时,我们经常需要进行有理数的混合运算。
通过这些实际问题的练习,我们可以更好地掌握混合运算的技巧,提高我们的解决问题的能力。
第五部分:个人观点和总结在我看来,有理数的加减混合运算是数学中的重要知识点之一。
通过深入理解和灵活运用这些规则,我们可以更好地解决实际问题,提高数学水平。
当然,要掌握混合运算并不是一件容易的事情,需要我们多加练习,多思考,才能够真正掌握其中的精髓。
七年级上册数学有理数的加减混合运算是一个需要我们认真对待的知识点。
只有深入理解其规则和原理,并不断进行练习和实际应用,我们才能真正掌握这一知识点。
希望通过本文的介绍和讨论,你能够对有理数的混合运算有更清晰的认识,并能够在以后的学习中更好地运用这些知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
猜想:任意两个不为0的有理数的和的绝对值与其绝对 值的和的大小关系?
(2) 利用加法运算律,进行简便运算;
(3) 求出结果.
【体验2】交换加数的位置,要连同它的符号一起交换.
【练3】计算: (1) 1-4+3-0.5 (2) -2.4+3.5-4.6+3.5 (3) (-7)-(+5)+(-4)-(-10)
(4) 3 7 ( 1) ( 2) 1 42 6 3
3355
=1-2
=-1
【例1】计算:
(1) -(-1.6)+(-2.45)-(+2.7)+(-1.55)-(-2.4)
+(+2.7)
(2)
(
1 3
)
(
1 2
)
(
0.7
5
)(
2 3
)
(3)
23
41.23
23 6 11
2
8.77
6 18 1 1
【体验1】加减混合运算的一般步骤:
(1) 遇“减”化“加”,并写成省略加号的代数和;
【有理数减法法则】
减去一个数,等于加上这个数的相反数.
学习目标: 1、理解加减法混合运算统一为加法运算的意义, 学会加减法统一成加法。 2、会正确训练地进行有理数加减法混合运算。
自学导航:
1、计算(-20)+(+3)-(-5)-(+7) 2、你是如何计算的?与你同组的同学交流说 出你的算法。怎样计算更为简单?
例.把
(
2 3
)
(
4Hale Waihona Puke 5)(1) 5
(
1) 3
(写1)成
省略加号的和的形式,并把它读出来.
解:( 2) ( 4) ( 1) ( 1) (1)
3553
= ( 2) ( 4) ( 1) ( 1) (1) 3553
= 2 4 1 1 1 继续如何计算?
3553
= 2 1 4 1 1
【练8】阅读第(1)题的计算方法,计算第(2)题:
解:
(1)计算: 5 5 (9 2) 17 3 (3 1) 6 34 2
原式 [(5) ( 5)] [(9) ( 2)] (17 3) [(3) ( 1 )]
6
3
4
2
[(5) (9) 17 (3)] [( 5) ( 2) 3 ( 1 )] 6 34 2
3、完成书P23页归纳。 4、阅读P24页内容:回答 (-20)+(+3)+(+5)+(+7)还可写作 ( )它可以读作( )或( )。
【有理数加、减混合运算】
(-20)+(+3)-(-5)-(+7) 【体验】有理数加、减混合运算统一化为加法运算.
a+b-c=a+b+(-c) 【观察】对于式子 (-20)+(+3) +(+5)+(-7) 表示的
【练习】计算:( 5 )( - 7 ) ;
(
1 3
)
2; 5
0 (8); - 3.8(7)
【有理数加法法则】
1. 同号两数相加,取相同的符号,并把绝对值相加;
2. 绝对值不相等的异号两数相加,取绝对值较大的加数
的符号,并用较大的绝对值减去较小的绝对值;
3. 互为相反数的两个数相加得0;
4. 一个数同0相加,仍得这个数.
【练4】对有理数a,b定义运算☆如下:a☆b=(a+b)-(a
-b), 求 (-3)☆4的值.
【练5】已知: 1 12
1
1; 1 2 23
1 2
1; 1 3 3
4
1 3
1; 4
求:
1 12
2
1 3
2
0
0
1 7
2
的 008
值
【练6】在数字1,2,3,4,…,2009 的前面任意添加 “+”或“-”号,有没有可能使它们的和为0,若可 能,请你设计一种添加方法;若不可能,请说明理由.
或读作:__负__2_0_、__正__3_、__正__5__、__负__7_的__和__.
【练1】把下列各式写成省略加号和的形式,并读出各 式:
(1) +7-(-11)+(+5) (2) (-3)-(+2.5)+(+4)-(-1.2) 【练2】把式子-8+4-7还原成加号的和的形式:
__(_-__8_)_+__(+__4_)_+__(_-__7_)____________.
是_-__2_0_,__+__3_,__+__5_,_,__-__7______的和. 【说明】为书写简单, 可省略式中的括号和加号,于是
上式可写为:__-__2_0_+__3_+__5_-__7____________; 读作:__负__2_0_加__3_加__5_减__7____________;
0 (1 1 ) 4
1 1 4
以上这种解题方法叫做拆项法.
(2)计算: 2000 5 (1999 2) 4000 2 (1 1)
6
3
32