集成电路测试原理及方法资料

合集下载

集成电路芯片电参数测试

集成电路芯片电参数测试

集成电路芯片电参数测试集成电路芯片的电参数测试是评估芯片性能和质量的重要步骤之一。

电参数测试可以帮助设计工程师和制造工程师了解芯片的工作条件,优化芯片设计和制造过程。

本文将介绍集成电路芯片的电参数测试的基本原理、测试方法和常见测试指标。

一、电参数测试的基本原理电参数测试是通过将待测芯片接入测试设备,对芯片进行各项电性能指标的测试。

通常,芯片的接口与测试仪器相连接,测试仪器通过向芯片施加电压、电流等信号,测量芯片的电压、电流等响应信号。

通过对这些响应信号的分析,可以得到芯片的电参数信息。

二、电参数测试的方法1. 直流电性能测试直流电性能测试是测试芯片在直流工作状态下的电压、电流等基本电性能指标。

其中包括:(1) 静态电压测量:测量芯片的电源电压、管脚电压等;(2) 静态电流测量:测量芯片的静态工作电流;(3) 动态电流测量:测量芯片在不同工作状态下的动态电流变化。

2. 交流电性能测试交流电性能测试是测试芯片在交流信号下的电性能,用于评估芯片的信号处理能力和频率响应特性。

其中包括:(1) 频率特性测试:测量芯片在不同频率下的增益、相位等指标;(2) 时域响应测试:测量芯片对快速变化信号的响应能力;(3) 噪声测试:测量芯片在不同频率范围内的噪声水平。

3. 温度特性测试温度特性测试用来评估芯片在不同温度环境下的电性能变化,以确定芯片的工作温度范围和温度稳定性。

其中包括:(1) 温度漂移测试:测量芯片在不同温度下的电性能漂移;(2) 温度稳定性测试:测量芯片在恒定温度条件下的电性能稳定性。

4. 功耗测试功耗测试是测试芯片在不同工作模式下的功耗消耗,用于评估芯片的能耗性能和电池寿命。

其中包括:(1) 静态功耗测试:测量芯片在待机模式下的功耗消耗;(2) 动态功耗测试:测量芯片在不同工作负载下的功耗消耗。

三、常见的电参数测试指标1. 电源电压:芯片的工作电压范围和电压稳定性;2. 静态电流:芯片的工作电流和功耗;3. 输出电压范围和电流驱动能力;4. 时钟频率和时钟精度;5. 噪声水平和信噪比;6. 时延、上升时间和下降时间。

《集成电路基础学习知识原理与设计》重要资料内容情况总结

《集成电路基础学习知识原理与设计》重要资料内容情况总结

集成电路原理与设计重点内容总结第一章绪论摩尔定律:(P4)集成度大约是每18个月翻一番或者集成度每三年4倍的增长规律就是世界上公认的摩尔定律。

集成度提高原因:一是特征尺寸不断缩小,大约每三年缩小一2倍;二是芯片面积不断增大,大约每三年增大1.5倍;三是器件和电路结构的不断改进。

等比例缩小定律:(种类优缺点)(P7-8)1. 恒定电场等比例缩小规律(简称CE定律)a. 器件的所有尺寸都等比例缩小K倍,电源电压也要缩小K倍,衬底掺杂浓度增大K倍,保证器件内部的电场不变。

b. 集成度提高忆倍,速度提高K倍,功耗降低K2倍。

c. 改变电源电压标准,使用不方便。

阈值电压降低,增加了泄漏功耗。

2. 恒定电压等比例缩小规律(简称CV定律)a. 保持电源电压和阈值电压不变,器件的所有几何尺寸都缩小K倍,衬底掺杂浓度增加忆倍。

b. 集成度提高忆倍,速度提高K2倍。

c. 功耗增大K倍。

内部电场强度增大,载流子漂移速度饱和,限制器件驱动电流的增加。

3. 准恒定电场等比例缩小规则(QCE)器件尺寸将缩小K倍,衬底掺杂浓度增加K(1< <K)倍,而电源电压则只变为原来的/K倍。

是CV和CE的折中。

需要高性能取接近于K,需要低功耗取接近于1。

写出电路的网表:A BJT AMPVCC 1 0 6Q1 2 3 0 MQRC 1 2 680RB 2 3 20KRL 5 0 1KC1 4 3 10UC2 2 5 10UVI 4 0 AC 1.MODEL MQ NPN IS=1E-14+BF=80 RB=50 VAF=100.OP.END其中.MODEL为模型语句,用来定义BJT晶体管Q1的类型和参数。

常用器件的端口电极符号器件名称端口付号缩与Q (双极型晶体管) C (集电极),B (基极),E (发射极),S (衬底)M (MO场效应管) D (漏极),G (栅极),S (源极),B (衬底)J (结型场效应管) D (漏极),G (栅极),S (源极)B (砷化镓场效应管) D (漏极),G (栅极),S (源极)电路分析类型.OP直流工作点分析.TRAN瞬态分析• DC直流扫描分析• FOUR傅里叶分析•TF传输函数计算.MC豕特卡罗分析•SENS灵敏度分析•STEP参数扫描分析.AC交流小信号分析•WCASE最坏情况分析• NOISE噪声分析•TEMP温度设置第二章集成电路制作工艺集成电路加工过程中的薄膜:(P15)热氧化膜、电介质层、外延层、多晶硅、金属薄膜。

集成电路原理及应用期末复习资料..

集成电路原理及应用期末复习资料..

1.什么是差动放大电路?什么是差模信号?什么是共模信号?差动放大器对差模信号和共模信号分别起什么作用?差动放大电路是把两个输入信号分别输入到运算放大器的同相和反相输入端,然后在输出端取出两个信号的差模成分,而尽量抑制两个信号的共模成分的电路。

共模信号:双端输入时,两个大小相同,极性相同的信号。

差模信号:双端输入时,两个大小相等,极性相反的信号。

对差模输入信号的放大作用、对共模输入信号的抑制作用2.集成运放有哪几部分组成?各部分的典型电路分别是什么?输入级、中间级、输出级、偏置电路四大部分组成输入级的典型电路是差动放大电路, 利用它的电路对称性可提高整个电路的性能,减小温漂;中间级的典型电路是电平位移电路, 将电平移动到地电平,满足零输入时零输出的要求;输出级的典型电路是互补推挽输出放大电路,使输出级输出以零电平为中心,并能与中间电压放大级和负载进行匹配;偏置电路典型电路是电流源电路,给各级电路提供合适的静态工作点、所需的电压3.共模抑制比的定义?集成运放工作于线性区时,其差模电压增益Aud与共模电压增益Auc之比4.集成运放的主要直流参数:输入失调电压Uos、输入失调电压的温度系数△Uos/△T、输入偏置电流、输入失调电流、差模开环直流电压增益、共模抑制比、电源电压抑制比、输出峰--峰电压、最大共模输入电压、最大差模输入电压5.集成运放主要交流参数:开环带宽、单位增益带宽、转换速率、全功率带宽、建立时间、等效输入噪声电压、差模输入阻抗、共模输入阻抗、输出阻抗。

6.理想集成运放的基本条件。

1.差模电压增益为无穷大2.输入电阻为无穷大3.输出电阻为04.共模抑制比CMRR为无穷大5.转换速率为无穷大即Sr=006.具有无限宽的频带7.失调电压·失调电流极其温漂均为08.干扰和噪声均为07.理想集成运放的两个基本特性:虚短和虚断。

代表的实际物理意义。

其实,虚短和虚断的原因只有一个,那就是:输入端输入电阻无穷大。

IDDQ测试方法

IDDQ测试方法

IDDQ测试技术及其实现方法Iddq testing techniqure and its implementation谭超元 钟征宇(电子部五所 广州1501信箱05分箱 510610)摘要:IDDQ(即静态电源电流)测试是近几年来国外比较流行的CMOS集成电路测试技术。

IDDQ测试能够检测出传统的固定值故障电压测试(即SAF功能测试)所无法检测的CMOS集成电路内部的缺陷(如氧化层短路,穿通等),所以,能够明显提高CMOS集成电路的使用可靠性。

本文叙述了IDDQ测试的基本原理和IDDQ测试在集成电路测试系统上的实现方法及测试实例。

主题词:IDDQ 电流测试 CMOS 缺陷 可靠性1 前 言IDDQ测试技术是在CMOS集成电路静态功耗电流参数测试的基础上发展来的一种测试技术,它将电流测试与电压测试有机地结合在一起,大大提高了故障覆盖率[1]。

然而,由于电流测试的速度远远低于电压测试的速度,如果对大规模CMOS集成电路的每一个功能测试向量都进行一次IDDQ测试,将需要很长的测试时间。

为了使IDDQ 测试技术实用化,缩短IDDQ测试的时间, 1990年前后国外在精简IDDQ测试向量的IDDQ测试算法研究方面和提高IDDQ测试的速度和精度方面做了大量的工作,并取得了明显的进展,如QU IETEST能够将ID2 DQ测试向量精简到SAF功能测试向量的1%[2],而在电流检测方面已经达到15kHz-1MHz的电流检测速度,1μA的电流检测精度[3]。

21IDDQ测试原理传统的电压测试是将测试图形加到基本输入端,并在基本输出端与期望值相比较,如果结果一致,则电路合格,结果不一致,则电路不合格。

如果缺陷出现在电路内部,则必须把它“传递”到基本输出端才能被检测出来。

IDDQ是指当CMOS集成电路中的所有节点都处于静止状态时的电源电流。

IDDQ 测试与电压测试一样将测试图形加到基本输入端,与电压测试的不同之处在于它不是在基本输出端进行电压测试,而是在电源端或地端进行电流测试。

集成电路工艺原理资料

集成电路工艺原理资料

第一章衬底材料1、三种单晶制备方法的特点和用途比较直拉法(引晶,缩颈,放肩,等径生长,收晶)基本原理:将多晶硅在真空或惰性气体保护下加热,使多晶硅熔化,然后利用籽晶来拉制单-固相界面附近存在温度梯度(dT/dz)。

区熔法(悬浮区熔法:多晶硅棒和籽晶粘在一起后竖直固定在区溶炉上、下轴之间;水平区熔法:多晶硅棒和籽晶粘在一起后水平固定在区溶炉左、右轴之间)基本原理:将籽晶与多晶硅棒紧粘在一起,利用分段熔融多晶棒,在溶区由籽晶移向多晶硅棒另一端的过程中,使多晶硅转变成单晶硅。

中子嬗变掺杂法:利用热中子(即低能中子)对高阻单晶进行辐照,从而使其电阻率发生改变的方法。

主要用来对高阻区熔单晶电阻率的均匀性进行调整。

三种单晶制备方法的比较方法C、O含量直径电阻率大小电阻率均匀性用途直拉法较高大低径向、轴向均匀性很差制作VLSI区熔法较低较小高径向、轴向均匀性较差制作PowerDevice中子嬗变法不变不变可调较好调整电阻率2、硅中有害杂质的分类、存在形式及其影响非金属主要有C、O、H原子。

重金属主要有Au、Cu、Fe、Ni原子。

金属主要有Na 、K、Ca、Al、Li、Mg、Ba 原子等。

分类种类存在形式主要影响影响器件的特性参数(UT,β,Usat,fT);影响硅单晶的力O 间隙位置学性质(降低其机械强度);有源区外的氧有利于吸收附非金属近的重金属杂质,增强硅器件抗α粒子辐射的能力。

C 替位位置影响硅器件的电学性质(IR↑,UB↓);会减小硅的晶格常数,引起晶格畸变;间隙90% 有多个能级和双重电活性(受主或施主)或复合重金属Au 替位10% 中心, 影响硅的电阻率(ρ)和寿命(τ);有效的复合中心影响较严重,除影响τ, ρ外,易在缺陷处形成杂Cu Fe 深能级质线和沉积微粒,使器件产生等离子击穿、PN结漏电“管道”等现象金属Na,K 间隙位置参与导电、影响器件的电学特性;Al Al会对N型材料的掺杂起补偿作用,使ρ↑3、硅中杂质吸除技术的分类,四种非本征杂质吸除方法的原理。

《集成电路测试》 实验指导书

《集成电路测试》 实验指导书

《集成电路测试》实验指导书南通大学集成电路重点实验室2009年6月实验一 测试图形生成及验证一、实验目的熟悉对被测电路给定故障生成测试图形的过程,掌握异或法和D 算法的具体运用。

二、实验原理参考教材P74 4.2.1 异或法, P82 4.4 D 算法三、实验内容abcd(1) 用异或法对5/0故障生成测试图形;(2) 用D 算法对6/0故障生成测试图形;(3) 对以上所产生的测试图形进行验证;(在Quartus II 中进行验证)四、实验报告写出测试图形生成的具体过程,给出整个实验的原理图和运行结果,分析实验结果的正确性。

f实验二伪随机序列生成一、实验目的了解随机测试和伪随机测试的基本概念;掌握LFSR的基本结构和M序列的基本特性。

二、实验原理基于故障的确定性测试方法是指用专门的算法对给定的故障生成测试图形,优点是生成的测试图形长度短,但生成过程比较复杂,测试施加比较困难。

由微处理器的测试软件算法或者专用的测试电路可容易生成随机的或伪随机的测试图形,并具有较高的故障覆盖率,因此在集成电路测试中得以广泛应用。

如果一个序列,一方面它是可以预先确定的,并且是可以重复地生产和复制的;一方面它又具有某种随机序列的随机特性(即统计特性),我们便称这种序列为伪随机序列。

因此可以说,伪随机序列是具有某种随机特性的确定的序列。

它们是由移位寄存器产生确定序列,然而他们却具有某种随机序列的随机特性。

因为同样具有随机特性,无法从一个已经产生的序列的特性中判断是真随机序列还是伪随机序列,只能根据序列的产生办法来判断。

伪随机序列系列具有良好的随机性和接近于白噪声的相关函数,并且有预先的可确定性和可重复性。

伪随机序列的电路为一个反馈移位寄存器,它可分为线性反馈移位寄存器(简称LFSR 计数器)和非线性反馈移位寄存器,由线性反馈移位寄存器(LFSR)产生的周期最长的二进制数字序列称为最大长度线性反馈移位寄存器序列,通常简称为M序列。

集成电路测试基本原理

集成电路测试基本原理

集成电路测试基本原理
集成电路测试的基本原理是:被测电路DUT(Device Under Test)可作为一个已知功能的实体,测试依据原始输入X和网络功能集F(X),确定原始输出回应Y,并分析Y是否表达了电路网络的实际输出。

因此,测试的基本任务是生成测试输入,而测试系统的基本任务则是将测试输人应用于被测器件,并分析其输出的正确性。

测试过程中,测试系统首先生成输入定时波形信号施加到被测器件的原始输入管脚,第二步是从被测器件的原始输出管脚采样输出回应,最后经过分析处理得到测试结果。

集成电路测试的作用包括:
1. 检测:确定被测器件DUT是否具有或者不具有某些故障。

2. 诊断:识别表现于DUT的特性故障。

3. 器件特性的描述:确定和校正设计和/或者测试中的错误。

4. 失效模式分析(FMA):确定引起DUT缺陷制造中的错误。

以上信息仅供参考,如有需要,建议咨询专业技术人员。

93k集成电路测试系统校准原理及实现方法研究

93k集成电路测试系统校准原理及实现方法研究
[ 3 ] 贺志容 ,韩红星 ,胡勇. 93k集成电路测试系统参考源 校准方法研究 [ C ]. 第五届中国测试学术会议论文 集 : 213~215.
作者简介 :贺志容 ( 1980—) ,女 ,工程 师 ,主要研究领域:微电子计量与 测试 。 通讯地址 :武汉市洪山区珞瑜路 718 号 (430074) 电话 : 027 - 87533046 E2mail: hzr_hust@163. com
[ 1 ] 贺志容 ,沈森祖 ,韩宏星 ,等. 93000集成电路测试系统 检定方法研究 [ C ]. 2007计量与测试学术交流会论文 集 , 2007: 187~189.
[ 2 ] Verigy coporation, N IST Traceable Calibration, Verigy V93000 Service Guide.
完整的溯源校准的新型集成电路测试系统 [ 3 ] 。 在系统的长期运行过程中 ,由于测试系统内部
组成元器件性能的微小变化 ,温度 、湿度等外部因 素的影响 ,系统的量值会产生漂移 ,若不对这种漂 移做出修正 ,漂移的累积会严重降低系统精度 。校 准过程中如果不能对量值进行更新修正 ,系统精度 会逐步降低 。内部参考源校准时首先对内部参考 源进行校准 ,并自动更新系统基准量 ,使其误差趋 于零 ,消除了各种因素对基准量值造成的影响 ; 自 动校准的过程利用已经校准合格的基准量对系统 中间量直至系统参量进行校准 ,并产生修正值 ,在 测试过程中引用 ,消除了各种因素对系统参量造成 的影响 ,使测量结果的产生都能依据最新校准的修 正模式 ,保证了测试系统的精度 。
图 6 参考电压校准示意图
图 7 参考电阻校准示意图
© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H a r b i n I n s t i t u t e o f T e c h n o l o g y集成电路测试原理及方法简介院系:电气工程及自动化学院姓名: XXXXXX 学号: XXXXXXXXX 指导教师: XXXXXX 设计时间: XXXXXXXXXX摘要随着经济发展和技术的进步,集成电路产业取得了突飞猛进的发展。

集成电路测试是集成电路产业链中的一个重要环节,是保证集成电路性能、质量的关键环节之一。

集成电路基础设计是集成电路产业的一门支撑技术,而集成电路是实现集成电路测试必不可少的工具。

本文首先介绍了集成电路自动测试系统的国内外研究现状,接着介绍了数字集成电路的测试技术,包括逻辑功能测试技术和直流参数测试技术。

逻辑功能测试技术介绍了测试向量的格式化作为输入激励和对输出结果的采样,最后讨论了集成电路测试面临的技术难题。

关键词:集成电路;研究现状;测试原理;测试方法目录一、引言 (4)二、集成电路测试重要性 (4)三、集成电路测试分类 (5)四、集成电路测试原理和方法 (6)4.1.数字器件的逻辑功能测试 (6)4.1.1测试周期及输入数据 (8)4.1.2输出数据 (10)4.2 集成电路生产测试的流程 (12)五、集成电路自动测试面临的挑战 (13)参考文献 (14)一、引言随着经济的发展,人们生活质量的提高,生活中遍布着各类电子消费产品。

电脑﹑手机和mp3播放器等电子产品和人们的生活息息相关,这些都为集成电路产业的发展带来了巨大的市场空间。

2007年世界半导体营业额高达2.740亿美元,2008世界半导体产业营业额增至2.850亿美元,专家预测今后的几年随着消费的增长,对集成电路的需求必然强劲。

因此,世界集成电路产业正在处于高速发展的阶段。

集成电路产业是衡量一个国家综合实力的重要重要指标。

而这个庞大的产业主要由集成电路的设计、芯片、封装和测试构成。

在这个集成电路生产的整个过程中,集成电路测试是惟一一个贯穿集成电路生产和应用全过程的产业。

如:集成电路设计原型的验证测试、晶圆片测试、封装成品测试,只有通过了全部测试合格的集成电路才可能作为合格产品出厂,测试是保证产品质量的重要环节。

集成电路测试是伴随着集成电路的发展而发展的,它为集成电路的进步做出了巨大贡献。

我国的集成电路自动测试系统起步较晚,虽有一定的发展,但与国外的同类产品相比技术水平上还有很大的差距,特别是在一些关键技术上难以实现突破。

国内使用的高端大型自动测试系统,几乎是被国外产品垄断。

市场上各种型号国产集成电路测试,中小规模占到80%。

大规模集成电路测试系统由于稳定性、实用性、价格等因素导致没有实用化。

大规模/超大规模集成电路测试系统主要依靠进口满足国内的科研、生产与应用测试,我国急需自主创新的大规模集成电路测试技术,因此,本文对集成电路测试技术进行了总结和分析。

二、集成电路测试重要性随着集成电路应用领域扩大,大量用于各种整机系统中。

在系统中集成电路往往作为关键器件使用,其质量和性能的好坏直接影响到了系统稳定性和可靠性。

如何检测故障剔除次品是芯片生产厂商不得不面对的一个问题,良好的测试流程,可以使不良品在投放市场之前就已经被淘汰,这对于提高产品质量,建立生产销售的良性循环,树立企业的良好形象都是至关重要的。

次品的损失成本可以在合格产品的售价里得到相应的补偿,所以应寻求的是质量和经济的相互制衡,以最小的成本满足用户的需要。

作为一种电子产品,所有的芯片不可避免的出现各类故障,可能包括:1.固定型故障;2.跳变故障;3.时延故障;4.开路短路故障;5桥接故障,等等。

测试的作用是检验芯片是否存在问题,测试工程师进行失效分析,提出修改建议,从工程角度来讲,测试包括了验证测试和生产测试两个主要的阶段。

一款新的集成电路芯片被设计并生产出来,首先必须接受验证测试。

在这一阶段,将会进行功能测试、以及全面的交流(AC)参数和直流(DC)参数的测试等,也可能会探测芯片的内部结构。

通常会得出一个完整的验证测试信息,如芯片的工艺特征描述、电气特征(DC参数、AC参数、电容、漏电、温度等测试条件)、时序关系图等等。

通过验证测试中的参数测试、功能性测试、结构性测试,可以诊断和修改系统设计、逻辑设计和物理设计中的设计错误,为最终规范(产品手册)测量出芯片的各种电气参数,并开发出测试流程。

当芯片的设计方案通过了验证测试,进入生产阶段之后,将利用前一阶段设计好的测试流程进行生产测试。

在这一阶段里,测试的目的就是对被测芯片进行“Pass”或“Fail”判断。

由于要每一片芯片进行生产测试,所以测试成本是这一阶段的首要问题。

出于此种目的,测试的效率很关键,生产测试生产没有验证测试那么全面,测试通常所采用的测试向量集不会包含过多的测试向量,但是必须有足够高的模型化故障的覆盖率以满足质量上的要求。

三、集成电路测试分类依照器件开发和制造阶段、采用的工艺技术、测试项目种类以及待测器件等的不同,测试技术可以分为很多种类。

器件开发阶段的测试包括:1.晶圆测试(Wafer Test):对裸露的、尚未切割的每颗晶圆进行探针测试。

测试过程中,要让测试仪的探针与晶粒上的节电接触,测试晶粒的电气特性不合格的晶粒会被标上记号。

探针卡的阻抗匹配和延时问题必须加以考虑,以便于时序调整和矫正。

2.生产测试:晶圆上的芯片经过封装后,对成品进行全面的电性能测试。

3.老化测试:通过生产性测试的产品并不是完全一致的,在实际应用当中,有些会很快失效,而有些会能长时间正常工作。

老化测试是通过一个长时间的连续或周期性的测试使不耐用的器件失效,从而确保老化测试后器件的可靠性。

老化测试分为静态老化测试和动态老化测试。

静态老化测试是在给器件提供供电电压下,提高器件的工作温度,对其寿命进行测试。

动态老化测试是在静态老化测试的基础上施加激励。

4.质量控制测试:为确保生产产品的质量,对准备出厂的合格器件进行抽样测试,确保良品的合格率。

目前,集成电路针对不同的应用场合分为民用标准级、工业标准级和军用标准级别,不同的级别参数测试的标准高低不同。

图1为集成电路一般的测试流程:图1 测试流程四、集成电路测试原理和方法通常的按测试项目种类分主要包括:1.逻辑功能测试:根据被测器件的真值表,设计向量,对器件逻辑功能进行测试。

2.直流参数测试:在DUT的引脚上施加电流或电压,测出具体的参数数值。

测试项目包括:开路/短路测试,输出驱动电流测试,漏电电流测试,电源电流测试,转换电平测试等。

4.1.数字器件的逻辑功能测试结合体图2,逻辑功能测试是旨在于检查被测器件在类似实际使用的环境下是否能实现其预期逻辑功能的一类测试,也就是我们常说的功能测试。

功能测试根据被测器件的真值表、状态方程、测试图形来测试器件的逻辑功能。

功能测试是全集的,测试向量集不会包含多余的测试向量,但必须有足够高的故障覆盖率。

在电路中传输的逻辑“1/0”是由带定时特性和电平特性的波形,与波形形状、脉冲宽度、脉冲边缘或斜率以及上升沿和下降沿的位置都有关系。

功能测试关注的重点是测试图形产生的速度、边沿定时控制的特性、输入/输出控制和屏蔽选择。

参照被测器件(DUT)的器件手册,考虑各个方面的性能,必须仔细检查下列项的准确值:①被测器件电源电压最小值/最大值;② VOL/VOH(输出电压);③ VIL/VIH(输入电压);④ IOL/I OH (输出负载电流);⑤动态电流负载参考电平VREF;⑥测试频率/周期;⑦输入信号时序(时钟/建立时间/保持时间/控制信号);⑧输入信号波形编码方式;⑨输出时序(在周期内何时对输出进行采样);⑩向量序列(向量文件内的开始/停止位置)。

从以上可以看出,逻辑功能测试中需要配置大量的资源信息,主要由两大块组成,一是测试向量文件,另外一块是包含测试指令的主测试程序。

测试向量代表了测试待测器件所需的激励输入和期望输出的逻辑状态。

主测试程序设定测试速率、引脚部件电平值、输入通道的编码格式、波形和时序等所必需的信息。

从向量存储器里输出的数据与时序,编码格式以及电平数据结合在一起,通过引脚电路施加给被测器件。

输入的测试数据就包含测试向量、输入信号时序、输入信号格式化编码、输入电平组等。

执行功能测试时,设定必要的初始程序、合理的电平和电流值和定时条件后,测试系统逐个周期的给DUT提供激励,同时在一个周期内对DUT的输出进行监测,输出信号与测试向量表示的期望值相互比较,如果输出引脚输出的逻辑状态与期望不相符合,则功能测试失效。

对输出响应的检测有两种方法。

(1)比较法:输入激励同时应用于被测电路和一个称为金器件(设为无故障)的相同器件,比较两者输出响应即可判断被测电路正确性。

这种比较法一般适用于比较简单的标准中小规模(SSI、MSI)电路的测试。

(2)存储响应法:结合图2,在计算机的控制下,被测器件的测试集存放在测试系统高速缓冲存储器中。

测试时,测试图形根据测试主频逐排读出,输入激励顺次施加于被测器件,逐拍与期望响应作为比较。

如果比较结果全部一致,则证明器件功能合格;否则称器件功能失效。

这种方法涉及大量测试数据的存储和读出操作,但它具有相当的灵活性,也适用于时序电路的测试。

该方法的优点是可以根据测试要求,在确保一定的测试可接受的前提下,将一个很长的测试集进行压缩,这样不仅节省了存储空间,而且加快了测试速度,因此存储响应原理为众多测试系统所采用。

测试的顺序为测试矢量→被测电路→与标准响应比较→结果分析。

图2 存储响应法4.1.1测试周期及输入数据(1)测试周期测试周期是测试器件过程中的工作频率,为每一条测试向量所持续的时间。

功能测试建立时序的第一步是定义测试周期的时序关系。

(2)输入数据激励给DUT的数据是含有时序和电平信息的,一般由以下因数构成:①测试向量;②输入信号格式化编码组;③输入信号电平组;④输入信号时序组。

激励给DUT的输入信号是以测试向量数据形式存储的逻辑“1/0”,而代表逻辑“1/0”的电平则由电子引脚中的VIH/VIL参考电平规定的。

输入信号要求设置为包含唯一格式化编码方式和设定时序更为复杂的数据形式,主程序中会包含这些信息并通过相应的代码实现设置。

(3)输入信号格式根据DUT输入引脚的特性,设定其输入信号的编码格式以完成功能测试,使用得当还可以保证规格书定义的所有交流参数被测试。

信号格式与测试向量、时沿设定及输入电平组合起来作为DUT的输入信号波形。

图3给出了一些信号格式的简单描述。

图3 信号格式化编码① NRZ(Non Return to Zero,不返回):代表存储于向量存储器的实际数据,它不含有时沿信息,只在每个周期的起始点(T0)发生变化。

② DNRZ(Delayed Non Return to Zero,延迟不返回):顾名思义,它和NRZ一样代表存储于向量存储器的数据,只是周期中数据的转变点不在T0。

相关文档
最新文档